
Publication information

Copyright information

Notice

This version available at HKUST Institutional Repository via

If it is the author’s pre-published version, changes introduced as a result of publishing
processes such as copy-editing and formatting may not be reflected in this document. For
a definitive version of this work, please refer to the published version.

http://repository.ust.hk/ir/

Liu, Yepang; Xu, Chang; Cheung, Shing-Chi; Terragni, Valerio

HKUST Technical Report , HKUST-CS15-04

Pre-published version

The Hong Kong University of Science and Technology

Nil

http://hdl.handle.net/1783.1/81288

How do developers use wake locks in Android applications? - A large-scale
empirical Study

© The Author(s)/ The Hong Kong University of Science and Technology

How Do Developers Use Wake Locks in Android Applications?
A Large-Scale Empirical Study

Technical Report HKUST-CS15-04
Online date: November 13, 2015

Authors:

Yepang Liu (Hong Kong University of Science and Technology)

Chang Xu (Nanjing University)

Shing-Chi Cheung (Hong Kong University of Science and Technology)

Valerio Terragni (Hong Kong University of Science and Technology)

Abstract: Wake locks are commonly used in Android apps to protect critical computations from
being disrupted by device sleeping. However, inappropriate use of wake locks often causes various
issues that can seriously impact app user experience. Unfortunately, people have limited
understanding of how Android developers use wake locks in practice and the potential issues that can
arise from wake lock misuses. To bridge this gap, we conducted a large-scale empirical study on 1.1
million commercial and 31 open-source Android apps. By automated program analysis of
commercial apps and manual investigation of the bug reports and source code revisions of open-
source apps, we made several important findings. For example, we found that developers often use
wake locks to protect 15 types of computational tasks that can bring users observable or perceptible
benefits. We also identified eight types of wake lock misuses that commonly cause functional or non-
functional issues, only two of which had been studied by existing work. Such empirical findings can
provide guidance to developers on how to appropriately use wake locks and shed light on future
research on designing effective techniques to avoid, detect, and debug wake lock issues.

This is the Pre-Published Version

How Do Developers Use Wake Locks in Android Apps?
A Large-scale Empirical Study

Yepang Liu§, Chang Xu‡, Shing-Chi Cheung§, and Valerio Terragni§
§
Dept. of Computer Science and Engineering, The Hong Kong University of Science and Technology, Hong Kong, China

‡
State Key Lab for Novel Software Technology and Dept. of Computer Sci. and Tech., Nanjing University, Nanjing, China

§
{andrewust, scc, vterragni}@cse.ust.hk, ‡changxu@nju.edu.cn

ABSTRACT
Wake locks are commonly used in Android apps to protect
critical computations from being disrupted by device sleep-
ing. However, inappropriate use of wake locks often causes
various issues that can seriously impact app user experience.
Unfortunately, people have limited understanding of how
Android developers use wake locks in practice and the poten-
tial issues that can arise from wake lock misuses. To bridge
this gap, we conducted a large-scale empirical study on 1.1
million commercial and 31 open-source Android apps. By
automated program analysis of commercial apps and manual
investigation of the bug reports and source code revisions of
open-source apps, we made several important findings. For
example, we found that developers often use wake locks to
protect 15 types of computational tasks that can bring users
observable or perceptible benefits. We also identified eight
types of wake lock misuses that commonly cause functional
or non-functional issues, only two of which had been studied
by existing work. Such empirical findings can provide guid-
ance to developers on how to appropriately use wake locks
and shed light on future research on designing effective tech-
niques to avoid, detect, and debug wake lock issues.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: [Testing and Debugging]

General Terms
Experimentation, Performance

Keywords
Wake lock, critical computation, wake lock misuse

1. INTRODUCTION
Nowadays, smartphones are equipped with powerful hard-
ware such as HD screen and various sensors to provide rich
user experience. However, such hardware is a big consumer
of battery power. To prolong battery life, many smartphone
platforms such as Android choose to put energy-consumptive
hardware into an idle or sleep mode (e.g., turning screen off)
after a short period of user inactivity [35].

Albeit preserving energy, this sleeping policy may break
the functionality of some apps that need to keep smart-
phones awake for certain critical computation. Consider a
banking app. When its user transfers money online over slow
network connections, it may take a while for the transaction
to complete. If the user’s smartphone falls asleep while wait-
ing for server messages and does not respond in time, the
transaction will fail, causing bad user experience. To address
this problem, modern smartphone platforms allow apps to
explicitly control whether to keep certain hardware awake

for continuous computation. On Android platforms, wake
locks are designed for this purpose. Specifically, to keep
certain hardware awake for computation, an app needs to
acquire an appropriate type of wake lock from the Android
OS (see Section 2.2). When the computation completes, the
app should release the acquired wake locks properly.

The wake lock mechanism is widely used in practice. We
found that around 27.2% of apps on Google Play store [14]
use wake locks for reliably providing certain functionalities
(see Section 3). Despite the popularity, programming wake
locks correctly is a non-trivial task. In order to avoid unde-
sirable consequences, a cautious developer should carefully
think through at least the following three questions before
they use wake locks:

1. Do the benefits brought by using wake locks justify the
energy cost (for reasoning about the necessity of using
wake locks)?

2. Which hardware needs to stay awake (for deciding which
type of wake lock to use)?

3. When should the hardware be kept awake and when are
they allowed to fall asleep (for deciding the program points
to acquire and release wake locks)?

Unfortunately, we observe that in practice, many devel-
opers seem to be unaware of such questions and use wake
locks in a undisciplined way. For example, our investigation
of 31 popular open-source Android apps revealed that 19
(61.3%) of them have suffered from various functional and
non-functional issues/bugs due to wake lock misuses. These
issues caused a lot of user frustrations. Yet, existing work,
including our earlier one, only studied a small fraction of
them [24, 30, 35]. Developers still lack guidance on how to
appropriately use wake locks and have limited access to use-
ful tools that can help catch their mistakes. This motivates
us to conduct an empirical study to understand the common
practices of wake lock usage in reality (our first goal) as
well as common misuses of wake locks (our second goal).

In this paper, we study a large number of real-world An-
droid apps, including 1,117,195 commercial ones and 31 open-
source ones, by leveraging static program analysis and sta-
tistical analysis techniques. Our study aims to answer the
following five research questions:

● RQ1 (Locking app components): In which types of
app components do Android apps often acquire wake locks?

● RQ2 (Lock types): What types of wake locks are com-
monly used in Android apps?

● RQ3 (Acquiring and releasing points): At what pro-
gram points are wake locks often acquired and released in
Android apps?

This is the Pre-Published Version

● RQ4 (Critical computation): What computational tasks
are often protected by wake locks in Android apps?

● RQ5 (Wake lock misuses): Are there common wake
lock misuses in Android apps? What issues can they cause?

RQ1–4 are designed to achieve our first goal. RQ5 is de-
signed to achieve our second goal. By studying them, we
obtained several useful findings. We give two examples here.
First, we found that although in theory wake locks can be
used to protect any computation from being disrupted by
device sleeping, the usage of wake locks in practice is of-
ten closely associated with a small number of computational
tasks. Second, by manually analyzing the bug reports and
source code revisions of the 31 open-source apps, we identi-
fied 56 real wake lock issues. By categorizing them accord-
ing to their root causes, we observed eight common types
of wake lock misuses. Out of the eight types, existing work
studied only two of them and proposed detection techniques
for only one of them. Such findings not only provide guid-
ance to developers when they need to use wake locks, but
also facilitate future research on developing useful techniques
for avoiding, detecting, debugging, and fixing wake lock is-
sues. To summarize, our work has two major contributions:

● We conducted an empirical study of a large number of
real-world Android apps by leveraging program analy-
sis and statistical analysis techniques to understand how
wake locks are used by developers in practice. To the best
of our knowledge, we are the first to do so.

● We collected 56 real wake lock issues in open-source An-
droid apps. By categorizing them, we observed eight types
of common wake lock misuses. These findings can directly
facilitate future research such as automated bug detection.

The remainder of this paper is organized as follows. Sec-
tion 2 briefs Android app basics. Section 3 describes the
methodology of our empirical study. Section 4 presents the
study results. Section 5 discusses the threats to our study
and feedback from developers. Section 6 reviews related
work and finally Section 7 concludes this paper.

2. BACKGROUND
Android is a Linux-based mobile operating system [2]. Apps
running on Android platforms are normally written in Java
and compiled to Dalvik bytecode, which are then encap-
sulated into Android app package files (i.e., APK files) for
distribution and installation [1].

2.1 App Components and Event Handling
App components. An Android app typically comprises
four types of components: activities, services, broadcast re-
ceivers, and content providers [1]. Activities are the only
components that have graphical user interfaces (GUIs) for
interacting with users. Services are components that run at
background for performing long-running operations. Broad-
cast receivers define how an app responds to system-wide
broadcast messages. Content providers manage shared app
data for other components or apps to query or modify.

Event handling. Android apps are event-driven pro-
grams. An app’s logic is normally implemented in a set of
event handlers: callback methods that will be invoked by
the Android framework when their corresponding events oc-
cur. To provide rich user experience, the Android platform
defines thousands of such handlers to process various events.
Here, we briefly introduce two important types [39]: (1) app

Table 1: Different types of wake locks and their im-
pact on system power consumption

Wake lock type CPU Screen Keyboard backlight

Partial On Off Off

Screen dim On Dim Off

Screen bright On Bright Off

Full On Bright Bright

Proximity screen off Screen off when proximity sensor activates

component lifecycle event handlers, and (2) GUI event han-
dlers. The former type of handlers processes an app com-
ponent’s lifecycle events (e.g., creation, pausing, and termi-
nation). For instance, an activity’s onCreate handler will
be invoked upon the activity’s creation. The latter type of
handlers processes user interaction events on an app’s GUI.
For example, the onClick handler of a GUI widget (e.g.,
button) will be invoked to handle user clicks on the widget.

2.2 Wake Lock Mechanism
Wake locks enable developers to explicitly control the power
state of an Android device. To use a wake lock, develop-
ers need to declare the android.permission.WAKE_LOCK per-
mission in their app’s manifest file. After obtaining the per-
mission, they need to create a PowerManager.WakeLock in-
stance and specify the type of the wake lock. Table 1 lists all
five wake locks types supported by the Android framework.1

Each type has a different wake level and thus different ef-
fects on the system’s power consumption. For instance, a full
wake lock will ensure that: (1) the device CPU keeps run-
ning, and (2) the screen and keyboard backlight are on and
at full brightness. After creating wake lock instances, devel-
opers can then invoke corresponding APIs to acquire and re-
lease wake locks (see Figure 8 for example). Once acquired, a
wake lock will have a long lasting effect on the whole system
until it is released or the specified timeout expires. When ac-
quring wake locks, developers can also set certain flags. For
example, setting the ON_AFTER_RELEASE flag will cause the
device screen to remain on for a while after the correspond-
ing wake lock is released. Due to wake locks’ direct effect on
device hardware state, developers should carefully use them
to avoid undesirable consequences (e.g., energy waste).

3. METHODOLOGY
This section presents our methodology for the empirical study.
We start by introducing our datasets and then discuss how
we analyze them to answer our research questions.

3.1 Dataset Collection
For our study, we collected the following three datasets:

Dataset 1: Basic information of commercial apps.
We first collected the basic information of 1,117,195 com-
mercial Android apps from Google Play store using a web
crawler [7]. Specifically, for each app, we collected its: (1)
app ID, (2) category, (3) number of downloads, and (4) de-
clared permissions. Figure 1(a)–(c) give some statistics of
the dataset. The apps in the dataset cover all 26 major app
categories defined by Google Play store [5] and each cate-
gory contains thousands of apps (Figure 1(a)). Many of the

1Latest Android versions deprecate screen bright, screen dim and
full wake locks and suggest developers to set the KEEP_SCREEN_ON
flag when defining activities. The OS will then keep device screen
on when the activities are visible to users. Although this may ease
programming, for finer-grained control, developers still often use
wake locks as we will see in Section 4.1.

This is the Pre-Published Version

Mean = 7.7

0

5K

10K

15K

0 10 20 30 40 50

Mean = 3,345

0

5

10

15

0 4K 8K 12K 16K 20K 24K

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Mean = 1,385

0

2

4

6

8

0 2000 4000 6000

of apps

of

 ca
te

go
ri

es

(a) Categories size distribution (Dataset 1)

Mean = [224.2K, 951.7K]

of downloads
C

D
F

(e) App download distribution (Dataset 2)

1 102 104 1010108106

of downloads

C
D

F

(b) App download distribution (Dataset 1)

98.8%

Mean = [69.6K, 278.3K]

(f) APK file size distribution (Dataset 2)

of

 a
pp

s

APK file size (MB)# of apps

of

 ca
te

go
ri

es

(d) Categories size distribution (Dataset 2)

of

 ca
te

go
ri

es

Percentage
(c) % of apps that use wake locks in

each category (Dataset 1)

0

1

2

3

0.1 0.2 0.3 0.4

Mean = 27.8%

97.2%

Mean = [38.9M, 188.8M]

of downloads

C
D

F

(h) App download distribution (Dataset 3) (i) App size distribution (Dataset 3)

of

 a
pp

s

App size (KLOC)# of revisions

of

 a
pp

s

(g) App revision number distribution (Dataset 3)

51.6% Mean = 40.3

0

2

4

6

0 50 100104 106 108 109107105103 1010

1 102 104 1010108106

Mean = 42.9K

0
1
2
3
4
5

0 50K 100K 150K 200K

Figure 1: Statistics of our datasets (“CDF” stands for Cumulative Distribution Function)

Table 2: Top 5 categories of apps that commonly
use wake locks

App category % of apps that declare wake lock permission

News & Magazines 42.6%

Music & Audio 41.4%

Media & Video 38.6%

Communication 38.0%

Business 37.9%

apps are popularly downloaded from market. Figure 1(b)
gives the distribution of downloads of these apps. As we
can see, nearly half of the apps have achieved one thousand
downloads and 1.2% of the apps have over one million down-
loads. On average, each app has received more than 69.6
thousand downloads.2 Besides, by checking permissions, we
found that in many categories, a large percentage of apps
declare the permission to use wake locks (Figure 1(c)). Ta-
ble 2 lists the top five categories and it shows that wake
locks are popularly used in real-world Android apps.

Dataset 2: Binaries of commercial apps. Our re-
search questions RQ1–4 require analyzing the code of An-
droid apps to answer. Therefore, we also need to collect the
binaries (APK files) of those Android apps that use wake
locks. For this purpose, we first obtained a list of apps that
declare the wake lock permission from our first dataset. This
list contains 303,877 candidate apps. We then randomly
downloaded the binaries of 36,020 apps from Google Play
store using the APKLeecher tool [4]. We were not able to
download more apps for this study because the process was
very time-consuming, and our download got blocked many
times by Google servers. Collecting the 36,020 apps took

2The user download is not an exact number as Google Play store
only provides a range (e.g., 500 - 1,000).

us four months using tens of PCs and servers with differ-
ent IPs. The downloaded apps cover all categories and each
category contains a sufficient number of apps for our study
(Figure 1(d)). These apps are popular on market: more
than half of them have achieved thousands of downloads
and 1,008 (2.8%) of them have been downloaded millions of
times (Figure 1(e)). We also give the size distribution of
these APK files in Figure 1(f). On average, each APK file
takes 7.7 MB disk space.

Dataset 3: Source repositories of open-source apps.
Answering RQ5 (wake lock misuses) requires studying the
bug reports and source code revisions of Android apps. Such
data are typically only available in open-source apps. There-
fore, we also need to collect open-source Android apps that
use wake locks. To find suitable subjects, we searched four
major open-source software hosting platforms: GitHub [12],
Google Code [13], SourceForge [21], and Mozilla reposito-
ries [16]. We aimed to look for those apps that satisfy
three requirements: (1) the app has over 1,000 downloads
(popularity), (2) the app has a public issue tracking sys-
tem (traceability), and (3) the app has at least hundreds of
code revisions (maintainability). In the end, we collected 31
open-source Android apps. Figure 1(g)–(i) gives the statis-
tics of these apps (see Table 4 for examples). As we can see,
the apps are very popularly downloaded from market: 15
(48.4%) of them have achieved millions of downloads. They
are well-maintained, containing hundreds or thousands of
code revisions. Besides, they are large-scale. On average,
each of them contains 40.3 thousand lines of code.

3.2 Analysis Algorithms
Program analysis. To answer RQ1–4, we analyzed the
first two datasets. Figure 2 illustrates how we analyzed the

This is the Pre-Published Version

Analysis
logs

Java
bytecode

Dalvik
bytecode

APK
Files

Decompilation

Program analysis

Dex2Jar

Entry Point
Locator

Wake Lock
Analyzer

Soot & Apache Commons BCEL

Log
Processor

Statistical analysis

Empirical
Findings

Android apps

Figure 2: Methodology for analyzing APK files

App component lock api1 api2 api3 api4
C1 1 0 1 1 1
C2 0 1 0 1 0
C3 0 1 1 0 0

Figure 3: An example bit matrix

APK files. We first decompiled the Dalvik bytecode in each
APK file to Java bytecode using Dex2Jar [9]. We then ana-
lyzed the Java bytecode for each app using a static analysis
tool we implemented on top of the Soot program analysis
framework [20] and Apache Byte Code Engineering Library
(BCEL) [3]. The tool first performs class hierarchy analysis to
identify all app component classes (e.g., those extending the
Activity class) in an app and locates the set of event han-
dlers defined in each app component (e.g., onCreate han-
dlers of activities and onClick handlers of GUI widgets).
These event handlers will serve as the entry points of our
analysis. Then, our tool constructs a call graph for each
entry point and traversed the graph in a depth-first man-
ner to check whether wake lock acquiring and releasing API
calls can be transitively reached. If yes, we consider that the
corresponding app component would use wake locks. We un-
derstand that such call graphs may not be precise and com-
plete. However, statically constructing precise and complete
call graphs for Java programs is a well-known challenge due
to the language features such as dynamic method dispatch-
ing [23]. Addressing this challenge is out of our study scope,
but still, to ensure the precision of our analysis results, we
would remove the obvious imprecise call graph edges caused
by conservative resolution of virtual calls while traversing
the call graphs (see Section 5 for more discussion). During
the analysis, our tool logs the following information for later
statistical analysis: (1) the set of app components that use
wake locks, (2) the type of the used wake locks, (3) all entry
points where wake locks are acquired and released, and (4)
the set of APIs invoked by each app component.

Statistical analysis. With the data logged during pro-
gram analysis, we can analyze them to answer RQ1–4. An-
swering RQ1–3 requires only straightforward statistical anal-
ysis and we do not further elaborate. Answering RQ4 (crit-
ical computation) requires us to investigate the computa-
tional tasks that are performed by our collected apps. To
do so, we first analyzed the APIs invoked by the apps in our
second dataset, since API usage typically reflects the com-
putational semantics of an app [42]. Specifically, our goal is
to identify those critical APIs that are frequently invoked in
app components that use wake locks (locking app component
for short), but not frequently invoked in app components
that do not use wake locks (non-locking app components for
short). These APIs are very likely invoked by the apps to
conduct the critical computations. Before we explain how
to identify such APIs, we first formally define our problem.

Suppose that we analyze a set S of apps. Each app
A ∈ S can contain a set of n app components comp(A) ={C1,C2, . . . ,Cn}, where n ≥ 1. Then, the whole set of app
components to analyze is:

comp(S) = ⋃
A∈S

comp(A).
With our above discussed program analysis, for each app

component C ∈ comp(S), we will know whether it uses any
wake lock or not, and the set of APIs it invokes. Let us useAPI to denote the ordered set of all possible APIs. Then,
after analyzing the apps in S, we can encode the results as
a bit matrix M of size ∣comp(S)∣ × (∣API∣ + 1). Each row
of the matrix is a bit vector that encodes the analysis result
for a corresponding app component. The first bit of the
vector indicates whether the app component uses any wake
lock or not (“1” represents “yes” and “0” represents “no”).
The remaining ∣API∣ bits indicate whether corresponding
APIs are invoked by the app component or not. To ease
understanding, we give an example of bit matrix in Figure 3.
This example involves three app components. The bit vector
in the first row means that the app component C1 uses wake
locks and invokes three different APIs, namely, api2, api3
and api4. The other rows can be interpreted similarly.
Now after the formulation, our problem can be reduced to

the classic term-weighting problem in the natural language
processing area with the following mappings [26]:

● The set of analyzed app components comp(S) can be con-
sidered as a corpus;

● Each app component C ∈ comp(S) can be considered as a
document ;

● Each API invokded by C can be considered as a term in
the document that C represents;

● The set of locking app components can be considered as
the positive category in the corpus;

● the set of non-locking app components can be considered
as the negative category in the corpus.

With this reduction, we can adapt term-weighting tech-
niques to identify those APIs that are frequently invoked by
locking app components but not frequently invoked by non-
locking app components. To do so, we choose to apply the
widely-used Relevance Frequency approach [26]. Formally,
for each API api, we count the following:

● a: the number of locking app components that invoke api;

● b: the number of locking app components that do not
invoke api;

● c: the number of non-locking app components that invoke
api;

● d: the number of non-locking app components that do not
inovke api.

Then we define the importance score of api by Equation 1.
The rf(api) computes the relevance frequency score of api
and its definition in Equation 3 follows the standard one [26].
The filtering function freqF ilter(api) defined by Equation 2
is to avoid assigning a high importance score to those APIs
that do not frequently occur in locking app components and
very rarely or never occur in non-locking app components
(when a is a very small number compared to b, but a ≫ c,

This is the Pre-Published Version

the relevance frequency score will be exceptionally high).
Such APIs are of less interest to us and assigning them high
scores will waste our manual effort since we will study the
APIs with high importance scores to answer RQ4.

importance(api) = freqF ilter(api) × rf(api) (1)

freqF ilter(api) = { 1, if a/(a + b) ≥ 0.05
0, otherwise

(2)

rf(api) = log(2 + a

max(1, c)) (3)

In addition to API usage analysis, we also analyzed the
permissions of the apps in our first two datasets to answer
RQ4. We conducted permission analysis because Android
apps must declare corresponding permissions to perform cer-
tain operations that may impact other apps, the operating
system, or users (e.g., network access) [1]. Therefore, the
declared permissions are also good indicators of the com-
putations performed by an app. To identify the permissions
that are frequently declared in apps that use wake locks, but
not frequently declared in apps that do not use wake lock,
we use the same algorithm as in API usage analysis. The
only difference is: API usage analysis was conducted at app
component level, while permission analysis was conducted
at app level. Due to page limit, we skip more details.

Search-assisted manual analysis. To answer RQ5 (wa-
ke lock misuses), we manually studied the bug reports and
code revisions of the 31 open-source apps, aiming to find
wake lock related issues. These apps in total contain thou-
sands of code revisions and bug reports. To save manual
effort, we implemented a tool to search the apps’ code reposi-
tories and bug tracking systems for: (1) those interesting bug
reports that contain certain keywords, and (2) those inter-
esting code revisions whose commit log or code diff contain
certain keywords. The keywords include: wake, wakelock,
power, powermanager, acquire, and release. After search,
1,157 bug reports and 1,558 code revisions meet our require-
ment. We then carefully studied them to answer RQ5.

4. STUDY RESULTS
We ran our analysis tasks on a Linux server with 16 cores of
Intel Xeon CPU @2.10GHz and 192GB RAM. The majority
of CPU time (∼380 hours) was spent on the program analysis
of the 36,020 apps with APK files. In total, these apps de-
fined 715,823 activities, 146,002 services, 351,762 broadcast
receivers, 15,274 content providers, and registered 3,468,567
GUI event listeners. Our tool successfully analyzed 35,327
APKs and found 45,818 app components using wake locks.
The remaining 693 (1.9%) APKs failed to be analyzed be-
cause Dex2Jar or Soot crashed when processing them. In
this section, we discuss some major results.3

4.1 Seven Facts about Wake Lock Usage
For RQ1, we analyzed apps in each category and studied
how many of them acquire wake locks in each type of app
components. Figure 4 gives the results of three categories as
examples (“Overall” represents all 35,327 apps). From the
results, we can make two major observations.

Most apps acquire wake locks in broadcast re-
ceivers. Overall, 65.3% of our analyzed apps acquire wake

3For all results, please refer to our project website at http://
sccpu2.cse.ust.hk/wl_empirical/ (ID:lxct, Password:icse).

0%

20%

40%

60%

Entertainment Games Music & Audio Overall

65.3

17.2

31.6

54.7

28.727.629.5

12.1

64.265.6

34.5

11.8

Pe
rc

en
ta

ge
 o

f a
pp

s

Component type: Activity Service Broadcast receiver

Figure 4: The percentage of apps that use wake locks
in each type of app components

locks in broadcast receivers. As a comparison, only 31.6%
and 17.2% acquire wake locks in activities and services, and
no apps acquire wake locks in content providers. These per-
centages do not add up to 100% as some apps acquire wake
locks in multiple components. This finding reveals a com-
mon practice in real-world app design: many apps actively
listen to certain messages (e.g., servers’ push notifications in
email apps) and will keep device awake to handle received
ones so as to notify users the results (e.g., new emails).

Interaction-intensive and presentation apps often
acquire wake locks in activities. Although for 23 of the
26 categories, most apps acquire wake locks in broadcast
receivers (e.g., Entertainment and Music & Audio apps in
Figure 4), in the following three categories, most apps ac-
quire wake locks in activities: Games, Books & References,
and Family. Games and Family apps (e.g., kid education
apps) heavily interact with users; Books & References apps
are designed for presenting reading materials. These apps
often need to keep device screen on when users launch them
(e.g., starting their main activities). This may explain why
they often acquire wake locks in activities.

For RQ2, we analyzed the types of wake locks used in
different categories of apps. As we discussed earlier, different
wake locks have different effects on devices’ power state. So
what types of wake locks do developers commonly use in
reality? We discuss three findings below.

Full wake locks are commonly used in activities,
while partial wake locks are commonly used in ser-
vices and broadcast receivers. Overall, as shown in Fig-
ure 5(a), 44.2% of the wake locks used in activities are full
wake locks and over 82% wake locks used in services and
broadcast receivers are partial wake locks. This finding is
intuitive. Activities contain GUIs for user interactions and
thus they often need to keep device screen on (full and screen
bright/dim wake locks can satisfy this requirement). On the
other hand, services and broadcast receivers perform compu-
tational tasks at background, and a partial wake lock that
keeps device CPU on is sufficient to prevent the on-going
computation from being disrupted by device sleeping.

Proximity screen off wake locks are rarely used
in practice. Compared with the other types, proximity
screen off wake locks are rarely used in our analyzed apps.
We only observed their presence in a few categories of apps
(e.g., Communication apps). There are three primary rea-
sons for this phenomenon. First, the corresponding APIs
were not introduced until Android 5.0. Second, to use this
type of wake locks, the devices need to have proximity sen-
sors, which are not always available on Android devices [1].
Third, the wake locks are designed for a specific purpose:
when the proximity sensor detects that some objects are
nearby, the device screen will be turned off immediately to
avoid accidental screen taps that can adversely change the
running status of some apps (e.g., a call may be ended when

This is the Pre-Published Version

(a) Overall (b) Games (c) Books & References

Activity Service Broadcast
receiver

0%

25%

50%

75%

100%

Pe
rc
en

ta
ge

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

Lock type

Partial

Screen dim

Screen bright

Full
Proximity
screen off

44.2

21.3

21.0

82.7 89.6
83.9

72.4

23.5

84.7

14.6

83.8 76.6

19.1

90.9

13.3

11.6

Activity Service Broadcast
receiver

Activity Service Broadcast
receiver

Figure 5: Distribution of lock types w.r.t different types of app components

Event handlers implemented in activity components (H1 – H9) and in service components (H10 – H15):
H1 Activity.onResume() H6 Activity.onDestory() H11 Service.onStart()
H2 Activity.onCreate() H7 Activity.onStart() H12 Service.onStartCommand()
H3 Activity.onPause() H8 Activity.onStop() H13 Service.onCreate()
H4 View$OnClickListener.onClick() H9 DialogInterface$OnCancelListener.onCancel() H14 Service.onDestroy()
H5 Activity.onWindowFocusChanged() H10 IntentService.onHandleIntent() H15 DreamService.onDreamingStarted()

(c) Acquiring points in services (Overall)
H10 H11 H12 H13 H14 H15

0
500

1,000
1,500

30.5%
25.3% 24.9%

12.7%

4.1% 2.6%

(g) Acquiring points in activities (Media & Video)

0
100
200
300
400

H4 H2 H1 H9 H3 H5 H6

36.1%

21.8%

11.7%
7.8% 6.1% 3.9% 3.8%

(i) Acquiring points in services (Games)
H10 H12 H15 H11 H13

0

100

200

300 47.7%

19.6% 17.5%
8.6% 6.6%

30.7%

19.2%
14.3% 13.2% 10.9% 8.8%

2.9%

H1 H2 H3 H4 H5 H6 H7

0
2,000
4,000
6,000
8,000

(a) Acquiring points in activities (Overall)

Fr
eq

ue
nc

y

(e) Acquiring points in activities (Games)
H1 H3 H5 H6 H2 H4

0
1,000
2,000
3,000

33.7%

20.7% 17.6%
12.7% 12.6%

2.7%

(h) Releasing points in activities (Media & Video)
H4 H2 H3 H9 H6 H1 H5

40.3%

19.0%
14.4%

8.6% 7.2% 6.3% 4.2%
0

100
200
300
400

(b) Releasing points in activities (Overall)

33.9%

15.7% 15.3% 12.4% 10.7% 9.7%
2.3%

H3 H4 H6 H1 H5 H2 H8

0
2,500
5,000
7,500

(f) Releasing points in activities (Games)
H3 H5 H1 H2 H4H6

0
1,000
2,000
3,000
4,000

37.7%

17.6% 17.2% 16.2%
8.1%

3.2%

(d) Releasing points in services (Overall)

0

5,000

10,000

15,000

H10 H12 H14 H11

75.1%

9.7% 9.3% 5.8%Fr
eq

ue
nc

y
Fr

eq
ue

nc
y

Figure 6: Common wake lock acquiring and releasing points in activity and service components

users’ cheek accidentally touches phone screens).
Interaction-intensive apps often use full wake locks.

Presentation apps often use screen bright wake locks.
Albeit most app categories exhibit similar results, we ob-
served two exceptions: (1) full wake locks are very frequently
used by the activity components in Games and Family apps
((see Figure 5(b)) for example), and (2) screen bright wake
locks are very frequently used by the activity components in
Books & References apps (see Figure 5(c)). As we discussed
previously, this is largely due to the nature of these apps.

For RQ3, we analyzed which event handlers commonly
acquire and release wake locks in different categories of apps.
Figure 6 gives the results for several example categories. We
discuss two major observations.

Wake locks are commonly acquired and released
in several major lifecycle event handlers. Develop-
ers may acquire and release wake locks at different program
points. For example, in our analyzed apps, the wake locks
used in activity components can be acquired in 102 different
event handlers (including many GUI event handlers). How-
ever, despite the diversity, in most cases, wake locks are only
acquired and released in a few event handlers:

● Overall, in activities, wake locks are mostly acquired in
onResume handlers (Figure 6(a)), which will be invoked by
the system right before the activities are ready for user in-
teraction, and released in onPause handlers (Figure 6(b)),
which will be invoked right after the activities lose user
focus. This is a good practice for avoiding energy waste
as many apps do not need to keep device awake for com-
putation when they are switched to background by users.

● In services, wake locks are mostly acquired and released in
onHandleIntent handlers (see Figure 6(c) and (d)), which
are invoked by the system to perform long running back-
ground computations in worker threads.

● For broadcast receivers, the Android framework only de-
fines one event handler onReceive. Therefore, wake locks
are all acquired and released there. Such wake locks are
typically used to ensure that the concerned apps can smoo-
thly finish handling certain important broadcast messages.

Wake lock acquiring and releasing points can be
category-specific. Similar to RQ1–2, we also observe cat-
gory-specific results for RQ3. For instance, we found that
the activities of gaming apps do not commonly acquire and

This is the Pre-Published Version

Table 3: Computational tasks that are commonly protected by wake locks

Computational tasks
related

permissions
Permission example

related

APIs
API example

Networking 10 Receive data from Internet 112 java.net.DatagramSocket.connect()

App UI rendering N/A N/A 110 android.graphics.Canvas.drawARGB()

File I/O 3 Access USB storage file system 105 android.os.Environment.getExternalStorageDirectory()

Inter-component communication 1 Send sticky broadcast 68 android.content.ContextWrapper.sendBroadcast()

Security & privacy 3 Use accounts on the device 46 javax.crypto.SecretKeyFactory.generateSecret()

Media & audio 1 Record audio 32 android.media.AudioTrack.play()

System/user data accessing 11 Modify your contacts 25 android.webkit.CookieSyncManager.run()

Database transactions N/A N/A 24 android.database.sqlite.SQLiteDatabase.update()

Camera operations 2 Take pictures and videos 17 android.hardware.Camera.setParameters()

Sensing operations 4 Precise location 16 android.location.Location.getLatitude()

System setting 10 Modify system settings 12 android.provider.Settings$System.putInt()

User notification 1 Control vibration 12 android.app.NotificationManager.notify()

System-level operations 10 Close other apps 10 android.os.Process.killProcess()

Telephony services 4 Directly call phone numbers 9 android.telephony.TelephonyManager.listen()

Bluetooth/NFC communication 3 Pair with Bluetooth devices 5 android.bluetooth.BluetoothAdapter.getDefaultAdapter()

Notes: (1) “N/A”means that the corresponding computational tasks do not require special permissions. (2) The table is sorted according to # related APIs.

release wake locks in onClick handlers (see Figure 6(e) and (f)),
as compared to other categories. On the contrary, onClick
handlers are the most common wake lock acquiring and re-
leasing points in the following categories of apps: Commu-
nication, Media & Video, Productivity, and Social (see Fig-
ure 6(g) and (h) for examples). Again, the phenomenon is
largely due to the nature of these apps. Games do not of-
ten use standard GUI widgets (e.g., buttons). Instead, they
often rely on graphical libraries (e.g., OpenGL ES) to ren-
der interfaces and thus do not often implement GUI event
handlers like onClick. On the other hand, apps in cate-
gories like Media & Video often conduct long running tasks
(e.g., video playing) after users click certain GUI widgets
(e.g., the “play” button) and it is necessary to acquire wake
locks in the corresponding onClick handlers. Another inter-
esting example is that only in gaming apps, the onDream-
ingStarted handlers are common wake lock acquiring points
(see Figure 6(i)). We sampled some of such apps and found
that they all provide screen saving service. The onDream-
ingStarted handlers are invoked by the system to render
screen savers and thus need to keep device screen on.

4.2 Reasons for Staying Awake
Our research question RQ4 aims to identify the critical com-
putational tasks that are frequently protected by wake locks.
As mentioned in Section 3, to identify such tasks, we per-
formed permission analysis on the 1,117,195 apps in our first
dataset and API usage analysis on the 35,327 apps in our sec-
ond dataset. Specifically, for each category of apps, our tool
computed the importance score for each permission declared
and each API used in the apps, and ranked the permissions
and APIs according to the computed scores (a higher score
leads to a higher rank). Overall, we observe that these apps
declare 236 different permissions and use 37,241 different
APIs, 91.5% of which are official Android and Java APIs.
After the analyses and ranking, we then manually exam-
ined the top 10% permissions (around 10 to 20) and top 1%
APIs (around 100 to 200) for each of the 26 app categories
to answer RQ4. Now we present our observations.

Theoretically, wake locks can be used to prevent devices
from falling asleep during any kind of computation, which
could be app-specific. However, by the analysis of a large
number of apps, we observe that developers often only
use wake locks to protect a small number of com-

putational tasks. Particularly, our manual examination
identified 63 permissions and 962 APIs that frequently oc-
cur in apps/app components that use wake locks, but not
frequently occur in other apps/app components. We then
categorized these permissions and APIs according to their
documentations and design purposes [1]. For example, APIs
in android.database and java.sql packages are designed
for database transactions and we categorize them into one
major category. After such categorization, we observed that
these permissions and APIs are mainly designed for 15 types
of computational tasks. Table 3 lists the categorization re-
sults. For each type of computational task, the table reports
the number of related permissions and APIs, and provides
examples to ease understanding.4 We can see from the ta-
ble that most of the listed computational tasks can
bring users observable or perceptible benefits. Take
network communication for example. Many apps frequently
communicate with remote servers and fetch data to present
to users (e.g., an social app). These tasks typically should
not be disrupted by device sleeping when users are using the
apps and expecting to see certain updates (e.g., messages
from friends). Hence, wake locks are needed in such sce-
narios. Another typical example is security & privacy. We
found that a large percentage of apps (e.g., 92.7% Finance
apps) frequently encrypt and decrypt certain program data
(e.g., those related to user privacy) for security concerns.
Such tasks should also be protected by wake locks as any
disruption can cause serious consequences to users.

4.3 Common Wake Lock Misuses
For research question RQ5, we manually investigated the
1,157 bug reports and 1,558 code revisions found by keyword
search (see Section 3). This process is labor-intensive, taking
us several months to finish. During the process, we found 56
real issues caused by wake lock misuses in the investigated
bug reports and code revisions. Other bug reports and code
revisions are irrelevant to wake lock issues, but were acciden-
tally included because they contain our searched keywords.
We carefully studied these 56 issues and categorized them af-
ter understanding their root causes. By the categorization,
we observed eight types of common wake lock issues. We
present the results in Table 4. For each type, the table: (1)

4We failed to categorize 359 of the 962 APIs into any major cat-
egories because they are general-purpose (e.g., HashMap APIs).

This is the Pre-Published Version

Table 4: Common types of wake lock issues found in open-source Android apps

Root cause # issues
Example issues

App name App downloads Bug report ID Issue fixing revision Consequence

Wake lock leakage 12 MyTracks [17] 10M - 50M N/A 1349 Energy waste

Unnecessary wakeup 10 Tomahawk [22] 5K - 10K N/A 883d210525 Energy waste

Premature lock releasing 9 ConnectBot [6] 1M - 5M 37 540c693d2c Crash

Multiple lock acquisition 8 CSipSimple [8] 1M - 5M 152 153 Crash

Inappropriate lock type 8
SipDroid [19] 1M - 5M 268 533 Instability

Osmand [18] 1M - 5M 582 4d1c97fe7768 Energy waste

Problematic timeout setting 3 K-9 Mail [15] 5M - 10M 170/175 299 Instability

Inappropriate flags 2 FBReader [10] 10M - 50M N/A f28986383f Energy waste

Permission errors 2 Firefox [16] 100M - 500M 703661 be42fae64e Crash

Notes: For some issues, we failed to locate the associated bug reports (the issues may not be documented) and the corresponding cells are marked as “N/A”.

public class ExportAllAsyncTask extends AsyncTask {
public ExportAllAsyncTask() {

wakeLock = MyTrackUtils.acquireWakeLock();
}
protected Boolean doInBackground(Void... params){

Cursor cursor = null;
try {

cursor = MyTrackUtils.getTracksCursorFromDB();
for(int i = 0; i < cusor.getCount(); i++) {

if(isCancelled()) break;
exportAndPublishProgress(cursor, i);

}
} finally {

if(cursor != null) cursor.close();
+ if(wakeLock.isHeld()) wakeLock.release();

}...
}
protected void onPostExecute(Boolean result){

- if(wakeLock.isHeld()) wakeLock.release();
}

}

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.

Figure 7: Wake lock leakage in MyTracks

briefly summarizes the root cause (Column 1), (2) lists the
number of similar issues we found in the open-source apps
(Column 2), and (3) provides a typical example (Columns
3–7). We now discuss these issues in more detail below.

Wake lock leakage. The most common issues are wake
lock leakages. As we mentioned earlier, wake locks should be
properly released after use. However, ensuring wake locks
to be released on all program paths for event-driven pro-
grams like Android apps is a non-trivial task. Developers
often make mistakes. Figure 7 gives an example wake lock
leakage issue in MyTracks [17], a popular app for record-
ing users’ tracks when they exercise outdoors. The app de-
fines an long-running task ExportAllAsyncTask to export
recorded tracks to external storage (e.g., an SD card). When
the task starts, it acquires a wake lock (Line 3). Then it
runs in a worker thread to read data from database, writes
them to the external storage, and notifies users the exporting
progress (Lines 5–17). When the job is done, the Android
system will invoke the onPostExecute handler, which will
release the wake lock (Line 19). This process works fine in
many cases. Unfortunately, developers forgot to handle the
cases where users cancel the exporting task before it finishes.
In such cases, onPostExecute will not be invoked after the
doInBackground method returns. Instead, another handler
onCancel will be invoked. Then, the wake lock will not be
released properly. The consequence is that the device cannot
go asleep, causing significant energy waste. Later, develop-
ers realized this issue and moved the lock releasing operation
to the doInBackground method (Line 15).

Unnecessary wakeup. The second common type is un-
necessary wakeup. we observe that in many apps, wake locks
are correctly acquired and released, but the lock acquiring

public class MusicActivity extends Activity implements...{
public void onCreate() {

startService(new Intent(PlaybackService.class);
}
public void onTouch() {

PlaybackService.getInstance().playPause();
}
public void onDestroy() {

stopService(new Intent(PlaybackService.class));
}

}

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.

public class PlaybackService extends Service {
public void onStart(Intent i) {

wakeLock = newWakeLock(PowerManager.PARTIAL_WAKE_LOCK);
wakeLock.acquire(); //then start music playing

}
public void playPause() {

if(mediaPlayer.isPlaying()) {
mediaPlayer.pause();

+ if(wakeLock.isHeld()) wakeLock.release();
} else {

+ if(!wakeLock.isHeld()) wakeLock.acquire();
mediaPlayer.start();

}
}
public void onDestroy() {

if(wakeLock.isHeld()) wakeLock.release();
}

}

12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.

Figure 8: Unnecessary wakeup in Tomahawk

and releasing time is not appropriate. They either acquire
wake locks too early or release them too late, causing the
device to stay awake unnecessarily. To ease understanding,
we discuss a real issue in Tomahawk [22], a music player app.
Figure 8 gives the simplified code snippet. When users select
an album, Tomahawk’s MusicActivity will start a service
PlaybackService to play music in background (Lines 2–4).
When the service is launched, it acquires a partial wake
lock, sets up the media player, and starts music playing
(Lines 13–16). Users can pause or resume music playing
by tapping the device screen (Lines 5–7 and 17–25). When
users exit the app, MusicActivity and PlaybackService
will be destroyed and the wake lock will be released accord-
ingly (Lines 8–10 and 26–28). This is functionally correct
and the music can be played smoothly in practice. However,
since the wake lock is used to keep the device awake for mu-
sic playing, why should it be held when the music player is
paused? Holding unnecessary wake locks can lead to serious
energy waste. Developers later fixed the issue by releasing
the wake lock when music playing is paused (Line 20) and
re-acquire it when users resume music playing (Line 22).

Premature lock releasing. The third common type
is premature lock releasing. These issues occur when a wake
lock is released before being acquired and they can cause app
crashes (e.g., ConnectBot issue 37 [6]). In our studied apps,
we frequently observed such issues. One major reason is
that Android apps can have complex control flows due to the

This is the Pre-Published Version

event-driven programming paradigm. If developers do not
fully understand the lifecycle of different app components
(e.g., temporal relationships between event handlers), they
may mistakenly place a wake lock releasing operation in an
event handler that can be executed before another one that
acquires the wake lock.

Multiple lock acquisitions. Wake locks by default are
reference counted. Each acquiring operation on a wake lock
increments its internal counter and each releasing operation
decrements the counter. The Android OS only releases a
wake lock when its associated counter reaches 0 [1]. Due
to this policy, developers should avoid multiple lock acquisi-
tions. Otherwise, to release a wake lock requires an equiv-
alent number of lock releasing operations. However, due
to complex control flows, developers often make mistakes
that cause a wake lock to be acquired multiple times. For
example, in CSipSimple [8], a popular Internet call app,
developers put the wake lock acquiring operation in a fre-
quently invoked method. The consequence is that CSipSim-
ple crashes after acquiring a wake lock too many times (issue
152), which exceeds the upper bound allowed by the system.

Inappropriate lock type. Before using wake locks, de-
velopers need to figure out which hardware needs to stay
awake for the critical computation, and choose an appropri-
ate type of wake lock for the purpose. Choosing inappropri-
ate types of wake locks often causes troubles in practice. For
example, in SipDroid [19], another popular Internet call app,
developers used a partial wake lock for keeping the device
CPU awake during Internet calls. However, on many de-
vices, keeping CPU awake does not prevent WiFi NIC from
entering Power Saving Polling mode, which will significantly
reduce the network bandwidth. The consequence is that Sip-
Droid’s calling quality becomes unstable when device screen
turns off (issue 268). To fix the issue, developers later used
a screen dim wake lock to keep both device screen and CPU
on when users are making phone calls. This is an example of
mistakenly using a wake lock with a low wake level. We also
observed cases where developers use wake locks whose wake
levels are higher than necessary. For instance, when users
use Osmand [18], a famous maps & navigation app, to record
their trips during outdoor activities (e.g., cycling), the app
will acquire a screen dim wake lock for location sensing and
recording. However, keeping screen on in such scenarios is
unnecessary and will waste a significant amount of battery
energy (Osmand issue 582). Developers later realized the
issue after receiving many user complaints and replaced the
screen dim wake lock with a partial wake lock.

Problematic timeout setting. When acquiring wake
locks, developers can set a timeout. Such wake locks will be
automatically released after the given timeout. Setting an
appropriate timeout (enough for the critical computation
to complete, but not too long) seems to be an easy job.
However, in practice, developers can make bad estimations.
For example, in K-9 Mail [15], an email client with millions
of users, developers used a wake lock that would timeout
after 30 seconds to protect the email checking process. They
thought the duration was long enough for the checking to
complete. Unfortunately, due to various reasons (e.g., slow
network conditions), many users complained that they often
fail to receive email notifications and this issue is annoyingly
intermittent. The developers later found the root cause.
They reset the timeout to 10 minutes and commented:

“This should guarantee that the syncing never stalls just
because a single attempt exceeds the wake lock timeout.”

Inappropriate flags. We mentioned in Section 2 that
developers can set certain pre-defined flags when acquiring
wake locks. When they do so, they need to be careful as set-
ting inappropriate flags can cause unexpected consequences.
For example, the developers of FBReader [10], an eBook
reading app, found that setting the ON_AFTER_RELEASE flag
when using a screen bright wake lock could cause serious
energy waste on some users’ devices. This is because, with
the flag set, some Android system variants (i.e., those cus-
tomized by device manufacturers) can keep the device screen
on at full brightness for quite a long while after the wake lock
is released. They later removed the flag to fix the issue.

Permission errors. Using wake locks requires an app
to declare the android.permission.WAKE_LOCK permission.
Forgetting to do so will lead to security violations. This
is a well-documented policy [1], but developers still make
mistakes. For example, one version of Firefox did not declare
the permission properly and users found that the app would
crash because of this issue (Firefox issue 703661 [11]).

The above issues are recurring ones in our studied apps.
We also observed two other types of issues that only occurred
once. One is the instability issue caused by concurrent wake
lock acquiring and releasing in K-9 Mail. Developers fixed
the issue by putting wake lock operations in synchronized
blocks (revision 1698 [15]). The other is the duplicate wake
lock issue in CSipSimple. Developer mistakenly made two
app components acquire the same type of wake locks, but
one is already sufficient. They later fixed the issue by re-
moving one wake lock (revision 1633 [8]).

Potential research opportunities. We discussed eight
types of wake lock misuses that commonly caused functional
and non-functional issues in practice. We observed that the
first two types have been explored by existing work. There
already exist several techniques for wake lock leakage detec-
tion [24, 30, 35]. Nonetheless, the majority of our identified
issues have not been well-studied by our community. There-
fore, we believe that in future, some research effort can be
spent on designing effective and efficient techniques to help
developers catch such wake lock misuses. We discuss two
possibilities. First, we think that formulating certain criteria
or heuristic rules (e.g., by leveraging our findings for RQ4)
to help developers reason about the necessity of using wake
locks at different app states is a meaningful direction. Some
dynamic monitoring techniques can be proposed. Second,
it is also a feasible direction to design testing/analysis tech-
niques that can systematically traverse different program
paths to automatically locate multiple lock acquisition and
premature lock releasing issues. For this direction, how to
address the path explosion problem is worth exploring.

5. DISCUSSIONS
Threats to validity. The validity of our study results may
be subject to several threats. The first is the representative-
ness of our analyzed Android apps. To minimize the threat,
we randomly downloaded the latest version of a large num-
ber of commercial apps from Google Play store and selected
31 popular and large-scale open-source apps from four ma-
jor software hosting platforms. So we believe our findings
can generalize to many real-world Android apps. The sec-
ond threat is the precision of our statically constructed call
graphs. We understand that imprecise call graphs may lead
to imprecise findings. Therefore, before analyzing the whole
dataset, we did a pilot study on 50 randomly sampled apps,
30 commercial and 20 open-source. Indeed, we found the

This is the Pre-Published Version

call graphs generated by Soot can contain infeasible edges.
The primary reason is that Soot cannot precisely resolve
the targets of virtual calls. Its default algorithm would con-
servatively consider all possible callees based on class hier-
archy.5 This led to some counter-intuitive analysis results.
For instance, we found many activities in a commercial app
UzVoIP [14] would release wake locks in onCreate handlers,
which are the starting points of the activities’ lifetime. Af-
ter checking the decompiled code, we realized that these
handlers transitively invoke the run method of a Runnable
object. Unfortunately, the app contains another class that
implements the Runnable interface and its run method in-
vokes a wake lock releasing API. To address the problem, we
adopted a simple strategy in our analysis: during call graph
traversal, if a visited method has multiple callees with the
same method signature, we will not further visit such callees.
This solution worked quite well in our study and we will show
later that our empirical findings are confirmed by real-world
developers. The third threat is our manual investigation of
bug reports and code revisions of open-source apps. We un-
derstand that this manual process can be error-prone. To
reduce the threat, we tried our best to cross-validate the
results and we will also release them for public access.

Developer feedback. Our work aims to understand how
Android developers use wake locks. It would be interesting
to see how real-world developers perceive our findings. For
this purpose, we conducted a survey. We randomly selected
20,000 apps from our first dataset and invited their develop-
ers to complete a survey form that mainly asks three open
questions: (1) in which scenarios they think an app needs
to use wake locks, (2) what mistakes they have encountered
when using wake locks, and (3) whether the tools in Android
SDK are helpful in debugging wake lock issues. For the first
two questions, we provided some of our findings as examples
to help them formulate answers. For the third question, we
listed four most commonly used debugging tools in Android
SDK (e.g., DDMS) for their references. Till now, there have
been 278 developers completed our survey and 124 of them
often use wake locks. Based on the 124 experienced de-
velopers’ answers, we made some observations. First, our
findings indeed reflect developers’ common practices. The
participants generally confirmed that they often use wake
locks to protect the critical computations we identified. Be-
sides, some of them also encountered issues caused by our
observed wake lock misuses. One participant mentioned that
using multiple wake locks of different types once crashed his
app, but we did not observe similar issues in our study. Sec-
ond, tools provided by Android SDK may not be helpful
in debugging wake lock issues: 31% participants think that
SDK tools are not helpful in debugging crashing bugs, and
48% think that the tools are not helpful in debugging en-
ergy bugs. The participants also commented on what tool
support they would like to have. We give an example below:

“What one would need is a tool which realistically simu-
lates the passage of time and typical daily user activity.
Wake lock bugs usually cause trouble when an app is used
over a long period of time on a phone where many other
apps are competing for the system’s resources.”

Finally, we asked the participants whether they would like
to use a tool, which we were developing, to help diagnose

5Other strategies can construct more precise call graphs, but suf-
fer from scalability problems and thus are not suitable for ana-
lyzing a large number of apps [38].

wake lock misuses. Encouragingly, 68 of the 124 participants
expressed their interest and left contact information for us to
follow up. This suggests that developers have limited access
to tools that can help them properly use wake locks.

6. RELATED WORK
Our paper relates to a large body of existing work on im-
proving energy efficiency of Android apps. In this section,
we discuss some representative pieces of work in recent years.

There are several studies that specifically focused on wake
locks issues. Pathak et al. conducted the first study of
energy waste bugs in smartphone apps, and proposed to
use reaching-definition dataflow analysis algorithms to de-
tect no-sleep energy bugs caused by wake lock leakage [35].
Later, along this direction, researchers proposed many other
useful techniques [24, 30, 36, 37]. For example, Guo et al.
reduced wake lock leakage to the traditional resource leakage
problem and proposed to use classic resource leakage detec-
tion techniques to detect wake lock issues [24]. Wang et al.
designed a technique to detect wake lock issues and repair
them at runtime to minimize energy waste [37]. Nonethe-
less, these pieces of work mostly focused on wake lock leak-
age issues. As our empirical findings suggest, there are many
other types of wake lock misuses in practice. It is desirable
to design effective techniques to help detect and fix them.

There are also studies that can help improve the energy
efficiency of Android apps from other angles [28]. For exam-
ple, vLens [27], eLens [25], eProf [34], PowerTutor [41] can
help developers estimate the energy consumption of their
apps by different models to identify energy hotspots for op-
timization. ADEL [40] and GreenDroid [29] can help locate
energy bugs in Android apps caused by ineffective use of high
energy cost program data (e.g., network data). Besides, the
most recent work AlarmScope [33] proposed a technique to
reduce non-critical alarm-induced wakeups in Android apps
to minimize energy waste. These techniques are mostly de-
signed for app developers. Researchers also proposed end
user-oriented techniques. For example, eDoctor [31] can
correlate system and user events to energy-heavy execution
phases and help end users troubleshoot abnormal battery
drains and suggest repairs. Carat [32] shares the same goal
as eDoctor, but adopts a collaborative and big data-driven
approach. It collects runtime data from a large community
of smartphones for inferring energy usage models so as to
provide users actionable advices on improving smartphone
battery life.

7. CONCLUSION
In this paper, we conducted a large-scale empirical study
on 1.1 million commercial and 31 open-source Android apps
to understand how real-world developers use wake locks in
their apps. Our study discovered some common practices of
developers and identified eight types of wake lock misuses
that frequently cause functional and non-functional issues
in Android apps. These findings can guide developers, espe-
cially inexperience ones, to appropriately use wake locks and
support research on designing effective techniques to avoid,
detect, debug and fix wake lock issues. In future, we plan
to design a profiling-based technique to help developers rea-
son about the optimal placement of wake lock operations to
avoid energy waste caused by unnecessary wakeup. We hope
that our work together with related work can help improve
the energy efficiency of Android apps, which can potentially
benefit millions of users around the world.

This is the Pre-Published Version

8. REFERENCES

[1] Android developers. https://developer.android.com/.

[2] Android official website. http://www.android.com/.

[3] Apache Commons BCEL.
http://commons.apache.org/proper/commons-bcel/.

[4] APKLeecher. http://apkleecher.com/.

[5] AppBrain statistics. http://www.appbrain.com/.

[6] ConnectBot source repository.
https://code.google.com/p/connectbot/.

[7] Crawler4j. https://code.google.com/p/crawler4j.

[8] CSipSimple source repository.
https://code.google.com/p/csipsimple/.

[9] Dex2Jar. https://code.google.com/p/dex2jar.

[10] FBReader source repository.
https://github.com/geometer/FBReaderJ.

[11] Firefox issue tracker. https://bugzilla.mozilla.org/.

[12] GitHub. https://github.com/.

[13] Google Code. https://code.google.com/.

[14] Google Play store. https://play.google.com/store.

[15] k-9 Mail source repository.
https://code.google.com/p/k9mail/.

[16] Mozilla repositories. https://mxr.mozilla.org/.

[17] MyTracks source repository.
https://code.google.com/p/mytracks/.

[18] Osmand source repository.
https://code.google.com/p/osmand/.

[19] SipDroid source repository.
https://code.google.com/p/sipdroid/.

[20] Soot: a Java Program Optimization Framework.
http://sable.github.io/soot/.

[21] SourceForge. http://sourceforge.net/.

[22] Tomahawk source repository.
https://github.com/tomahawk-player/tomahawk.

[23] D. Grove, G. DeFouw, J. Dean, and C. Chambers.
Call Graph Construction in Object-oriented
Languages. In Proceedings of the 12th ACM SIGPLAN
Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA ’97,
pages 108–124, Atlanta, Georgia, USA, 1997.

[24] C. Guo, J. Zhang, J. Yan, Z. Zhang, and Y. Zhang.
Characterizing and detecting resource leaks in Android
applications. In Proceedings of the 28th IEEE/ACM
International Conference on Automated Software
Engineering, ASE ’13, pages 389–398, Nov 2013.

[25] S. Hao, D. Li, W. G. J. Halfond, and R. Govindan.
Estimating Mobile Application Energy Consumption
Using Program Analysis. In Proceedings of the 35th
International Conference on Software Engineering,
ICSE ’13, pages 92–101, San Francisco, CA, USA,
2013.

[26] M. Lan, C. Tan, J. Su, and Y. Lu. Supervised and
Traditional Term Weighting Methods for Automatic
Text Categorization. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 31(4):721–735,
April 2009.

[27] D. Li, S. Hao, W. G. J. Halfond, and R. Govindan.
Calculating Source Line Level Energy Information for
Android Applications. In Proceedings of the 2013
International Symposium on Software Testing and
Analysis, ISSTA 2013, pages 78–89, Lugano,
Switzerland, 2013.

[28] Y. Liu, C. Xu, and S. Cheung. Diagnosing energy
efficiency and performance for mobile internetware
applications. IEEE Software, 32(1):67–75, Jan 2015.

[29] Y. Liu, C. Xu, and S. C. Cheung. Where Has My
Battery Gone? Finding Sensor Related Energy Black
Holes in Smartphone Applications. In Proceedings of
the 11th IEEE International Conference on Pervasive
Computing and Communications, PerCom ’13, pages
2–10, San Diego, CA, USA, March 2013.

[30] Y. Liu, C. Xu, S. C. Cheung, and J. Lu. GreenDroid:
Automated Diagnosis of Energy Inefficiency for
Smartphone Applications. IEEE Transactions on
Software Engineering, 40(9):911–940, Sept 2014.

[31] X. Ma, P. Huang, X. Jin, P. Wang, S. Park, D. Shen,
Y. Zhou, L. K. Saul, and G. M. Voelker. eDoctor:
Automatically Diagnosing Abnormal Battery Drain
Issues on Smartphones. In Proceedings of the 10th
USENIX Conference on Networked Systems Design
and Implementation, nsdi’13, pages 57–70, Lombard,
IL, 2013.

[32] A. J. Oliner, A. P. Iyer, I. Stoica, E. Lagerspetz, and
S. Tarkoma. Carat: Collaborative Energy Diagnosis
for Mobile Devices. In Proceedings of the 11th ACM
Conference on Embedded Networked Sensor Systems,
SenSys ’13, pages 10:1–10:14, Roma, Italy, 2013.

[33] S. Park, D. Kim, and H. Cha. Reducing Energy
Consumption of Alarm-induced Wake-ups on Android
Smartphones. In Proceedings of the 16th International
Workshop on Mobile Computing Systems and
Applications, HotMobile ’15, pages 33–38, Santa Fe,
New Mexico, USA, 2015.

[34] A. Pathak, Y. C. Hu, and M. Zhang. Where is the
Energy Spent Inside My App?: Fine Grained Energy
Accounting on Smartphones with Eprof. In
Proceedings of the 7th ACM European Conference on
Computer Systems, EuroSys ’12, pages 29–42, Bern,
Switzerland, 2012.

[35] A. Pathak, A. Jindal, Y. C. Hu, and S. P. Midkiff.
What is Keeping My Phone Awake?: Characterizing
and Detecting No-sleep Energy Bugs in Smartphone
Apps. In Proceedings of the 10th International
Conference on Mobile Systems, Applications, and
Services, MobiSys ’12, pages 267–280, 2012.

[36] P. Vekris, R. Jhala, S. Lerner, and Y. Agarwal.
Towards Verifying Android Apps for the Absence of
No-Sleep Energy Bugs. In Proceedings of the 2012
Workshop on Power-Aware Computing and Systems,
Hollywood, CA, 2012. USENIX.

[37] X. Wang, X. Li, and W. Wen. Wlcleaner: Reducing
energy waste caused by wakelock bugs at runtime. In
Proceedings of the 12th IEEE International
Conference on Dependable, Autonomic and Secure
Computing, DASC ’14, pages 429–434, Aug 2014.

[38] X. Xiao and C. Zhang. Geometric Encoding: Forging
the High Performance Context Sensitive Points-to
Analysis for Java. In Proceedings of the 2011
International Symposium on Software Testing and
Analysis, ISSTA ’11, pages 188–198, Toronto, Ontario,
Canada, 2011.

[39] S. Yang, D. Yan, H. Wu, Y. Wang, and A. Rountev.
Static Control-Flow Analysis of User-Driven Callbacks
in Android Applications. In Proceedings of the 37th
International Conference on Software Engineering,

This is the Pre-Published Version

ICSE ’15, Florence, Italy, May 2015.

[40] L. Zhang, M. S. Gordon, R. P. Dick, Z. M. Mao,
P. Dinda, and L. Yang. Adel: An automatic detector
of energy leaks for smartphone applications. In
Proceedings of the 8th IEEE/ACM/IFIP International
Conference on Hardware/Software Codesign and
System Synthesis, CODES+ISSS ’12, pages 363–372,
Tampere, Finland, 2012.

[41] L. Zhang, B. Tiwana, R. Dick, Z. Qian, Z. Mao,
Z. Wang, and L. Yang. Accurate online power
estimation and automatic battery behavior based
power model generation for smartphones. In
Proceedings of the 6th IEEE/ACM/IFIP International
Conference on Hardware/Software Codesign and
System Synthesis, CODES+ISSS ’10, pages 105–114,
Oct 2010.

[42] M. Zhang, Y. Duan, H. Yin, and Z. Zhao.
Semantics-Aware Android Malware Classification
Using Weighted Contextual API Dependency Graphs.
In Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security, CCS ’14,
pages 1105–1116, Scottsdale, Arizona, USA, 2014.

This is the Pre-Published Version

