
Automated Analysis of Energy Efficiency and
Execution Performance for Mobile Applications

Yepang Liu

A Thesis Submitted to
The Hong Kong University of Science and Technology

in Partial Fulfillment of the Requirements for
the Degree of Doctor of Philosophy

in Computer Science and Engineering

June 2015, Hong Kong

Copyright © Yepang Liu 2015

Authorization

I hereby declare that I am the sole author of the thesis.

I authorize the Hong Kong University of Science and Technology to lend this

thesis to other institutions or individuals for the purpose of scholarly research.

I further authorize the Hong Kong University of Science and Technology to

reproduce the thesis by photocopying or by other means, in total or in part, at the

request of other institutions or individuals for the purpose of scholarly research.

Yepang Liu

22 June, 2015

ii

Automated Analysis of Energy Efficiency and

Execution Performance for Mobile Applications

by

Yepang Liu

This is to certify that I have examined the above PhD thesis

and have found that it is complete and satisfactory in all respects,

and that any and all revisions required by

the thesis examination committee have been made.

Prof. Shing-Chi Cheung, Thesis Supervisor

Prof. Qiang Yang, Head of Department

Department of Computer Science and Engineering

22 June, 2015

iii

To the memory of my grandfather

and

To my family

iv

Acknowledgments

I would like to thank numerous people who have helped and supported me through-

out my graduate studies.1

First and foremost, I would like to express my most sincere appreciation and

thanks to my advisor Prof. Shing-Chi Cheung, who has been a tremendous mentor

during my five years of study at HKUST. Prof. Cheung contributed so much to

my research by continually inspiring me to find interesting problems, guiding me

to solve problems elegantly, and training me to write high-quality technical papers.

Without his persistent support and invaluable advices, this thesis would not have

been possible. I am also grateful for the excellent example Prof. Cheung has set to

us students as a kind, patient, generous, hard-working and responsive person.

Secondly, I would also like to express my gratitude to Dr. Chang Xu, who has

also been an important mentor to me. In fact, I came up with my very first research

idea during an insightful discussion with him shortly after I joined HKUST. Ever

since then, he has been very supportive for my research. I will always remember

that he flied to Hong Kong and worked side by side with me on my first paper.

Even though publishing this paper was the most difficult time during my graduate

studies, I did not lose faith in myself and I believe it was his encouragements and

positive attitude that gave me strength. I am fortunate to have such a friend and

collaborator.

Thirdly, I want to sincerely thank my thesis proposal and examination commit-

tee: Prof. Li Qiu, Prof. Mauro Pezzè, Prof. Chi-Ying Tsui, Prof. Charles Zhang,

Prof. Sung Kim, Prof. Raymond Wong, and Prof. Jogesh Muppala for spending

time reviewing my thesis draft. Their valuable comments guided me to further im-

1The research conducted in this thesis was supported by Research Grants Council (General
Research Fund 611912 and 611813).

v

prove the quality of my thesis and inspired me to look at the research problem from

different perspectives.

Fourthly, I am also grateful to many other people at HKUST. I would like to

thank my dear friends here for bringing so much fun and happiness to my life. I

would also like to thank my group mates for creating a supportive yet competitive

research environment. My thanks also extends to those students, especially Sathish

Raghuraman, who helped me collect research data, conduct experiments and cross-

validate results.

Finally, my deepest gratitude goes to my family. Words cannot express how

grateful I am to my beloved wife, parents and grandparents. Without their love and

support, I would not have been come thus far on the academic path.

vi

Table of Contents

Title Page i

Authorization Page ii

Signature Page iii

Dedication Page iv

Acknowledgments v

Table of Contents vii

List of Figures x

List of Tables xi

Abstract xii

1 Introduction 1

2 Preliminaries 7

2.1 Application Component and Lifecycle 7

2.2 Single Thread Policy . 9

2.3 Using Sensors on Android Platforms 9

2.4 Wake Lock Mechanism . 10

3 Understanding and Diagnosing Energy Bugs 12

3.1 Understanding Energy Bugs . 12

3.1.1 Study Methodology . 13

3.1.2 Problem Magnitude . 14

3.1.3 Diagnosis and Bug-Fixing Efforts 15

vii

3.1.4 Common Patterns of Energy Bugs 20

3.1.5 Threats to Validity . 25

3.2 Energy Efficiency Analysis . 25

3.2.1 Approach Overview . 26

3.2.2 Application Execution and State Exploration 27

3.2.3 Detecting Missing Sensor or Wake Lock Deactivation 33

3.2.4 Sensory Data Utilization Analysis 34

3.3 Experimental Evaluation . 44

3.3.1 Experimental Setup . 45

3.3.2 Effectiveness and Efficiency of our Approach 47

3.3.3 Necessity and Usefulness of AEM Model 59

3.3.4 Impact of Event Sequence Length Limit 61

3.3.5 Comparison with Resource Leak Detection Work 65

3.3.6 Energy Saving: A Case Study 69

3.3.7 Discussions . 71

3.4 Related Work . 75

3.4.1 Energy Efficiency Analysis . 76

3.4.2 Energy Consumption Estimation 78

3.4.3 Resource Leak Detection . 79

3.4.4 Information Flow Tracking . 80

3.5 Chapter Summary . 81

4 Characterizing and Detecting Performance Bugs 82

4.1 Characterizing Performance Bugs . 82

4.1.1 Study Methodology . 83

4.1.2 Bug Types and Impact . 85

4.1.3 Bug Manifestation . 87

4.1.4 Debugging and Bug-Fixing Effort 90

4.1.5 Common Patterns of Performance Bugs 95

4.1.6 Discussions . 100

4.2 Rule-based Performance Bug Detection 104

viii

4.3 Experimental Evaluation . 106

4.3.1 Effectiveness and Efficiency of PerfChecker 106

4.3.2 Performance Improvement Study 117

4.4 Related Work . 121

4.4.1 Detecting Performance Bugs 122

4.4.2 Performance Testing . 122

4.4.3 Performance Debugging and Optimization 123

4.4.4 Understanding Performance Bugs 124

4.5 Chapter Summary . 125

5 Conclusions 126

5.1 Summary of Completed Work . 126

5.2 Ongoing Work and Future Work . 127

List of Publications 129

References 142

ix

List of Figures

2.1 The lifecycle of an activity component 8

2.2 GPS sensor usage example . 9

2.3 Wake lock usage example . 10

3.1 Bug open duration of energy and non-energy bugs 18

3.2 Developers’ comments on energy bugs 21

3.3 Motivating examples for sensory data underutilization energy bugs . . 23

3.4 Overview of our energy efficiency analysis approach 26

3.5 Illustration of event sequence generation 29

3.6 Example code to demonstrate taint propagation 37

3.7 Example analysis report of GreenDroid 42

3.8 The energy bug in Ushahidi application 49

3.9 Sensory data utilization analysis results (part 1) 51

3.9 Sensory data utilization analysis results (part 2) 52

4.1 Potential benefits of our empirical findings 83

4.2 Comparison of debugging and bug-fixing effort 92

4.3 Firefox bug 721216 . 95

4.4 Zmanim bug 50 . 96

4.5 List view example . 97

4.6 View holder pattern . 99

4.7 Overview of our static analysis technique 104

4.8 Average list item rendering time of studied subjects 118

x

List of Tables

2.1 Different wake levels of wake locks . 11

3.1 Statistics of our studied Android applications 14

3.2 Top five categories of energy-inefficient commercial Android applica-

tions . 14

3.3 The studied energy bugs in open-source Android applications 16

3.4 Diagnosis and fixing effort of our studied energy bugs 17

3.5 Example temporal rules in our AEM model 32

3.6 Taint propagation policy . 36

3.7 GPS data utilization coefficients at three application states of Osmdroid 41

3.8 Experimental subject information and detected energy bugs 46

3.9 GreenDroid diagnosis overhead and random execution result 58

3.10 Statement coverage with respect to different event sequence length

limits . 62

3.11 Energy saving case study result . 69

4.1 Subjects for studying performance bug characteristics 85

4.2 Performance bug debugging and fixing effort 91

4.3 p-values of Mann-Whitney U-tests . 92

4.4 Open-source Android applications used in PerfChecker evaluation . . 107

4.5 Commercial Android applications used in PerfChecker evaluation . . 108

4.6 Analysis time for open-source Android applications 109

4.7 Performance bugs detected in open-source Android applications . . . 110

4.8 Analysis time and detected performance bugs in commercial Android

applications . 114

4.9 Subjects and bugs for the performance comparison experiments . . . 117

4.10 Performance improvement and Mann-Whitney U-test results 121

xi

Automated Analysis of Energy Efficiency and

Execution Performance for Mobile Applications

by Yepang Liu

Department of Computer Science and Engineering

The Hong Kong University of Science and Technology

Abstract

Mobile applications’ energy efficiency and performance have a vital impact on

user experience. However, many mobile applications on market suffer from bugs

that can cause significant energy waste and performance degradation, thereby losing

their competitive edge. Locating these bugs is labor-intensive and thus automated

diagnosis is highly desirable. Unfortunately, people have limited understanding of

these bugs and there are no clear criteria to facilitate automated analysis of mobile

applications’ energy efficiency or execution performance. To bridge the gap, we

conducted two large-scale empirical studies of real-world energy and performance

bugs from popular Android applications. We studied the characteristics of these bugs

and identified several common causes of energy waste and performance degradation.

For energy bugs, we observed that (1) forgetting to deactivate device sensors or

wake locks after use and (2) ineffectively utilizing sensory data can cause serious

energy waste. To help developers detect such energy bugs, we proposed a dynamic

analysis technique GreenDroid. GreenDroid automatically generates user interac-

tion event sequences to systematically execute an Android application for state space

exploration. During execution, it tracks the transformation, propagation and con-

sumption of sensory data and analyzes whether the data are effectively utilized by

xii

the application to bring users perceptible benefits. It also closely monitors whether

device sensors and wake locks are properly deactivated after use. We evaluated

GreenDroid using 14 popular open-source Android applications. GreenDroid suc-

cessfully located 13 real energy bugs in these applications and additionally found

two previously-unknown bugs that were later confirmed by developers.

For performance bugs, we observed that (1) conducting lengthy operations in an

application’s main thread and (2) frequently invoking heavy-weight program call-

backs can seriously reduce the responsiveness of an application. To help developers

detect such performance bugs, we designed a light-weight static analysis technique

PerfChecker. PerfChecker automatically scans an Android application’s bytecode

and identifies a set of checkpoints whose efficiency is critical. It then analyzes

whether the checkpoints’ implementation satisfies the efficiency rules formulated

from our empirical study. We evaluated PerfChecker with 39 popular and large-scale

Android applications (29 open-source and 10 commercial) and a widely-used library.

PerfChecker successfully detected 178 previously-unknown performance bugs, among

which 88 were quickly confirmed by developers and 20 critical ones were fixed soon

afterwards. We also confirmed via comparison experiments that fixing our detected

performance bugs can significantly improve the performance of the corresponding

applications.

xiii

Chapter1

Introduction

Mobile devices such as smartphones and tablets have become the de facto computing

platforms in our daily lives [84]. One major reason behind their incredible market

success is that applications running on these devices can assist their users in a

wide variety of daily activities (e.g., work and entertainment). Take one of the

most popular mobile computing platforms Android for an example. Up until July

2014, there were already 1.3 million applications available on its official Google Play

store [19]. These applications span across 41 different categories and had received

more than 50 billion downloads from users around the world [20].

Since users rely on various mobile applications during their daily lives, the user

experience of such applications becomes vital. Undoubtedly, in the mobile com-

puting era, application functionality still remains as a key factor that affects user

experience. Nonetheless, with more and more applications of similar functionalities

emerge on market (e.g., various web browsers), non-functional properties such as

energy efficiency and execution performance have also gradually become important

factors.

However, our inspection of 60,000 Android applications randomly sampled from

Google Play store revealed an alarming fact: 11,108 (18.5%) of them have suffered

or are suffering from energy and performance bugs [67]. Energy bugs can silently and

quickly drain the mobile devices’ battery power. Performance bugs can significantly

slow down mobile applications and cause them to consume an excessive amount of

computational resources (e.g., memory and network bandwidth). These bugs had a

severe impact on user experience and caused significant user frustrations [79].

The pervasiveness of energy and performance bugs in mobile applications is

attributable to two major reasons. First, mobile devices are usually resource-

1

constrained (e.g., limited battery power and memory), but the applications running

on them often have to conduct energy-consumptive and computationally-intensive

tasks such as network communication and graphics rendering. Small inefficiency in

the applications’ implementation may lead to noticeable energy waste and perfor-

mance degradation. Second, many mobile applications are developed by individual

developers without dedicated quality assurance. It is hard for them to exercise due

diligence in assuring application energy efficiency and performance, especially when

they have to push their application products to market in a short time due to the

fierce competition.

Locating energy and performance bugs in mobile applications is the first step

towards energy consumption and performance optimization. However, it is a difficult

task for developers because energy inefficiency and performance degradation often

only occur at certain application states. To manifest the bugs, developers often have

to extensively test their applications on different devices and perform energy and

performance profiling (e.g., measuring energy or memory consumption). To figure

out the root causes, they often have to carefully instrument the concerned programs

to collect a large amount of runtime information for offline investigation. Such a

process is tedious and labor-intensive. Therefore, automated diagnosis techniques

are highly desirable. This motivates our research.

The goal of our research is to design useful and automated analysis techniques to

help developers quickly locate energy and performance bugs in their mobile applica-

tions. We restrict our study scope to Android smartphone applications due to their

platform openness and popularity. To achieve the goal of our research, we need to

address two important problems:

• Energy and performance bug understanding. First of all, mobile com-

puting platforms are relatively new. Both research communities and industries

lack a good understanding of the energy and performance bugs in the applica-

tions running on these platforms. However, in order to design useful techniques

to help developers combat such bugs, we must obtain a deep understanding of

these bugs in the first place.

2

• Automated oracles for judging energy and performance bugs. Sec-

ond, energy bugs may silently drain battery power and performance bugs may

gradually lead to performance degradation. Such bugs rarely cause immedi-

ate fail-stop consequences (e.g., crash). This makes it difficult to judge their

existence. However, to design automated analysis techniques, we need de-

cidable criteria to facilitate mechanical judgment of energy inefficiency and

performance degradation.

To address these problems, we conducted two large-scale empirical studies of real-

world energy and performance bugs collected from popular Android applications.

We carefully studied the characteristics of these bugs such as how they manifest

themselves and the difficulties in their diagnosis, and identified several common

causes of energy waste and performance degradation.

In the empirical study of energy bugs, we observed two common causes of energy

waste:

• Missing sensor or wake lock deactivation. Many Android applications

use smartphones’ built-in sensors (e.g., GPS) to continuously probe users’

physical and cyber environments to provide context-aware services (e.g., nav-

igation). To use a sensor, an application needs to register a listener with the

Android OS. The listener should be unregistered when the sensor is no longer

being used [1]. Similarly, to make a phone stay awake for computation, an ap-

plication has to acquire a wake lock from the Android OS. The acquired wake

lock should also be released as soon as the computation completes. Forgetting

to unregister sensor listeners or release wake locks could quickly deplete a fully

charged phone battery.

• Sensory data underutilization. Sensing operations consume considerable

energy, and therefore the obtained sensory data should be effectively utilized

by the applications to bring users perceptible benefits. Poor sensory data

utilization (e.g., being used to render invisible GUIs) often results in energy

waste.

3

To automatically detect such energy bugs, we proposed a dynamic analysis tech-

nique GreenDroid. GreenDroid generates user interaction event sequences to sys-

tematically execute an Android application for state space exploration. During

execution, it tracks the transformation, propagation and consumption of sensory

data and analyzes whether the data are effectively utilized by the application at

each explored state. It also monitors whether sensors/wake locks are properly regis-

tered/acquired and unregistered/released. To evaluate the usefulness of GreenDroid,

we applied it to analyze 14 popular open-source Android applications. GreenDroid

completed energy efficiency analysis for these applications in a few minutes. It suc-

cessfully located 13 real energy bugs in these applications and additionally found

two previously unknown bugs, which were later confirmed by developers. We were

also invited by developers to make patches for the two new bugs and one of our

patches was accepted. These evaluation results confirm GreenDroid’s efficiency and

effectiveness.

In the empirical study of performance bugs, we also observed two common causes

of performance degradation:

• Lengthy operations in main threads. Android applications by default run

entirely on a single thread “main thread”. This thread handles user interaction

events and therefore any methods running in the thread should do as little work

as possible to keep the application responsive. Running lengthy operations in

the main threads can significantly reduce the applications’ responsiveness.

• Frequently invoked heavy-weight callbacks. Android applications are

event-driven and consist of a set of callbacks. Some callbacks are frequently

invoked by Android OS and therefore need to be highly-efficient. Heavy-weight

frequently-invoked callbacks can significantly slow down an application.

To automatically detect such performance bugs, we designed a light-weight static

analysis technique PerfChecker. PerfChecker automatically scans an Android appli-

cation’s bytecode and identifies a set of checkpoints whose efficiency is critical. It

then analyzes whether the checkpoints’ implementation violates the efficiency rules

formulated from studying the fixing patches of real-world performance bugs. To

4

evaluate the usefulness of PerfChecker, we conducted experiments on 39 popular

and large-scale Android applications (29 open-source and 10 commercial) and a

widely-used application development library. PerfChecker quickly finished analyz-

ing each subject in a few seconds to a few minutes. It successfully detected 178

previously-unknown performance bugs, among which 88 were quickly confirmed by

developers and 20 critical ones were fixed soon afterwards. We also confirmed via

comparison experiments that fixing the detected performance bugs can indeed sig-

nificantly improve the performance of our studied applications. These evaluation

results confirm PerfChecker’s efficiency and effectiveness.

To summarize, we make the following contributions in this thesis:1

• We conducted two large-scale empirical studies of real-world energy and per-

formance bugs in Android applications. Our findings can help understand the

characteristics of these bugs and provide guidance to related research.

• We proposed a dynamic analysis technique GreenDroid to help developers au-

tomatically diagnose common patterns of energy bugs in Android applications.

• We proposed a static analysis technique PerfChecker to help developers au-

tomatically detect common patterns of performance bugs in Android applica-

tions.

• We implemented GreenDroid and PerfChecker and evaluated them by exten-

sive experiments on a large number of real-world popular Android applications.

Our evaluation results confirmed the effectiveness and usefulness of the tech-

niques.

Organization. The rest of this thesis is organized as follows. Chapter 2 intro-

duces preliminary knowledge about Android platform and applications. Chapter 3

presents our empirical study of energy bugs in Android applications and our dynamic

analysis technique for automatically diagnosing common patterns of energy bugs.

1We make our empirical study data and tool prototypes publicly available at these two websites
for research purposes: http://sccpu2.cse.ust.hk/greendroid/ and http://sccpu2.cse.ust.

hk/perfchecker.

5

http://sccpu2.cse.ust.hk/greendroid/
http://sccpu2.cse.ust.hk/perfchecker
http://sccpu2.cse.ust.hk/perfchecker

Chapter 4 presents our empirical study of performance bugs in Android applications

and our static analysis technique for automatically detecting common patterns of

performance bugs. These two chapters are self-contained, including their own re-

search questions, evaluation, and related work discussions and comparisons. Chap-

ter 5 concludes our completed research work and discusses our ongoing and future

work on diagnosing energy efficiency and performance for mobile applications.

6

Chapter2

Preliminaries

Android is an open-source Linux-based operating system [2]. It is now one of the

most widely adopted mobile computing platforms. Many mobile device manufactur-

ers (e.g., Samsung) customize their own Android variants by modifying the Android

software stack (e.g., kernel and libraries). Applications running on the Android

platform are mostly written in Java language. For performance considerations, de-

velopers may write critical parts of their applications using native-code languages

such as C and C++. Typically, an Android application is first compiled to Java vir-

tual machine compatible .class files that contain Java bytecode instructions. These

.class files are then converted to Dalvik virtual machine executable .dex files that

contain Dalvik bytecode instructions. Finally, the .dex files are encapsulated into

an Android application package file (i.e., an .apk file) for distribution and installa-

tion [1].

2.1 Application Component and Lifecycle

An Android application typically comprises four types of components [1]:

• Activities. Activities are the only components that allow graphical user in-

terfaces (GUIs). An application may use multiple activities to provide cohesive

user experiences. The GUI layout of each activity component is specified in

the activity’s layout configuration file.

• Services. Services are components that run at background for conducting

long-running tasks like sensor data reading. Activities can start and interact

with services.

7

Running

Stopped

Launch Activity

Paused

Destroyed

onStop()

1. onCreate()
2. onStart()
3. onResume()

1. onRestart()
2. onStart()
3. onResume() onPause()

onResume()

onDestroy()

<<kill>>
<<kill>>

Figure 2.1: The lifecycle of an activity component

• Broadcast receivers. Broadcast receivers define how an application re-

sponds to system-wide broadcasted messages. It can be statically registered

in an application’s configuration file (i.e., the AndroidManifest.xml file asso-

ciated with each application), or dynamically registered at runtime by calling

certain Android platform APIs.

• Content providers. Content providers manage shared application data, and

provide an interface for other components or applications to query or modify

these data.

Each application component is required to follow a prescribed lifecycle that de-

fines how this component is created, used, and destroyed. Figure 2.1 shows an

activity’s lifecycle [1]. It starts with a call to onCreate() handler, and ends with

a call to onDestroy() handler. An activity’s foreground lifetime starts after a call

to onResume() handler, and lasts until onPause() handler is called, when another

activity comes to foreground. An activity can interact with its users only when it

is at foreground. When it goes to background and becomes invisible, its onStop()

handler would be called. When the users navigate back to a paused or stopped ac-

tivity, that activity’s onResume() or onRestart() handler would be called, and the

activity would come to foreground again. In exceptional cases, a paused or stopped

activity may be killed for releasing memory to other applications with higher prior-

ities.

8

LocationManager lm = (LocationManager) getSystemService(Context.LOCATION_SERVICE);

LocationListener listener = new LocationListener(){

public void onLocationChanged(Location loc){

//do something to use the obtained location data

}

public void onStatusChanged(String provider, int status, Bundle extras){}

public void onProviderEnabled(String provider){}

public void onProviderDisabled(String provider){}

};

//register the location listener to use GPS sensor

lm.requestLocationUpdate(LocationManager.GPS_PROVIDER, 0, 0, listener);

//unregister location listener when the GPS is no longer needed

lm.removeUpdates(listener);

Figure 2.2: GPS sensor usage example

2.2 Single Thread Policy

When an Android application starts, Android OS creates a “main thread” (also

known as an “UI thread”) to instantiate this application’s components. This thread

dispatches system calls to responsible application components, and user events to

appropriate UI widgets (e.g., buttons). After dispatching, the corresponding com-

ponents’ lifecycle handlers and UI widgets’ GUI event handlers will run in the main

thread to handle the system calls or user events. This is known as the “single thread

policy” [1]. The policy requires developers to control workloads of their applications’

main threads (e.g., not overwhelming a main thread with intensive work). Other-

wise, applications can easily exhibit poor responsiveness. If an application keeps

being unresponsive to users’ interactions for a period of time (e.g., 5 seconds), the

Android OS will display an “Application Not Responding” (ANR) dialog and offer

users an option to force close the application.

2.3 Using Sensors on Android Platforms

Most Android devices have built-in sensors that can help measure users’ various

environmental conditions (e.g., current location). To use a sensor, an application

needs to register a listener with the Android OS and specify a sensing rate. The

listener defines how an application reacts to sensor value or status change. When a

9

PowerManager pm = (PowerManager) getSystemService(Context.POWER_SERVICE);

WakeLock wl = pm.newWakeLock(PowerManager.PARTIAL_WAKE_LOCK);

wl.acquire();

if(wl != null){

//start long running critical computation here

}

//release wake lock when critical computation ends

if(wl.isHeld()){

wl.release();

}

Figure 2.3: Wake lock usage example

sensor is no longer needed, its listener should be unregistered to avoid wasted sensing

operations that may drain device battery power [1]. Figure 2.2 give an example us-

age of GPS sensor. The onLocationChange() handler in the location listener class

defines how the application uses the location data obtained by the device’s GPS

sensor. The other three handlers defines how the application reacts to the status

change of the GPS sensor (e.g., onProviderDisabled() defines how the application

reacts when GPS sensor is disabled). The requestedLocationUpdate() API call

registers the location listener with the Android OS. The second and third parame-

ters of the requestLocationUpdate() API specify the minimum time interval and

minimum change in distance between location updates, respectively (i.e., configuring

the sensing rate). Here in our example, setting them both to zero requests location

updates as frequently as possible. When the location sensing is no longer needed,

the application should call removeUpdate() API to unregister the location listener.

Other sensors (e.g., accelerometer) can be used in similar ways, but through the

SensorManager class. It is worth noting that a slight difference between using GPS

sensor and other sensors is that to use a device’s GPS sensor, an application needs

to declare the permission android.permission.ACCESS FINE LOCATION.

2.4 Wake Lock Mechanism

Mobile devices have limited battery power, but are usually equipped with energy-

consumptive hardwares such as HD screens and WiFi NICs. Extensive use of such

10

Table 2.1: Different wake levels of wake locks

Wake level CPU Screen Keyboard

PARTIAL_WAKE_LOCK On Off Off

SCREEN_DIM_WAKE_LOCK* On Dim Off

SCREEN_BRIGHT_WAKE_LOCK* On Bright Off

FULL_WAKE_LOCK* On Bright Bright

hardwares can quickly deplete a fully-charged phone battery. To prolong battery

life, many mobile computing platforms including Android choose to put energy-

consumptive hardwares into a sleep mode (e.g., turning screen off) after a short

period of user inactivity. However, there are certain scenarios where an application

needs to keep device awake to perform long running critical computation. To cope

with this demand, different platforms employ different mechanisms to allow develop-

ers to explicitly control the power state of a mobile device. On Android platforms,

developers can make use of the wake lock mechanism.

To use a wake lock, an Android application needs to declare the android.per-

mission.WAKE LOCK permission in its configuration file (AndroidManifest.xml).

After obtaining the permission, it can simply create a PowerManager.WakeLock

object and specify an intended wake level (see Figure 2.3 for an example). Table 2.1

lists the four wake levels defined by the Android framework.1 Each wake level has

a different effect on the device’s power state. For instance, a PARTIAL WAKE LOCK

will ensure that the device CPU is running, but the display and keyboard backlight

(if there is a physical keyboard) will be allowed to go off. After creating the wake

lock object, an application can then use the APIs on the wake lock to acquire or

release the wake lock. Once acquired, the wake locks will have long lasting effects

until they are released. Therefore, developers should carefully manage wake locks

to avoid energy waste.

1Android documentation suggests developers to set the KEEP SCREEN ON flag when defining
activity components rather than using the wake locks marked by “*” in Table 2.1. The OS will
then keep the screen on when the activities are visible to users. Although this avoids manual wake
lock management, to precisely control when screens can go off, developers still often use wake locks.

11

Chapter3

Understanding and Diagnosing Energy Bugs

In this chapter, we first present a large-scale empirical study of real energy bugs

from popular Android applications in Section 3.1. The empirical study identified two

common patterns of energy bugs. With the findings, we then present a state-based

dynamic analysis technique for automatically detecting these patterns of energy

bugs in Section 3.2. Next, we introduce our tool implementation and evaluate

our technique using real application subjects in Section 3.3. After that, we discuss

existing studies related to energy bug diagnosis in mobile applications in Section 3.4.

Finally, we summarize this chapter in Section 3.5. The content of this chapter is

based on two research papers [65, 68].

3.1 Understanding Energy Bugs

In this section, we conduct an empirical study of real-world energy bugs in Android

applications. For ease of presentation, we may use “energy problems” and “en-

ergy bugs” interchangeably. Our study aims to answer the following three research

questions:

• RQ1 (Problem magnitude): Are energy problems in Android applications

serious? Do the problems have a severe impact on smartphone users?

• RQ2 (Diagnosis and bug-fixing efforts): Are energy problems relatively

more difficult to diagnose and fix than non-energy problems? What informa-

tion do developers need in the energy problem diagnosis and fixing process?

• RQ3 (Common causes and patterns): What are the common causes of

energy problems? What patterns can we distill from them to enable automated

diagnosis of these problems?

12

3.1.1 Study Methodology

To study these research questions, we first selected a set of commercial Android

applications that suffered from energy problems. We randomly collected 608 candi-

dates from Google Play store [19] using a web crawling tool [9]. These applications

have release logs containing at least one of the following keywords: battery, energy,

efficiency, consumption, power, and drain. We then performed a manual exami-

nation to ensure that these applications indeed had energy problems in the past

and developers have fixed these problems in these applications’ latest versions (note

that we did not have access to the earlier versions containing energy problems).

This left us with 229 commercial applications. By studying available information

such as category, downloads and user comments, we can answer our research ques-

tion RQ1. However, these commercial applications alone are not adequate enough

for us to study the remaining two research questions. This is because to answer re-

search questions RQ2–3, we need to know all details about how developers fix energy

problems (e.g., code revisions, the linkage between these revisions and their corre-

sponding bug reports). As such, we also need to study real energy problems with

source code available, i.e., from open-source subjects. To find interesting open-source

subjects, we first randomly selected 250 candidates from three primary open-source

software hosting platforms: Google Code [18], GitHub [17] and SourceForge [34].

Since we are interested in applications with a certain level of development maturity,

we refined our selection by retaining those applications that: (1) have at least 1,000

downloads (popular), (2) have a public bug tracking system (traceable), and (3)

have multiple versions (well-maintained). These three constraints left us with 173

open-source subjects. We then manually inspected their code revisions, bug reports,

and debugging logs. We found 34 of these 173 subjects have reported or fixed energy

problems (details are given in Section 3.1.2).

Table 3.1 lists project statistics for all 402 (173 + 229) subjects studied. We

observe that these subjects are all popularly downloaded, and cover different appli-

cation categories. We then performed an in-depth examination of these subjects to

answer our research questions. The whole study involved one undergraduate student

13

Table 3.1: Statistics of our studied Android applications

Application type
Application availability Application downloads

Covered
categoriesGoogle

Code GitHub Source
Forge

Google
Play Min. Max. Avg.

34 open-source ones
(with energy problems) 27/34 8/34 0/34 29/34 1K1~5K 5M1~10M 0.49M~1.68M 15/322

139 open-source ones
(no reported energy

problems)
108/139 26/139 10/139 102/139 1K~5K 50M~100M 0.50M~1.22M 24/32

229 commercial ones
(with energy problems)

All apps are available on
Google Play Store 1K~5K 50M~100M 0.77M~2.02M 27/32

1: 1K = 1,000 & 1M = 1,000,000; 2: According to Google’s classification, there were a total of 32 different
categories of Android applications at our study time.

Table 3.2: Top five categories of energy-inefficient commercial Android
applications

Category # of inefficient applications

Personalization 59 (25.8%)

Tools 34 (14.8%)

Brain & Puzzle 15 (6.6%)

Arcade & Action 13 (5.7%)

Travel & Local 11 (4.8%)

and four postgraduate students with a manual effort of about 35 person-weeks. We

report our findings in the following subsections.

3.1.2 Problem Magnitude

Our selected 173 open-source Android applications contain hundreds of bug reports

and code revisions. From them, we identified a total of 66 bug reports on energy

problems, which cover 34 applications. Among these 66 bug reports, 41 have been

confirmed by developers. Most (32/41) confirmed bugs are considered to be serious

bugs with a severity level ranging from medium to critical. Besides that, we found

30 of these confirmed bugs have been fixed by corresponding code revisions, and

developers have verified that these code revisions have indeed solved corresponding

energy problems.

14

On the other hand, regarding the 229 commercial Android applications that

suffered from energy problems, we studied their user reviews and obtained three

findings. First, we found from the reviews that hundreds of users complained that

these applications drained their smartphone batteries too quickly and caused great

inconvenience for them. Second, as shown in Table 3.1, these energy problems cover

27 different application categories, which are quite broad as compared to the total

number of 32 categories. This shows that energy problems are common to different

types of applications. Table 3.2 lists the top five categories for illustration. Third,

these 229 commercial applications have received more than 176 million downloads

in total. This number is significant, and shows that their energy problems have

potentially affected a vast number of users.

Based on these findings, we derive our answer to research question RQ1: Energy

problems are serious. They exist in many types of Android applications and affect

many users.

3.1.3 Diagnosis and Bug-Fixing Efforts

To understand how difficult the diagnosis and fixing of energy problems can be, we

studied 25 out of the 30 fixed energy bugs in open-source applications. Five fixed

bugs were ignored in our study because we failed to recover the links between their

bug reports and corresponding code revisions.1 Table 3.3 gives the basic information

of our studied energy bugs, including: (1) bug ID, (2) severity level, (3) revision in

which the bug was fixed, and (4) program size of the inefficient revision. Table 3.4

reports our study findings. For each fixed energy bug, Table 3.4 reports: (1) duration

in which the bug report is open, (2) number of revisions for fixing the bug, and

(3) number of classes and methods that were modified for fixing the bug. We

also studied the 11 (= 41 − 30) confirmed but not fixed energy problems in open-

source applications since four of the eight concerned applications are still actively

maintained. We studied how long their bug reports stayed open as well as the

1Our manual examination of the commit logs around the bug fixing dates also failed to find the
bug-fixing code revisions.

15

Table 3.3: The studied energy bugs in open-source Android applications

Application name Downloads

Issue information

Issue no. Severity Fixed revision
Inefficient

revision size
(LOC)

DroidAR1 5K3 ~ 10K 27* Medium 207 18,106

Recycle Locator 1K ~ 5K 33* Medium 69 3,241

Sofia Public Transport
Nav. 10K ~ 50K 38* Medium 156 1,443

Sofia Public Transport
Nav. 10K ~ 50K 76* Critical 156 1,649

Google Voice Location6 10K ~ 50K 4* Medium 20 4,632

BitCoin Wallet 10K ~ 50K 86 Medium 1bbc6295083c 27,220

Osmdroid 10K ~ 50K 53* Medium 751 13,385

Osmdroid 10K ~ 50K 76* Medium 315 8,636

Zmanim 10K ~ 50K 50/56* Critical 323 4,807

Transdroid 10K ~ 50K 19* Medium Version 0.8.0 11,715

Geohash Droid 10K ~ 50K 24* Medium 6d8f10153a48 6,682

AndTweet6 10K ~ 50K 29* Medium 4a1f1f9683f2 8,908

K9Mail 1M3 ~ 5M 574 Medium 933 72,7235

K9Mail 1M ~ 5M 864 Medium 317 72,723

K9Mail 1M ~ 5M 1031 Medium 1395 72,723

K9Mail 1M ~ 5M 1643/1694 Medium 1731 72,723

K9Mail 1M ~ 5M N/A4 N/A 4542e64 72,723

Open-GPSTracker6 100K ~ 500K 70 Critical 33f6e78aad9a 4,447

Open-GPSTracker6 100K ~ 500K 128* Low 3aa9fb4d4ffb 9,174

Ebookdroid 500K ~ 1M 23* Medium 138 14,351

CSipSimple 500K ~ 1M 1674 Critical 1386 54,966

c:geo2 1M ~ 5M 1709 Critical cecda72 33,514

BableSink6 1K ~ 5K N/A* N/A 9fbcbf01ce 1,718

CWAC-Wakeful 1K ~ 5K N/A* N/A c7d440f115 896

Ushahidi6 10K ~ 50K N/A* N/A 337b48f 10,186
1: Applications from DroidAR to CSipSimple are hosted on Google Code.
2: Applications from c:geo to CommonsWare are hosted on GitHub. 3: 1K = 1,000 & 1M = 1,000,000;
4: The symbol “N/A” means “unknown”, and the corresponding bugs are found by studying commit logs.
5: The size of K9Mail is based on revision fdfaf03b7a because we failed to access its original SVN repository

after it switched to use Git.
6: All applications except Google Voice Location, AndTweet, Open-GPSTracker, BabbleSink and Ushahidi

are still actively maintained (continuous code revisions).

16

Table 3.4: Diagnosis and fixing effort of our studied energy bugs

Application name Issue no.
Diagnosis and fixing efforts

Issue open
duration (Days)

of revisions
to fix

of changed
classes

of changed
methods

DroidAR 27* 7 3 4 18

Recycle Locator 33* 1 1 1 5

Sofia Public Transport Nav. 38* 19 2 3 7

Sofia Public Transport Nav. 76* 1 1 1 1

Google Voice Location 4* 330 10 4 37

BitCoin Wallet 86 30 1 2 4

Osmdroid 53* 243 1 1 4

Osmdroid 76* 11 1 1 5

Zmanim 50/56* 35 1 6 14

Transdroid 19* 9 1 1 7

Geohash Droid 24* 3 1 1 6

AndTweet 29* 240 1 6 22

K9Mail 574 101 1 2 9

K9Mail 864 49 3 6 8

K9Mail 1031 20 1 1 1

K9Mail 1643/1694 6 2 3 2

K9Mail N/A N/A 1 1 2

Open-GPSTracker 70 2 1 3 9

Open-GPSTracker 128* 9 5 7 8

Ebookdroid 23* 2 1 4 5

CSipSimple 1674 6 1 1 1

c:geo 1709 16 1 2 9

BableSink N/A* N/A 1 1 1

CWAC-Wakeful N/A* N/A 1 1 1

Ushahidi N/A* N/A 1 2 9

17

B
ug

 o
pe

n
du

ra
ti

on
 (

da
ys

)

Non-energy bugs
(mean = 43.7)

Energy bugs
(mean = 54.3)

727

39

5

1

330

35

11
6

11
2

5
10

20
50

10
0

20
0

50
0

Figure 3.1: Bug open duration of energy and non-energy bugs

duration of their related discussions. From these studies, we made the following

three observations.

First, 24 out of the 25 energy problems listed in Tables 3.3 and 3.4 are seri-

ous problems whose severity ranges from medium to critical. Developers take, on

average, 54 work-days to diagnose and fix them. For comparison, we checked the re-

maining 1,967 non-energy bugs of similar severity (i.e., medium to critical) reported

on these applications before March 2013. We found that these non-energy bugs were

fixed, on average, within 43 work-days. Figure 3.1 gives a detailed box plot of open

duration for the energy and non-energy bugs we studied. For example, the median

open duration for non-energy bugs is five days while the median open duration for

energy bugs is 11 days. Such comparison results suggest that energy problems are

likely to take a longer time to fix. We further conducted a Mann-Whitney U-test [71]

of the following two hypotheses:

• Null hypothesis H0. Fixing energy problems does not take a significantly

longer time than fixing non-energy problems.

• Alternative hypothesis H1. Fixing energy problems takes a significantly

longer time than fixing non-energy problems.

18

Our test results show that the p-value is 0.0327 (< 0.05), indicating that the null

hypothesis H0 can be rejected with a confidence level of over 0.95. Therefore, we

can conclude that energy problems take a relatively longer time to fix.

Second, for the 11 confirmed but not fixed energy problems, we found that devel-

opers closed five of them because they failed to reproduce corresponding problems

and they did not receive user complaints after some seemingly irrelevant code revi-

sions. For three of the remaining six problems, we found that developers are still

working on fixing them without success [10, 23, 25]. Their three associated bug re-

ports have been remained open for more than two years. For example, CSipSimple

is a popular application for video calls over the Internet. Developers have discussed

its energy problem (issue 81) tens of times, trying to find the root cause, but failed

to make any satisfactory progress so far. Due to this, some disappointed users

uninstalled CSipSimple, as indicated from their comments on the bug report [10].

Third, as shown in Table 3.4, in 21 out of 25 cases, developers fixed the reported

energy problems in one or two revisions. These fixes require non-trivial effort. For

example, 16 out of these 25 fixes require modifying more than 5 methods. On aver-

age, developers fixed these 25 problems by modifying 2.6 classes and 7.8 methods.

We also looked into discussions on fixed energy bugs. We found that many of

these bugs are intermittent. Developers generally consider these intermittent bugs

as complex issues. In order to reproduce them, developers have to know details

about how users interact with their applications before these problems occur. De-

velopers often have to analyze debugging information logged at runtime in order to

identify the root causes of these problems. For example, to facilitate energy waste

diagnosis, K9Mail developers gave special instructions on how users could provide

useful debugging logs [23]. This may become additional overhead for smartphone

users when they report energy problems.

Based on these findings, we derive our answer to research question RQ2: It is rel-

atively more difficult to diagnose and fix energy problems, as compared to non-energy

problems; user interaction contexts and debugging logs can help problem diagnosis,

but they require additional user-reporting efforts, which may not be desirable.

19

3.1.4 Common Patterns of Energy Bugs

Energy inefficiency is a non-functional issue whose causes can be complex and

application-specific. For example, CSipSimple issue 1674 [10] happened because

the application monitored too many broadcasted messages, and its issue 744 was

caused by unnecessary talking with a verbose server [10]. Nevertheless, by studying

the bug-fixing patches and bug report comments of the earlier mentioned 25 fixed

energy problems, we observe that 16 of them (64.0%) are due to misuse of sensors

or wake locks. These problems are marked with “*” in Tables 3.3 and 3.4.

To confirm that misuse of sensors or wake locks can indeed lead to energy prob-

lems in Android applications, we analyzed the API usage of all 402 applications.

On the Android platform, applications need to call certain APIs to invoke system

functionalities. For example, an application needs to call the PowerManager.Wake-

Lock.acquire() API to acquire a wake lock from Android OS so as to keep a device

awake for computation (see Section 2.4 for more details). As such, API usage analy-

sis can disclose which Android features are being used by an application. To analyze

API usage of our 173 open-source applications, we compiled their source code to ob-

tain Java bytecode. For commercial applications, we handled them differently. We

first downloaded their .apk files from Google Play store using an open-source tool

Real APKLeecher [29].2 We then transformed their Dalvik bytecode (contained in

the .apk files) to Java bytecode using dex2jar [11], a popular Dalvik bytecode re-

targeting tool [78]. Finally, we scanned the Java bytecode of each application to

analyze their API usage. From the analysis, we obtained two major findings. First,

46.7% (14/30) open-source applications that use sensors and 68.0% (17/25) open-

source applications that acquire wake locks were confirmed to have energy problems.

Second, 51.1% (117/229) energy inefficient commercial applications use sensors or

wake lock. These findings suggest that misuse of sensors or wake locks could be

closely associated with energy problems in Android applications.

2The original Real APKLeecher is GUI-based. We modified it to support command line usage
for study automation. The modified version can be obtained at: http://sccpu2.cse.ust.hk/

greendroid.

20

http://sccpu2.cse.ust.hk/greendroid
http://sccpu2.cse.ust.hk/greendroid

AndTweet Issue 29: “Issue 29 is due to the design of AndTweetService: It
starts right after boot and acquires a partial wake lock. According to the
Android documentation, the acquired wake lock ensures that the CPU is
always running. The screen might not be on. This is why few users had
noticed the issue before.”

Geohash Droid Issue 24: “GeohashService should slow down its GPS
updates to one every thirty seconds if nothing besides the notification bar is
waiting for updates.”

Figure 3.2: Developers’ comments on energy bugs

Based on these findings, we further studied the discussions on fixed energy prob-

lems and their bug-fixing patches. We then observed two types of coding phenomena

concerning sensor or wake lock misuse that can lead to serious energy waste in An-

droid applications:

Pattern 1: Missing sensor or wake lock deactivation. To use a sensor,

an application needs to register a listener with Android OS, and specify a sensing

rate [1]. The listener defines how an application reacts to sensor value or status

changes. When a sensor is no longer needed, its listener should be unregistered in

time. As stated in Android documentation, forgetting to unregister sensor listeners

can lead to unnecessary sensing operations that waste battery energy. Similarly,

to keep a smartphone awake for computation, an application needs to acquire a

wake lock from Android OS and specify a wake level. For example, a full wake lock

can keep a phone’s CPU awake and its screen on at full brightness. The acquired

wake lock should be released as soon as the computation completes. Forgetting to

release wake locks in time can quickly drain a phone’s battery [1]. For example, Fig-

ure 3.2 gives a developer’s comment on an energy problem in AndTweet, a Twitter

client [4]. AndTweet starts a background service AndTweetService right upon re-

ceiving a broadcast message indicating that Android OS has finished booting. When

AndTweetService starts, it acquires a partial wake lock, which is not released until

AndTweetService is destroyed. However, due to a design defect, AndTweetService

keeps running at background, unless it encounters an external storage exception

(e.g., SD card being un-mounted) or is killed explicitly by users, while such cases

21

are rare. As a result, AndTweet can waste a surprisingly large amount of battery

energy due to this missing wake lock deactivation problem.3

Pattern 2: Sensory data underutilization. Sensory data are acquired at

the cost of battery energy. These data should be effectively used by applications to

produce perceptible benefits to smartphone users. However, when an application’s

program logic becomes complex, sensory data may be “underutilized” in certain exe-

cutions. In such executions, the energy cost for acquiring sensory data may outweigh

the actual usages of these data. We call this phenomenon “sensory data underuti-

lization”. We observed that sensory data underutilization often suggests design or

implementation defects that can cause energy waste. For example, Figure 3.3(a)

gives the concerned code snippet of a location data underutilization problem in an

entertainment application Geohash Droid. This application is designed for users who

like adventures. It randomly selects a location for users and navigates them there

using GPS sensors. As the code in Figure 3.3(a) shows, Geohash Droid maintains a

long running GeohashService at background for location sensing. GeohashService

registers a location listener with Android OS when it starts (Lines 7–16), and unreg-

isters the listener when it finishes (Lines 22–25). Once it receives location updates,

it refreshes the smartphone’s notification bar (Line 11), which provides users with

quick access to their current locations. After that, it notifies remote listeners (e.g.,

the navigation map) to use updated location data (Lines 12, 27–36). Thus, location

data are used to produce perceptible benefits to users when remote listeners are

actively listening to such location updates. However, there are chances when no

remote listeners are alive (e.g., the navigation map will not be alive when it loses

user focus). When this happens, Geohash Droid would keep receiving the phone’s

GPS coordinates, simply for updating its notification bar [16]. Such updates do not

reflect effective use of newly captured GPS coordinates, while the battery’s energy is

continuously consumed. Geohash Droid developers received a lot of user complaints

for such battery drain. After intensive discussions, developers identified the cause

3For more details, readers can refer to the following classes in package com.xorcode.andtweet

of application AndTweet-0.2.4: AndTweetService, AndTweetServiceManager, TimelineActivity
and TweetListActivity [4].

22

public class MapActivity extends Activity {

private Intent gpsIntent;

private BroadcastReceiver myReceiver;

public void onCreate(){

gpsIntent = new Intent(GPSService.class);

startService(gpsIntent); //start GPSService

myReceiver = new BroadcastReceiver() {

public void onReceive(Intent intent) {

LocData loc = intent.getExtra();

updateMap(loc);

if(trackingModeOn) persistToDatabase(loc);

}

}

//register receiver for handling loc change messages

IntentFilter filter = new IntentFilter(“loc_change”);

registerReceiver(myReceiver, filter);

}

public void onDestroy() {

//stop GPSService and unregister broadcast receiver

stopService(gpsIntent);

unregisterReceiver(myReceiver);

}

}

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

public class GPSService extends Service {

private LocationManager lm;

private LocationListener gpsListener;

public void onCreate(){

//get a reference to system location manager

lm = getSystemService(LOCATION_SERVICE);

gpsListener = new LocationListener() {

public void onLocationChanged(Location loc) {

LocData formattedLoc = processLocation(loc);

//create and send a location change message

Intent intent = new Intent(“loc_change”);

intent.putExtra(“data”, formattedLoc);

sendBroadcast(intent);

}

};

//GPS listener registration

lm.requestLocationUpdates(GPS, 0, 0, gpsListener);

}

public void onDestroy() {

//GPS listener unregistration

lm.removeUpdates(gpsListener);

}

}

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

public class GeohashService extends Service {

private ArrayList<RemoteListener> mListeners;

private LocationManager lm;

private LocationListener gpsListener;

public void onStart(Intent intent, int StartId){

mListeners = new ArrayList<RemoteListener>();

//get a reference to system location manager

lm = getSystemService(LOCATION_SERVICE);

gpsListener = new LocationListener() {

public void onLocationChanged(Location loc) {

updateNotificationBar(loc);

notifyRemoteListeners(loc);

}

};

//GPS listener registration

lm.requestLocationUpdates(GPS, 0, 0, gpsListener);

}

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

//more code from GeohashService

public void onDestroy() {

//GPS listener unregistration

lm.removeUpdates(gpsListener);

}

//notify alive remote listeners for loc change

public void notifyRemoteListeners(Location loc){

final int N = mListeners.size();

for(int i = 0; i < N; i++) {

RemoteListener listener = mListeners.get(i);

if(listener.isAlive()){

//remote listeners consume location data

listener.locationUpdate(loc);

}

}

}

}

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Figure 3.3: Motivating examples for sensory data underutilization energy
bugs

23

of this problem and chose to reduce the GPS sensing rate when there is no active

remote listener for such location updates. Figure 3.2 shows their comment after

fixing this energy problem.

Another interesting example is the energy problem in Osmdroid, a popular map-

based navigation application. Figure 3.3(b) gives a simplified version of the con-

cerned code. The application has three components: (1) MapActivity for display-

ing a map to its users, (2) GPSService for location sensing and data processing

in background, and (3) a broadcast receiver for handling location change messages

(Lines 7–13). When MapActivity is launched, it starts GPSService (Lines 5–6), and

registers its broadcast receiver (Lines 15–16). GPSService then registers a location

listener with the Android OS when it starts (Lines 36–47). When the application’s

users change their locations (e.g., during a walk), GPSService would receive and

process new location data (Line 39), and broadcast a message with the processed

data (Lines 41–43). The broadcast receiver would then use the new location data

to refresh a map (Line 10). If the users have enabled location tracking, these loca-

tion data would also be stored to a database (Line 11). If the Android OS plans

to destroy MapActivity (Lines 18–22), GPSService would be stopped (Line 20),

and both the location listener and broadcast receiver would be unregistered (Lines

21, 51). These all work seemingly smoothly. However, if Osmdroid’s users switch

from MapActivity to any other activity, MapActivity would be put to background

(not destroyed), but GPSService would still keep running for location sensing. If

the location tracking functionality is not enabled, all collected location data would

be used to refresh an invisible map. Then, a huge amount of energy would be

wasted [28]. To fix this problem, developers chose to disable the GPS sensing con-

ditionally (e.g., according to whether the location tracking mode is enabled or not),

when MapActivity goes to background.

From the preceding two examples of sensory data underutilization, we make three

observations. First, locating sensory data underutilization problems can provide

desirable opportunities for optimizing an application’s energy consumption. When

such problems occur, the concerned application can deactivate related sensors or

tune down their sensing rates to avoid unnecessary energy cost. Second, to detect

24

such sensory data underutilization problems, one should track how sensory data are

transformed into different forms of program data and consumed in different ways.

Third, sensory data underutilization problems may occur only at certain application

states. For example, Geohash Droid wastes energy only when there is no active

remote listener waiting for location updates. In Osmdroid, if its user has enabled

the location tracking functionality before MapActivity goes to background, even if

it is consuming non-trivial energy due to continuous GPS sensing, we cannot simply

consider this as energy waste. This is because the collected location data could be

stored for future uses, producing perceptible user benefits afterwards. These three

observations motivate us to consider a state-based approach to analyzing sensory

data utilization for Android applications. Such analysis can help developers judge

whether their applications are using sensory data in a cost-effective way and provide

optimization opportunities for energy efficiency if necessary.

3.1.5 Threats to Validity

The validity of our empirical study may be subject to some threats. One is the

representativeness of our selected Android applications. To minimize this threat

and avoid subject selection bias, we selected 173 open-source and 229 commercial

Android applications spanning 27 different categories. These applications have been

popularly downloaded and can be good representatives of real-world Android appli-

cations. Another potential threat is the manual inspection of our selected subjects.

We understand that this manual process may be error-prone. To reduce this threat,

we have all our data and findings independently inspected by at least two researchers.

We cross-validated their inspection results for consistency.

3.2 Energy Efficiency Analysis

In this section, we elaborate on our energy efficiency analysis approach. We will

begin with an overview of our approach.

25

Java PathFinder

Sensory Data
Utilization
Analyzer

Runtime
Controller

Application
Under Analysis

*.class

*.xml

Analysis
Report

•Application state
• Energy inefficiency

Figure 3.4: Overview of our energy efficiency analysis approach

3.2.1 Approach Overview

Our energy efficiency diagnosis is based on dynamic information flow analysis [59].

Figure 3.4 shows its high-level abstraction. It takes as inputs the Java bytecode

and configuration files of an Android application. The Java bytecode defines the

application’s program logic, and can be obtained by compiling the application’s

source code or transforming its Dalvik bytecode [78]. The configuration files spec-

ify the application’s components, GUI layouts, and so on. The general idea of

our diagnosis approach is to execute an Android application using Java PathFinder

(JPF) [93], a widely-used dynamic model checker for general Java programs (recall

that Android applications are essentially Java programs), to systematically explore

its application states. During the execution, our approach monitors all sensor regis-

tration/unregistration and wake lock acquisition/releasing operations. It feeds mock

sensory data to the application when related sensor listeners are properly registered.

It then tracks the propagation of these sensory data as the application executes, and

analyzes how they are utilized at different application states. At the end of the ex-

ecution, our approach compares sensory data utilization across explored states, and

reports those states where sensory data are underutilized. It also checks which sen-

sor listeners are forgotten to be unregistered, and which wake locks are forgotten to

be released, and reports these anomalies.

The above high-level abstraction looks straightforward, but contains some chal-

lenging questions: How can one execute an Android application and systematically

explore its states, especially in JPF? How can one identify those executions that

involve sensory data? How can one measure and compare sensory data utilization

26

at application states explored by these executions? We answer these questions in the

following subsections.

3.2.2 Application Execution and State Exploration

Android applications are mostly designed to interact with smartphone users. Their

executions are often triggered by user interaction events. Typically, an Android

application starts with its main activity, and ends after all its components are de-

stroyed. During its execution, the application keeps handling received user interac-

tion events and system events (e.g., broadcasted events) by “calling” their handlers

according to Android specifications.4 Each call to an event handler may change the

application’s state by modifying its components’ local or global program data. As

such, in order to execute an application and explore its state space in JPF, we need

to: (1) generate user interaction events, and (2) guide JPF to schedule corresponding

event handlers.

Before going into the technical details, we first formally define our problem do-

main and clarify our concept of bounded state space exploration. We use P to denote

the Android application under diagnosis, and E to denote the set of possible user

interaction events for this application.

Definition 1 (User interaction event sequence): A user interaction event

sequence seq = [e1, e2, . . . , en], where each ei ∈ E is a user interaction event. Op-

eration len(seq) returns the length of the sequence seq, and operation head(seq, k)

returns a subsequence with the first k user interaction events in seq. We denote the

set of all possible user interaction event sequences as SEQ.

The SEQ set is theoretically unbounded as users can interact with an application

in infinite ways.

Definition 2 (Application execution): An execution t of application P is

triggered by a sequence of user interaction events seq. We denote such an execution

4Android applications are event-driven. Their program code comprises many loosely coupled
event handlers, among which no explicit control flow is specified. At runtime, these event handlers
are in fact called by the Android framework, which builds upon hundreds of native library classes.

27

as t = exec(P, seq). Then the set of all possible executions T for the application P

is:

T = {exec(P, seq) | seq ∈ SEQ}.

Definition 3 (State and state space):5 During its execution, application P ’s

state changes from s0, which is P ’s initial state, to s′ after it handles a sequence of

user interaction events seq, where len(seq) ≥ 1. We represent the new state s′ as

〈s0, seq〉. Then we can define the state space explored for application P during its

execution t = exec(P, seq) as:

St = {〈s0, head(seq, k)〉 | 1 ≤ k ≤ len(seq)}.

As SEQ is unbounded, there exist an infinite number of different executions for

an application, that is, set T is also unbounded. Therefore, we have to restrict total

execution times and state space exploration in our diagnosis. We then define our

bounded state space exploration, in which we control the length of user interaction

event sequences.

Definition 4 (Bounded state space exploration): Given a bound value

b (≥ 1) on the length of user interaction event sequences, our diagnosis examines

the following executions for an Android application P :

Tb = {exec(P, seq) | seq ∈ SEQ & len(seq) ≤ b}.

For these executions, our diagnosis explores the following space of states:

Sb =
⋃
t∈Tb

St

After defining the bounded state space exploration concept, we proceed to in-

troduce our diagnosis approach. To effectively explore an Android application’s

5We discuss state changes at an event handling level as users have control on that. We do not
consider finer-grained state changes or state equivalence in our work.

28

S2

S0
MainActivity

Edit account

Exit app

AccountEditActivity

CancelSave

Username:
Password:

Button A

Button B

Button D
Button C

S1

S3 S4

S5 S6

S9 S10

S7 S8

S11 S12

Initial state
after starting app

The nodes represent different application states.
Edge labels represent button click events.

A

C

A

C D

B

B

D

A B

C D

Figure 3.5: Illustration of event sequence generation

state space, we need to generate event sequences of user interactions and schedule

corresponding event handlers. We address these two technical issues below.

Event sequence generation. Our runtime controller, as illustrated in Fig-

ure 3.4, simulates user interactions by generating corresponding event sequences.

Conceptually, the generation process contains two parts: static and dynamic. In

the static part, i.e., before executing an application, we first analyze the applica-

tion’s configuration files to learn the GUI layouts of its activity components (recall

that only activities have GUIs). Specifically, we map each GUI widget (e.g., a but-

ton) of an activity component to a set of possible user actions (e.g., button clicks).

This constructs a user event set for each activity. In the dynamic part, i.e., when ex-

ecuting an application, our runtime controller monitors the application’s execution

history and current state. When the application waits for user interactions (e.g.,

after an activity’s onResume() handler is called), our controller would generate re-

quired events and feed them to the foreground activity for handling. This is done in

an exhaustive way by enumerating all possible events associated with each activity

component. Our controller continues doing so until the length of a generated event

sequence reaches the required upper bound or the application exits. In this way, we

generate all possible event sequences bounded by a length limit b, and explore its

corresponding bounded state space Sb. For ease of understanding, we provide an

example to illustrate the event sequence generation process.

29

The example application in Figure 3.5 contains two activities: MainActivity

and AccountEditActivity. When this application starts, MainActivity would

appear first. Its users can click the “Edit account” button to edit their account

information in another AccountEditActivity’s window (MainActivity would then

be put to background). After editing, users can save the changes by clicking the

“Save” button or discard the changes by clicking the “Cancel” button. This also

brings users back to the previous MainActivity’s window (AccountEditActivity

would then be destroyed). To exit the application, the users can click the “Exit

app” button in the MainActivity’s window. For ease of presentation, suppose that:

(1) we consider only button click events (our tool implementation can handle other

types of events, e.g., filling textboxes and selecting from dropdown lists), (2) the

event sequence length bound is set to four, and (3) each generated event is correctly

handled (e.g., after clicking “Exit app”, the application indeed exits).

Based on these assumptions, we consider generating event sequences for this ex-

ample application. Our controller first constructs user event sets for the two activi-

ties. For instance, the user event set for MainActivity is {click “Edit account” but-

ton, click “Exit app” button}. At runtime, when MainActivity waits for user inter-

actions, our controller can enumerate and generate all events in MainActivity’s user

event set in turn. If it generates an “Edit account” button click event, AccountEdit-

Activity would come to foreground. When AccountEditActivity is ready for

user interactions, our controller similarly enumerates and generates all events in

AccountEditActivity’s user event set in turn. This event generation process con-

tinues until the length of a generated event sequence reaches four or the application

exits (e.g., when the “Exit app” button is clicked). The tree on the right of Figure 3.5

illustrates this event sequence generation process. The nodes on the tree represent

different application states and the labels on edges that connect the nodes repre-

sent button click events. Each path from the root node to a leaf node corresponds

to one user interaction event sequence. For example, the path with dashed edges

represents an event sequence of length three (the first application starting event

is not counted): starting the application, clicking “Edit account” button, clicking

30

“Cancel” button, and finally clicking “Exit app” button.6 Other sequences can be

explained similarly.

Event handler scheduling. With event sequences generated to represent user

interactions, we now consider how to schedule event handlers properly. As men-

tioned earlier, Android applications consist of a set of loosely-coupled event han-

dlers, among which no explicit control flow is specified. Existing analysis techniques

for Android applications commonly assume that developers should specify calling

relationships between these event handlers [84]. However, this is not practical. Real-

world Android applications typically contain hundreds of event handlers (e.g., the

application DroidAR used in our evaluation has 149 event handlers). Manually

specifying calling relationships between these event handlers is labor-intensive and

error-prone. Therefore, in this work we do not make such an assumption. Instead,

we propose to derive an application execution model (or AEM) from Android spec-

ifications, and leverage it to guide the runtime scheduling of event handlers. The

extracted AEM model plays the role of enforcing calling relationships between event

handlers. Specifically, the AEM model is a collection of temporal rules that are

prescribed by the Android framework and followed by all Android applications (i.e.,

such rules are application-generic). We define the model as follows:

AEM = {Ri | Ri is a temporal rule of form [ψ], [φ]⇒ λ}

In each rule Ri, symbols ψ and λ represent two temporal formulae expressed

in linear-time temporal logic. They make assertions about the past and future,

respectively. Symbol φ represents a propositional logic formula making assertions

about the present. Specifically, ψ describes what has happened in history during

an application execution, φ evaluates the current situation (e.g., what system or

user event is received), and λ claims what is expected. Therefore, the whole rule

expresses the meaning: If both ψ and φ hold, λ is expected.

6In our implementation, the “start application” and “exit application” events are by defaults
generated. That means each generated event sequence starts with the “start application” events
and ends with the “exit application” events. Besides, there is no standard way to exit an Android
application, our way is to destroy all active activity and service components.

31

Table 3.5: Example temporal rules in our AEM model

Rule 1: When should an activity’s lifecycle handler act.onStart() be called?
��� ���. 	
��
��
() , ¬ ���_������_����� ⟹ � ���. 	
�����()

Rule 2: When should GUI widget′s click event handler view.onClick() be called?
(¬���. 	
����
() ���. 	
!
��"
() ∧ (¬view. �
(
�)) view. �
(()*��

�)) ,

���+_�,��-_����� ⟹ �)*��

�. 	
�)*�.()

Rule 3: When should a dynamic message handler rcv.onReceive() be called?
¬rcv. �
�
(() �cv. �
(() , 1�2_����� ⟹ � �cv. 	
!
�
*3
()

Rule 4: When should a static message handler Receiver.onReceive() be called?
���
 , [1�2_�����] ⟹ � !
�
*3
�. 	
!
�
*3
()

We give some examples of temporal rules in Table 3.5. For the entire collec-

tion of 29 rules, readers may refer to our research paper [69].7 In these example

rules, propositional connectives like ∧, ⇒, and ¬ follow their traditional interpre-

tations, i.e., conjunction, implication, and negation. For temporal connectives, we

follow Etessami et al.’s notation [49], which is explained in the following. Unary

temporal connective X means “next”, and its past time analogue X−1 means “pre-

viously”. Binary temporal connective S means “since”. Specifically, a temporal

formula “F1 S F2” means that F2 held at some time in the past, and since then F1

always holds.

We give explanation for the rules in Table 3.5. The first rule states that an

activity’s onStart() handler is to be called after its onCreate() handler completes

as long as this activity is not forced to finish. The second rule states that a GUI

widget’s click event handler is to be called if: (1) the widget (e.g., a button) is

clicked, (2) its enclosing activity is at foreground (i.e., the activity’s onPause()

handler has not been called since the last call to its onResume() handler), and (3)

its click event listener is properly registered. The third rule disables the call to a

message event handler before its registration and after its unregistration. The last

7We do not claim the completeness of the AEM model. We will show in our later evaluation
that the current version of our AEM model already suffices for verifying many real-world Android
applications.

32

rule states that a static message event handler is to be called upon any broadcasted

message.

Our AEM model, i.e., the collection of 29 temporal rules, is converted to a de-

cision procedure which determines the event handlers to be called in the next step

according to an application’s execution history and its newly received events (events

are handled in turn). This event handler scheduling is always deterministic, except

when there are multiple receivers registered (either dynamically or statically) for

broadcast messages from the same source.8 If this is the case, the onReceive()

handlers of those registered receivers are to be called according to the receiver reg-

istration orders. By this means, we can exercise an Android application in JPF’s

Java virtual machine, and systematically explore its state space.

3.2.3 Detecting Missing Sensor or Wake Lock Deactivation

We next discuss how to detect energy problems when exploring an application’s state

space. As mentioned earlier, missing sensor or wake lock deactivation is one com-

mon cause of energy problems. This shares some similarity with traditional resource

leak problems, where a program fails to release its acquired system resources (e.g.,

memory blocks, file handles, etc.) [92]. Resource leak problems can cause system

performance degradation (e.g., slower response), and similarly missing deactivation

of sensors or wake locks can also waste valuable battery energy. Besides, according

to Android process management policy [1], sensors and wake locks are not automat-

ically deactivated even when the application components that activated them are

destroyed (e.g., onDestroy() handler is called). We will give an example and details

in Section 3.3.2. Based on the preceding state exploration efforts, we can now adapt

existing resource leak detection techniques [39, 94] to detect missing sensor or wake

lock deactivation bugs. In particular, our diagnosis monitors the execution of an

Android application and keeps checking the violation of the following two policies:

8Although we did not observe such cases in our experiments, registering multiple receivers for
broadcast messages from the same source is grammatically acceptable in Android applications.

33

• Sensor management policy: A sensor listener l, once registered, should be

unregistered eventually before the application component that registered l is

destroyed.

• Wake lock management policy: A wake lock wl, once acquired, should

be released eventually before the application component that acquired wl is

destroyed.

Note that such checking is feasible only after we have addressed the event se-

quence generation and event handler scheduling problems for Android applications.

3.2.4 Sensory Data Utilization Analysis

During an Android application’s execution, its collected sensory data are trans-

formed into different forms and consumed by different application components. We

need to track these data usages for energy efficiency analysis. We do it at the byte-

code instruction level by dynamic tainting. Our technique contains three phases:

(1) tainting each collected sensory datum with a unique mark; (2) propagating taint

marks as the application executes; (3) analyzing sensory data utilization at different

application states. We elaborate on the three phases in the following.

A. Preparing and tainting sensory data

In the first phase, we generate mock sensory data from an existing sensory data

pool, which is controlled with different precision levels. They are then fed to the

application under analysis after each event handler call. The object reference to

each sensory datum is initialized with a unique taint mark before the datum is fed

to the application. The taint mark will be propagated with the datum together for

later analysis.

B. Propagating taint marks

At runtime, an Android application’s collected sensory data are transformed into

different forms by assignment, arithmetic, relational, and logical operations. For

example, the Osmdroid application in Figure 3.3(b) has its loc object (Line 38)

34

transformed to another formattedLoc object (Line 39), which further affects the

intent object (Line 42). Later, by message communication, this intent object is

propagated to a broadcast receiver and converted back to the loc object (Line

9), which may or may not affect database content, depending on the variable

trackingModeOn’s value (Line 11). Such data flows need to be tracked to prop-

agate taint marks so as to identify which program data depend on the collected

sensory data. Based on this information, one is then able to analyze sensory data

utilization.

Our technique intercepts the execution of a subset of Java bytecode instructions

at runtime and propagates taint marks in JPF’s Java virtual machine according to

our tainting policy.9 A key advantage of such an instruction-level taint propagation

is that it does not require application-specific program instrumentation, which is

often time-consuming and error-prone. Table 3.6 gives our tainting policy, which

comprises 12 taint propagation rules. These rules handle taint propagations along

data dependencies. They are expressed in the following form:

T (A) = T (B) ∪ T (C)

This means that data B’s and C’s taint marks are merged to become data A’s

taint mark. Note that B and C can be optional. Each taint propagation rule

in Table 3.6 is designed for a set of bytecode instructions with similar semantics

(explained in the lower part of Table 3.6). For example, Rule 6 is for all binary

calculation bytecode instructions (totally 37 instructions) such as fadd and iand.

The instruction fadd adds two floating numbers popped from the operand stack

in the current method call’s frame, and pushes the addition result back into this

operand stack. Similarly, the instruction iand performs a bitwise “and” operation

on two integers popped from the operand stack in the current method call’s frame,

and pushes the operation result back into the stack. For all such binary calculation

bytecode instructions, our taint propagation works as follows (Rule 6): the result

9On real devices, an Android application runs in a register-based Dalvik virtual machine, while
JPF’s Java virtual machine is stack-based. This difference does not affect our analysis.

35

Table 3.6: Taint propagation policy

Index Instruction type #
insns Instruction semantics Taint propagation rule

1 Const C 15 stack[0] � C T(stack[0]) = Ø

2 Load index 25 stack[0] � localVarindex T(stack[0]) = T(localVarindex)

3 LoadArray arrayRef, index 8 stack[0] � arrayRef [index] T(stack[0]) = T(arrayRef) ⋃ T(arrayRef [index])

4 Store index 25 localVarindex � stack’[0] T(localVarindex) = T(stack’[0])

5 StoreArray arrayRef, index 8 arrayRef [index] � stack’[0] T(arrayRef [index]) = T(stack’[0])

6 Binary-op 37 stack[0] � stack’[1] ⊗ stack’[0] T(stack[0]) = T(stack’[0]) ⋃ T(stack’[1])

7 Unary-op 20 stack[0] � ⊖ stack’[0] T(stack[0]) = T(stack’[0])

8* GetField index 1 stack[0] � stack’[0].instanceField T(stack[0]) = T(stack’[0].instanceField) ⋃ T(stack’[0])

9 GetStatic index 1 stack[0] � ClassName.staticField T(stack[0]) = T(ClassName.staticField)

10 PutField index 1 stack’[1].instanceField � stack’[0] T(stack’[1].instanceField) = T(stack’[0])

11 PutStatic index 1 ClassName.staticField � stack’[0] T(ClassName.staticField) = T(stack’[0])

12* Return(non-void) 5 callerStack[0] � calleeStack’[0] T(callerStack[0]) = T(calleeStack’[0])

Index Detailed instruction semantics (The semantics of the instructions whose index are underlined serve as examples)

1 Push a constant value C onto the operand stack (stack[0] represents the value at the stack top after an operation).

2, 3 Load the value of the #index local variable onto the operand stack.

4, 5 Pop and store the value at stack top to the #index local variable (stack’[0] represents the value at the stack top before an
operation).

6, 7
Perform the binary operation ⊗ on the two values popped from the operand stack (i.e., stack’[0] and stack’[1]) and push the
result back onto the stack.

8, 9
Get a field value of an object on the heap and push the value onto the operand stack. The object reference is popped from the
stack (i.e., stack’[0]).The object field’s name and type can be found by referring to the #index slot of the constant pool.

10, 11
Pop and store the value at the stack top (i.e., stack’[0]) to an object field on the heap. The object reference is popped from the
stack (i.e., stack’[1]). The object field’s name and type can be found by referring to the #index slot of the constant pool.

12 Pop the value at the callee’s operand stack top (i.e., calleeStack’[0]), and push the value onto the caller’s operand stack.

36

public void onSensorChanged(SensorEvent event){

if(event.sensor.getType() == ACCELEROMETER){

boolean switchColor = isShuffled(event);

if(switchColor){

showMessage(“Device shuffled”);

if(getBackgroundColor() == RED){

setBackgroundColor(GREEN);

} else{

setBackgroundColor(RED);

}

}

}

}

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

public boolean isShuffled(SensorEvent event){

float[] values = event.values;

float x = values[0];

float y = values[1];

float z = values[2];

float g = SensorManager.GRAVITY_EARTH;

float accelerationSquareRoot

= (x * x + y * y + z * z) / (g * g);

updateAccTextView(accelerationSquareRoot);

if(accelerationSquareRoot >= 2){

return true;

}

return false;

}

20.

21.

22.

23.

24.

25.

26.

27

28.

29.

30.

31.

32.

33.

Figure 3.6: Example code to demonstrate taint propagation

(at the top of the operand stack after the calculation, represented by stack[0] in

Table 3.6) would be tainted with the same marks if any operand (at the top of

the operand stack before the calculation, represented by stack’[0] and stack’[1]

in Table 3.6) is tainted before calculation. Other taint propagation rules can be

explained similarly.10

We illustrate the taint propagation process by a concrete example. Figure 3.6

lists the code snippet from an application that uses accelerometer data to compute

and display a phone’s current acceleration status (Lines 21–28). The application also

monitors whether the phone is being shuffled (Line 3), and if yes, it would change its

background to a different color and notify its user (Lines 4–11). In this example, the

initial taint mark is associated with an object reference event. The event object

contains the sensory data from a smartphone’s accelerometer. By object field ac-

cess, the local array values of the isShuffled method get its assignment from the

event object (Line 21). Since values is data dependent on the tainted object event,

the taint mark is propagated to values according to Rule 8 (for handling object

field reading instructions) and Rule 5 (for handling array element writing instruc-

tions). Then, by array element readings and local variable assignments, this taint

10Notes for Table 3.6: For Rule 8, we followed TaintDroid’s choice to propagate object reference’s
taint to retrieved object field values to avoid undertainting in certain cases [48]. For example, we
only taint the reference of sensory data objects (instead of tainting all object fields since the object
can have complex structures) when taint propagation starts. Rule 8 can correctly help propagate
taint marks when the sensory data object fields are read (see Figure 3.6 for illustration). Rule
12 does not conflict with the rule for handling control dependencies (see the “propagation taint
marks” part in Section 3.2.4). They can be applied together.

37

mark is propagated to local variables x, y, and z (Lines 22–24) according to Rule

3 (for handling array element reading instructions) and Rule 4 (for handling local

variable assignment instructions). Next, a local variable accelerationSquareRoot

is calculated (Line 26–27). It is tainted according to Rule 6 (for handling binary

calculation instructions) and Rule 4 since it is data dependent on the tainted local

variables x, y, and z. Finally, method isShuffled’s return value is tainted accord-

ing to a special rule that handles control dependencies. The rule taints a method’s

return value if any of its arguments is tainted (to be further explained shortly).

Later this return value is further assigned to local variable switchColor in method

onSensorChanged (Line 3), and switchColor is also tainted with the same mark

(Rule 4). This completes the whole taint propagation process.

In our tainting process, we mainly consider data dependencies. Regarding control

dependencies, we adopt a strategy similar to those studied in related work [41, 90].

That is, we taint a method’s return value if any of its arguments is tainted (in-

cluding the method’s implicit “this” argument if applicable). This strategy/rule

is based on the assumption that a method’s output (i.e., return value) should de-

pend on its input in well-written programs. This is the only rule concerning control

dependencies in our taint propagation process. We do it this way because tracking

finer-grained control dependencies may incur significant performance overhead and

even imprecision to analysis results [48, 61]. Our taint propagation terminates when

the application under analysis finishes its handling of sensor event.11 This occurs in

two situations. If the sensor event handler (e.g., onSensorChanged() in our exam-

ple) does not start any worker thread to further handle the received sensor event,

the propagation stops at the exit of this handler. Otherwise, the propagation has

to continue until the sensor event handler returns and all worker threads terminate.

Our taint propagation can thus identify the program data that depend on collected

sensory data and trace their usages when an application executes. One thing that

deserves explanation is that there might be cases where an application starts worker

11One can also track the usage of sensory data until an application exits or new sensory data
arrive, but we did not observe any noticeable difference in our analysis results in experiments.

38

threads in a special way, e.g., these threads are delayed in their running, periodi-

cally started by a timer or kept long-running for handling sensor events. Although

we did not observe similar cases in our study, there is no restriction of using such

multi-threading features in Android applications. When such cases occur, our taint

propagation would theoretically have to continue until all worker threads end. How-

ever, in practice, this may compromise the tool’s usability since it can perform taint

propagation for very long time and fail to report analysis results in a timely fashion.

Therefore, for practicality, one may wish to set a timeout value for restricting such

long taint propagation. This is an implementation issue and we do not elaborate

further.

C. Analyzing sensory data utilization

With program data tainted with marks associated with sensory data, we can analyze

how sensory data are used in an Android application and whether the uses are

effective with respect to energy cost.

Consider an Android application’s execution ti, in which the application visits a

set of states Sti by handling received events (user events, system events,12 or sensory

events), and finally terminates with all its components destroyed. As mentioned ear-

lier, when we fix an upper bound b for the length of user interaction event sequences,

the space of explored states Sb for this application would be bounded (i.e., the to-

tal number of states in this space is finite). As such, we are able to analyze these

states to understand how sensory data are used, and compare their usages across

different states. For comparison purposes, we propose an analysis metric called Data

Utilization Coefficient (DUC for short). It is defined by Equation 3.1:

DUC(s, d) =
usage(s, d)

Maxs′∈Sb,d′∈D(usage(s′, d′))
(3.1)

12In GreenDroid, system events are generated by monitoring API invocations. For example,
a broadcast message event will be generated when GreenDroid observes the invocation of the
corresponding message broadcast API.

39

The utilization coefficient of sensory data d at state s is defined as the ratio

between d’s usage at state s and the maximal usage of any sensory data from our data

pool D at any state in Sb. A lower DUC value indicates a lower utilization of sensory

data. The usage of sensory data d at state s is further defined by Equation 3.2:

usage(s, d) =
∑

i∈API Call(s,d)

eTest(i, d, s)× noInst(i) (3.2)

In this equation, API Call(s, d) is the set of API call instructions executed since

sensory data d are fed to the application at state s and until the data handling is

finished. Function eTest(i, d, s) is an effectiveness test to see whether the following

two conditions both hold: (1) the API called by i uses program data dependent

on sensory data d, and (2) the API’s execution at state s produces perceptible

benefits to users. When both conditions hold, the effectiveness test function returns

1. Otherwise, it returns 0. Function noInst(i) returns the number of bytecode

instructions executed by this API call. The rationale behind our usage metric is

that it reflects how many times and to what extent sensory data are used by an

application at certain states to benefit its users. This metric is designed based on

our earlier study of 30 open-source Android applications that use sensors. These

applications have called various Android or third-party APIs (e.g., Google Maps

APIs) to use sensory data to support phone users with various functionalities.

Now we explain how the effectiveness test function eTest(i, d, s) is implemented.

For its first condition, we check whether the concerned API is called with arguments

(including its implicit “this” argument if applicable) having the same taint mark as

sensory data d. For its second condition, we take an outcome-based strategy. The

basic idea is that the API called by instruction i at state s passes the effectiveness

test if and only if its execution produces perceptible outcomes/benefits to users (e.g.,

updating visible GUIs or writing to file systems). Specifically, our current strategy

works as follows:

• If the API updates GUI elements, it passes the test as long as these GUI

elements are visible at application state s, and fails otherwise.

40

Table 3.7: GPS data utilization coefficients at three application states of
Osmdroid

Application
state

Method calls that consume
GPS data

GPS data
usage

GPS data utilization
coefficient

��, ��, ��
processLocation, putExtra, sendBroadcast*,
getExtra, updateMap*, persistToDatabase*

3n 3n / 3n = 1.00

��, [��, ��]
processLocation, putExtra, sendBroadcast*,
getExtra, updateMap†

n n / 3n = 0.33

��, [��, ��, ��]
processLocation, putExtra, sendBroadcast*,
getExtra, updateMap†, persistToDatabase*

2n 2n / 3n = 0.66

� ��: users start Osmdroid and the map activity launches; ��: users switch on the location tracking
mode; ��: users switch from map activity to another activity.

� Method calls that can pass the effectiveness test are marked with the symbol “*”; method calls
used to update invisible GUI elements are marked with the symbol “†”.

� Please note that only method calls marked with the symbol “*” use GPS data and produce
perceptible benefits to Osmdroid users.

• If the API: (1) stores any data to file systems, databases or network, (2)

updates a phone’s status (e.g., adjusting its screen brightness), or (3) passes

any message for inter- or intra-application communication (e.g., broadcasting

system-wide events), the API passes the test regardless of the application state.

Here, we conservatively assume that the stored data or passed messages will

eventually produce perceptible benefits to users.

• For all other cases, the API fails the test.

As such, our analysis can identify those application states where sensory data are

underutilized based on calculated sensory data usage and cross-state comparisons.

We give one example for illustration. Consider the three states in the Osmdroid

example in Figure 3.3(b). They are also listed in Table 3.7. Take the third state

〈s0, [e1, e2, e3]〉 for example. It means that: Osmdroid’s user starts the application

by launching MapActivity (e1), enables its location tracking functionality (e2), and

switches the application to another activity (e3). We analyze sensory data utilization

for these three states. For ease of presentation, we explain at a source code level

(actual analysis is conducted at a bytecode instruction level), and assume that: (1)

each method is a pre-defined API, and (2) there are n bytecode instructions executed

41

==
Sensory Data Underutilization

==
[Sensory data usage]: sendBroadcast, updateMap†

[Sensory data utilization coefficient:] 0.33
[Event handler calling trace]:
MapActivity.onCreate (Line 4), MapActivity.onStart, MapActivity.onResume,
GPSService.onCreate (Line 34), MapActivity.onPause, MapActivity.onStop,
gpsListener.onLocationChanged (Line 38), myReceiver.onReceive (Line 8)

Notes: (1) “†” highlights APIs that ineffectively utilize sensory data. (2) For
ease of understanding, we use class, variable and handler names to represent
event handlers, while in real reports the event handlers are represented using
object IDs and fully qualified Java method signatures. (3) Our tool will also
output source file names and source line numbers if they are available.

Figure 3.7: Example analysis report of GreenDroid

for each called API. Consider the second state, which is reached when the user

switches to another activity from MapActivity directly. For this state, the location

tracking functionality is not yet enabled. We observe that all external GPS data

and internal program data depending on these GPS data are processed and used

in turn by a set of APIs, namely, processLocation, putExtra, sendBroadcast,

getExtra and updateMap. According to our usage metric, only the sendBroadcast

API passes the effectiveness test. The other four APIs fail the test because none of

them can produce perceptible benefits to users (note that the map is still invisible

now). According to Equation 3.2, the GPS data usage at this state is n. We can

also calculate that GPS data would have a maximal usage of 3n at the first state,

where updateMap is used to render a visible map, sendBroadcast spreads the GPS

data to the entire system, and persistToDatabase method stores the GPS data to

database. Therefore, the GPS data utilization coefficient for the second state is 0.33

(= n / 3n). The coefficients for the other two states can be calculated similarly, as

shown in Table 3.7. These results suggest that GPS data are clearly underutilized

at the second state, as compared to the other two states.

Our GreenDroid implementation ranks sensory data utilization coefficients for

different application states such that energy problem reports can be prioritized and

developers can then focus on the most serious energy problems. These reports con-

tain two major pieces of information to ease energy problem diagnosis and fixing.

42

First, GreenDroid reports how sensory data are consumed by different APIs at differ-

ent application states, and highlights those APIs that ineffectively use sensory data.

Second, GreenDroid provides concrete event handler calling traces (corresponding

to user interaction event sequences). For ease of understanding, we give an example

report in Figure 3.7. It shows that GPS data are not well-utilized by Osmdroid at

the second application state described in Table 3.7. In this example, GreenDroid

reports that: (1) GPS data are used to render an invisible map (i.e., updateMap API

invocation), and (2) an event handler calling trace to reach the problematic appli-

cation state. Such reported information are actionable to developers. By examining

reported event handler calling traces, developers will be able to construct concrete

test cases (e.g., user interaction events) to reproduce the corresponding sensory data

underutilization scenario. For instance, the event handler calling trace in our exam-

ple report corresponds to the following two user interaction events: (1) launching

the MapActivity, and (2) switching away from MapActivty (see Section 2.1 for the

calling order of activity lifecycle event handlers). Besides, by examining reported

sensory data usages, especially ineffective data usages (e.g., updateMap in this ex-

ample), developers can understand why an application consumes more energy than

necessary. Such energy problem reports provide much richer information than pure

complaints that can be commonly found in smartphone application forums [82].

Developers can thus pinpoint those problematic application states where energy is

consumed unnecessarily due to ineffective use of sensory data. They can then take

various actions for problem fixing, e.g., tuning down sensing rates or temporally

disabling sensing as discussed in our earlier examples.

Finally, for detected missing sensor or wake lock deactivations, GreenDroid will

also report similar information for energy problem diagnosis. Specifically, it will

report: (1) those sensor listeners or wake locks that are forgotten to be properly

unregistered or released before an application exits, and (2) event handler calling

traces for reaching those problematic application states.

43

3.3 Experimental Evaluation

We implemented our energy diagnosis approach as a prototype tool named Green-

Droid [22] on top of JPF [93]. GreenDroid consists of 18,367 lines of Java code,

including 7,251 lines of code for energy diagnosis, and other 11,116 lines of code for

modeling Android APIs. We explain some details about GreenDroid’s implementa-

tion. First, modeling Android APIs is necessary for our diagnosis because Android

applications depend on a proprietary set of library classes that are not available out-

side real devices or emulators [73]. These library classes are mostly built on native

code. Due to JPF’s closed-world assumption [93], we have to model these library

classes and their exposed APIs. Ignoring this modeling requirement would result in

imprecision in the diagnosis results. For example, if GreenDroid does not properly

model the Activity class’s startActivity() API, it will not be able to analyze ac-

tivity switches, which are very common in Android applications. However, Android

exposes more than 8,000 public APIs to developers [50]. Fully modeling them is

extremely labor-intensive and almost impossible for individual researchers like us.

As such, in our current implementation, we took a pragmatic approach by manu-

ally modeling a subset of APIs that are commonly called in Android applications.

Modeling these APIs is already sufficient for carrying out our evaluation with real

application subjects. To be specific, we have carefully modeled 76 APIs using JPF’s

native peer and listener mechanisms [22, 64]. These APIs either frequently get in-

voked in our experimental application subjects or have to be modeled as otherwise

JPF will crash on their invocation (e.g., when they involve native calls). Modeling

these APIs took us nearly three months. For remaining APIs, we provided stubs

with simple logics. In these stubs, we basically ignored their corresponding APIs’

side effect if any, and made them return a value selected from a reasonably bounded

domain when necessary. Second, besides tracking standard JPF program state in-

formation (e.g., call stack of each thread, heap and scheduling information) [86],

GreenDroid also tracks the following four types of information for analysis: (1) a

stack of active activities, their lifecycle status, and visibility of their containing GUI

elements, (2) a list of running services and their lifecycle status, (3) a list of reg-

44

istered broadcast receivers, and (4) a list of registered sensor listeners and wake

locks. More tool implementation details can be found in our technical report [64]

and research paper [69].

In this section, we evaluate GreenDroid by controlled experiments and a case

study. We aim to answer the following five research questions:

• RQ4 (Effectiveness and efficiency): Can GreenDroid effectively diagnose

and detect energy problems in real-world Android applications? What is its

diagnosis overhead?

• RQ5 (Necessity and usefulness of AEM model): Can GreenDroid cor-

rectly schedule event handlers for Android applications with our AEM model?

Can GreenDroid still conduct an effective diagnosis if it randomly schedules

event handlers (i.e., with our AEM model disabled)?

• RQ6 (Impact of event sequence length limit): How does the length limit

of generated user interaction event sequences affect the thoroughness of our

energy diagnosis in terms of code coverage?

• RQ7 (Comparison with resource leak detection work): How is Green-

Droid compared with existing resource leak detection work in terms of finding

real missing sensor or wake lock deactivation problems?

• RQ8 (Energy saving): How much energy can be potentially saved if our

detected energy problems are fixed?

3.3.1 Experimental Setup

We selected 14 open-source Android applications as our experimental subjects. Ta-

ble 3.8 lists their basic information, which includes: (1) version number, (2) size of

the selected version, (3) repository from which source code was obtained, (4) ap-

plication category, and (5) number of downloads.13 The first 12 applications were

13The number of application downloads reported here may slightly differ from what was reported
in our empirical study due to the data update during the time gap between our empirical study
and experiments.

45

Table 3.8: Experimental subject information and detected energy bugs

Application
Name Version LOC Source code

availability Category Downloads Detected energy problem
(severity level)

DroidAR R-2041 18,106 Google Code Tools 5K ~ 10K Missing sensor deactivation
(Medium3)

Recycle
Locator R-68 3,241 Google Code Travel & Local 1K ~ 5K Missing sensor deactivation

(Medium)

Ushahidi R-9d0aa75 10,186 GitHub Communication 10K ~ 50K Missing sensor deactivation
(N/A)

AndTweet V-0.2.42 8,908 Google Code Social 10K ~ 50K Missing wake lock deactivation
(Medium)

Ebookdroid R-137 14,351 Google Code Productivity 1M ~ 5M Missing wake lock deactivation
(Medium)

BableSink R-12879a3 1,718 GitHub Library & Demo 1K ~ 5K Missing wake lock deactivation
(N/A)

CWAC-
Wakeful R-d984b89 896 GitHub Education 1K ~ 5K Missing wake lock deactivation

(N/A)

Sofia Public
Transport Nav.

R-114 1,443 Google Code Transportation 10K ~ 50K Sensory data underutilization
(Critical)

R-115 1,427 Google Code Transportation 10K ~ 50K Missing sensor deactivation
(Critical)

Osmdroid R-750 18,091 Google Code Travel & Local 10K ~ 50K Sensory data underutilization
(Medium)

Zmanim R-322 4,893 Google Code Books &
References 10K ~ 50K Sensory data underutilization

(Critical)

Geohash Droid V-0.8.1-pre2 6,682 Google Code Entertainment 10K ~ 50K Sensory data underutilization
(Medium)

My Tracks R-7749d47 16,560 Google Code Health & Fitness 5M ~ 10M Sensory data underutilization
(N/A)

Omnidroid R-863 12,427 Google Code Productivity 1K ~ 5K Sensory data underutilization
(Critical)

GPSLogger R-15 659 Google Code Travel & Local 1K ~ 5K Sensory data underutilization
(Medium)

1,2: Symbol “R” stands for “revision” and symbol “V” stands for “version”;
3: We obtained the problem severities from corresponding applications’ bug tracking systems. “N/A” means that
developers did not explicitly label problem severities.

46

confirmed to have energy problems of our two identified patterns (Section 3.3). We

use them to validate the effectiveness of our approach. We also selected two other

subjects (Omnidroid and GPSLogger) from the open-source applications collected

in our empirical study. Neither of these two applications have confirmed energy

problem reports. However, from their project websites and user reviews, we judged

that they heavily use GPS sensors in a very energy-consuming way and are suscep-

tible to energy inefficiency problems. Thus we also selected them for our study to

see whether our approach can identify energy optimization opportunities for them.

We observe from Table 3.8 that our selected applications have been popularly down-

loaded (over five million downloads in total), and covered a variety of application

categories (11 different categories). We obtained these applications’ source code

and compiled them on Android 2.3.3 for our experiments.14 We conducted our

experiments on a dual-core machine with Intel Core i5 CPU @2.60GHz and 8GB

RAM, running Windows 7 Professional SP1. In the following we elaborate on our

experiments with respect to the five research questions in turn.

3.3.2 Effectiveness and Efficiency of our Approach

To answer research question RQ4 about GreenDroid’s effectiveness and efficiency,

we ran GreenDroid to diagnose each application listed in Table 3.8 and recorded its

diagnosis overhead. In this set of experiments, we controlled GreenDroid to generate

sequences of at most six user interaction events for each application execution (not

including the first events for “launching entry activity” when our analysis starts

and the last events for ”finishing active activities and services” when our analysis

ends). This is for cost-effectiveness and it already enabled GreenDroid to explore

quite a large number of application states to expose energy problems as we will show

later. We examined top ranked diagnosis reports, especially those with highlighted

14At our study time, we chose Android 2.3.3 because it was one of the most widely adopted
Android platforms and is compatible with most applications on the market. Our approach is
general and not restrictive to specific platform versions though.

47

ineffective API calls, to see whether they can locate real energy problems in these

applications.

We observed that GreenDroid successfully located 15 real energy problems in

these applications, as listed in Table 3.8. Four of them are caused by missing sensor

deactivation, four by missing wake lock deactivation, and the remaining seven by

sensory data underutilization. The first 13 energy problems listed in Table 3.8 have

been confirmed by developers prior to our experiments. In addition, GreenDroid

successfully found two potential energy problems in Omnidroid and GPSLogger.

These two problems were previously unknown. We submitted our bug reports to

corresponding developers, and they were both confirmed. GPSLogger developers

even invited us to join their team to help improve GPSLogger’s energy efficiency.

Besides, as shown in Table 3.8, the severity levels of our detected 15 problems range

from “medium” to “critical”. This indicates that such problems can cause serious

energy waste. Indeed, we found many negative comments complaining about battery

drain issues from the bug tracking systems and Google Play store user review pages

of the concerned applications (e.g., Geohash Droid, AndTweet and Zmanim). We

discuss some of these energy problems in detail below.

A. Missing Sensor or Wake Lock Deactivation

Android API documentation recommends developers to unregister sensor listeners

and release wake locks when they are no longer needed [1]. However, we found that

missing sensor or wake lock deactivation is common in Android applications. Green-

Droid detected eight applications suffering such energy problems from our 14 sub-

jects. These problems happened because developers either forgot to unregister sensor

listeners or release wake locks, or performed these operations incorrectly. For exam-

ple, the code snippets in Figure 3.8 demonstrate how Ushahidi developers wrongly

unregistered a GPS listener. We observe in the buggy version that, developers reg-

istered a GPS listener gpsListener in the onCreate() handler of the CheckInMap

activity (Lines 3–6), and then tried to unregister the listener in the onDestroy()

handler of CheckInMap (Lines 10–11). However, instead of passing previously reg-

istered gpsListener to the sensor listener unregistration API removeUpdate(),

48

/**buggy version of the CheckInMap class**/

1. public class CheckinMap extends MapActivity {

2. public void onCreate(){

3. MyGPSListener gpsListener = new MyGPSListener();

4. LocationManager lm = getSystemService(LOCATION_SERVICE);

5. //GPS listener registration

6. lm.requestLocationUpdates(GPS, 0, 0, gpsListener);

7. }

8. public void onDestroy() {

9. //unregister GPS listener

10. getSystemService(LOCATION_SERVICE)

11. .removeUpdates(new MyGPSListener());

12. }

13. //location listener class

14. public class MyGPSListener implements LocationListener {

15. public void onLocationChanged(Location loc) {

16. //utilize location data

17. }

18. }

19. }

/**correct version of the CheckInMap class**/

20. public class CheckinMap extends MapActivity {

21. private MyGPSListener gpsListener;

22. private LocationManager lm;

22. public void onCreate(){

23. gpsListener = new MyGPSListener();

24. lm = getSystemService(LOCATION_SERVICE);

25. //GPS listener registration

26. lm.requestLocationUpdates(GPS, 0, 0, gpsListener);

27. }

28. public void onDestroy() {

29. //unregister GPS listener

30. lm.removeUpdates(gpsListener);

31. }

32. }

Figure 3.8: The energy bug in Ushahidi application

49

developers wrongly created a new GPS listener instance and passed its reference to

removeUpdate(). The consequence is that the previously registered sensor listener

gpsListener was not properly unregistered.

For performance considerations, the Android OS keeps an application process

alive as long as possible, until the system runs low on resources (e.g., memory).

According to this policy, even a dummy process that hosts no application component

is not guaranteed to be terminated in a timely fashion [1]. Therefore, in the buggy

version, the gpsListener instance would remain in memory for a long time even

if the activity it belongs to has been destroyed. The activity instance could also

remain in memory after its onDestroy() handler is called. As a result, valuable

battery energy can be wasted by unnecessary GPS sensing. Ushahidi’s developers

later realized this problem from bug reports and fixed it. Figure 3.8 also gives the

correct version for comparison.

B. Sensory data underutilization

GreenDroid also detected seven applications suffering from sensory data underuti-

lization problems out of our 14 subjects. Among these detected problems, three

(Table 3.8) are critical ones that can cause massive energy waste. We discuss these

seven problems in detail below.

Osmdroid. Osmdroid is a navigation application similar to Google Maps. After

diagnosis, GreenDroid reported that Osmdroid’s location data utilization coefficient

is no more than 0.2239 for 30.51% explored states, but close to 1 for other states,

as shown in Figure 3.9(a).15 This strongly suggests that Osmdroid poorly utilizes

location data at certain states. We examined the reports generated by GreenDroid

and quickly found that if users switch from MapActivity to other activities without

15Notes of the Figure 3.9: (1) In the figures, the location utilization coefficient is accurate to
four decimal places. (2) Two states with indistinguishable utilization coefficients (i.e., cannot be
distinguished by four decimal places) are shown in the same bar. (3) Utilization coefficients with
very few occurrences (i.e., less than 5) are not shown in the figures for ease of presentation, so
the percentages in each figure may not add up to 100%. (4) The total number of states for each
application does not equal the number of explored states reported later because the location sensing
is not enabled in some explored states.

50

(a) Osmdroid (R-750) Analysis Result

Location Data Utilization Coefficient (DUC)

0.0556 0.2239 0.8507 1.0000

 0

1
0

,0
0

0
2

0
,0

0
0

3
0

,0
0

0

N
u

m
b

er
 o

f
A

p
p

.
S

ta
te

s

2,652

(5.54%)

11,948

(24.97%)
7,982

(16.68%)

25,273

(52.81%)
DUC

0 1...

(b) Osmdroid (R-751) Analysis Result

Location Data Utilization Coefficient (DUC)

0.5223 0.6119 0.8507 1.0000

 0

1
0

,0
0

0
2

0
,0

0
0

3
0

,0
0

0

N
u

m
b

er
 o

f
A

p
p

.
S

ta
te

s

9,760

(21.62%)

2,143

(4.75%)

7,971

(17.66%)

25,268

(55.97%)
DUC

0 1...

(c) Zmanim (R-322) Analysis Result

Location Data Utilization Coefficient (DUC)

0.0863 0.1474 0.3616 0.4502 0.8478 0.9412 1.0000

0

2
,0

0
0

4
,0

0
0

6
,0

0
0

8
,0

0
0

N
u

m
b

er
 o

f
A

p
p

.
S

ta
te

s

1,627

(6.97%) 853

(3.65%)

3,507

(15.03%) 2,699

(11.56%)

622

(2.67%)

6,848

(29.34%)

7,114

(30.48%)

DUC
0 1...

(d) Zmanim (R-323) Analysis Result

Location Data Utilization Coefficient (DUC)

0.7663 0.7694 0.8478 0.9412 1.0000

0

2
,0

0
0

4
,0

0
0

6
,0

0
0

8
,0

0
0

N
u

m
b

er
 o

f
A

p
p

.
S

ta
te

s

1,363

(7.32%)

2,287

(12.28%)
647

(3.47%)

6,980

(37.49%)

7,309

(39.26%)

DUC
0 1...

(e) Omnidroid (R-863) Analysis Result

Location Data Utilization Coefficient (DUC)

0.0904 0.2072 0.4054 0.6036 0.8018 1.0000

0

1
,5

0
0

3
,0

0
0

4
,5

0
0

N
u

m
b

er
 o

f
A

p
p

.
S

ta
te

s

2,951

(18.20%)
2,399

(14.80%)

2,789

(17.21%)

2,658

(16.39%)
2,770

(17.09%)
2,638

(16.27%)

DUC
0 1...

(f) GPSLogger (R-15) Analysis Result

Location Data Utilization Coefficient (DUC)

0.0000 0.1333 0.8000 0.9333 1.0000

0

1
,5

0
0

3
,0

0
0

4
,5

0
0

N
u

m
b

er
 o

f
A

p
p

.
S

ta
te

s 4,224

(42.80%)

2,856

(28.94%)

562

(5.69%)

1,313

(13.30%) 915

(9.27%)

DUC
0 1...

Figure 3.9: Sensory data utilization analysis results (part 1)

51

(g) My Tracks (R-7749d47) Analysis Result

Location Data Utilization Coefficient (DUC)

0.0000 0.5219 0.5859 0.6662 0.6885 0.7747 0.9086 0.9673 1.0000

0

2
,0

0
0

4
,0

0
0

N
u

m
b

er
 o

f
A

p
p

.
S

ta
te

s

3,348

(15.07%)
2,672

(12.03%)
1,757

(7.91%) 1,491

(6.71%)

1,604

(7.22%)

2,094

(9.43%)

3,276

(14.75%)

2,288

(10.30%)

3,683

(16.58%)

DUC
0 1...

(h) My Tracks (R-f07a22b) Analysis Result

Location Data Utilization Coefficient (DUC)

0.6173 0.6526 0.7700 0.7995 0.8204 0.8971 1.0000

0

2
,0

0
0

4
,0

0
0

6
,0

0
0

N
u

m
b

er
 o

f
A

p
p

.
S

ta
te

s

4,788

(20.36%)

2,914

(12.39%)

3,406

(14.48%)

3,517

(14.96%)

1,473

(6.26%)

4,650

(19.78%)

2,766

(11.76%)

DUC

0 1...

(i) Geohash Droid (V-0.8.1-pre2) Analysis Result

Location Data Utilization Coefficient (DUC)

0.1122 0.4673 0.8318 0.9065 1.0000

 0

2
0

,0
0

0
4

0
,0

0
0

N
u

m
b

er
 o

f
A

p
p

.
S

ta
te

s

2,375

(3.65%)

15,696

(24.15%)

29,718

(45.72%)

16,301

(25.08%)

912

(1.40%)

DUC
0 1...

(j) Geohash Droid (R-80e5441d3e) Analysis Result

Location Data Utilization Coefficient (DUC)

0.5172 0.7586 0.9310 1.0000

 0

2
0

,0
0

0
4

0
,0

0
0

N
u

m
b

er
 o

f
A

p
p

.
S

ta
te

s

3,403

(5.72%)

38,130

(64.05%)

8,374

(14.07%)

9,625

(16.17%)

DUC
0 1...

(k) Sofia Public Transport Nav. (R-114) Analysis Result

Location Data Utilization Coefficient (DUC)

0.1839 0.2759 0.4138 0.5747 0.7011 0.8621 0.9540 1.0000

0

2
,0

0
0

4
,0

0
0

6
,0

0
0

N
u

m
b

er
 o

f
A

p
p

.
S

ta
te

s

3,859

(24.81%)

4,635

(29.81%)

3,509

(22.57%)

1,994

(12.82%)

336

(2.16%)

341

(2.19%)
106

(0.68%)

651

(4.19%)

DUC
0 1...

(l) Sofia Public Transport Nav. (R-156) Analysis Result

Location Data Utilization Coefficient (DUC)

0.6104 0.7532 0.8312 0.9221 0.9481 0.9740 1.0000

0

2
,0

0
0

4
,0

0
0

6
,0

0
0

N
u

m
b

er
 o

f
A

p
p

.
S

ta
te

s

191

(1.43%)

315

(2.36%)

5,970

(44.76%)

2,133

(15.99%)

3,475

(26.05%)

961

(7.21%) 249

(1.87%)

DUC
0 1...

Figure 3.9: Sensory data utilization analysis results (part 2)

52

enabling location tracking, location data would be used to render an invisible map

(recall that GreenDroid can highlight ineffective API calls). This greatly wastes

valuable battery energy as reported by users [28] (issue 53). To fix this problem, de-

velopers later disabled GPS sensing if users leave MapActivity without the location

tracking functionality enabled. Figure 3.9(b) gives the new version’s location data

utilization analysis result. We can observe that location data are now much better

utilized with a utilization coefficient above 0.5223.

Zmanim. Zmanim is a location-aware application for reminding Jewish people

about prayer time during the day (i.e., zmanim). The application generates zmanim

according to users’ locations and corresponding time zones. Interestingly, developers

already realized that location sensing could be energy-consuming, and they made the

application stop location sensing once its required locations are obtained. However,

as Figure 3.9(c) shows, GreenDroid still reported that for 37.37% explored states,

Zmanim’s location data utilization coefficient is no more than 0.4502, but close to

1 for other states. This energy problem is similar to what we found in Osmdroid.

If users switch from the location sensing activity to other activities before the re-

quired locations are successfully obtained, battery energy would keep being wasted

to update invisible GUI elements. In scenarios where GPS signals are rather weak,

users frequently complained that Zmanim caused huge battery drain [37]. We give

an example of such complaints below. Similar to Osmdroid, Zmanim developers

also later disabled location sensing in such problematic cases, and we give the new

version’s location data utilization analysis result in Figure 3.9(d) for comparison

(much improved utilization).

Zmanim Issue 56: “I should see GPS icon only until a location is ob-

tained. After that, GPS should be turned off. However, even if turning

off GPS once a fix is obtained, this issue remains as a bug, since a user

could hit home button before the fix is obtained, therefore leaving GPS

on. These bugs quickly kill my battery.”

Omnidroid. Omnidroid helps automate system functionalities based on user

contexts. For example, Omnidroid can help users automatically send a reply mes-

53

sage such as “busy in a meeting” when they receive a phone call during an important

meeting. When Omnidroid runs, it maintains a background service to periodically

check location updates. If any location update satisfies a pre-specified condition,

its corresponding action would be executed as a response. Our diagnosis results in

Figure 3.9(e) show that 18.2% explored states have a location data utilization coeffi-

cient of no more than 0.0904. We found that at these states, users have not specified

any condition or chosen any action. In other words, location data are collected for

no use except being stored to a database for logging purposes (this explains why the

location data utilization coefficient is not 0). Then why does this background service

keep collecting location data? It could cause huge energy waste. We reported this

problem (previously unknown) to Omnidroid developers, and suggested enabling lo-

cation sensing only when there are conditions/rules concerning user locations. We

then received a prompt confirmation and developers marked our reported problem

as “critical” [27]:

Omnidroid Issue 179: “Completely true, and your suggestion is a great

idea and you’re correct Omnidroid does suck up way more energy than

necessary as a result. I’d be happy to accept a patch in this regard.”

GPSLogger. GPSLogger collects users’ GPS coordinates to help them tag

photos or visualize their traces. Figure 3.9(f) presents our diagnosis results for its

GPS data utilization. We found that for 42.80% explored states, GPS data have

not even been utilized. The utilization coefficient is 0. For the next 28.94% states,

the coefficient is also low at 0.1333, while for other states, it is close to 1. We

examined the diagnosis reports and found another new energy problem that has not

yet been reported. Similar to Omnidroid, GPSLogger also maintains a background

service to collect GPS data. It continually evaluates whether collected GPS data

satisfy certain precision requirements. If yes, the data are processed and stored to

a database, and GPSLogger would then update its GUI to notify users. Otherwise,

the data are discarded. However, when GPS signals are weak, GPS sensors may

keep collecting noisy data. These data mostly do not satisfy precision requirements

and are actually discarded. This produces no benefits to users, and explains why

54

GPS data have a very low utilization coefficient at some states. This problem can be

common when users enter an area where the GPS reception is bad. We submitted a

bug report [21] (issue 7) to suggest temporarily slowing down or disabling location

sensing when the application continuously finds its collected GPS data of low quality.

Our bug report was confirmed by GPSLogger developers. They also invited us to

help improve GPSLogger’s energy efficiency [21]. We will further discuss our patch

later in Section 3.3.6.

My Tracks. My Tracks collects GPS data for recording users’ path, speed,

distance and elevation while they do outdoor exercises (e.g., running, cycling). We

diagnosed the GPS data utilization of My Tracks using GreenDroid. Our tool re-

ported that My Tracks does not utilize GPS data for 15.07% explored states, as

shown in Figure 3.9(g). In other words, the battery energy spent on GPS sensing at

these application states is completely wasted. We checked GreenDroid’s diagnosis

reports and the source code of the application and confirmed the problem. Similar

to GPSLogger, at these problematic states, My Tracks simply discards any collected

GPS data. The energy waste occurred due to a mistake in the application’s im-

plementation. My Tracks uses a long running background service to handle GPS

updates. The service registers a location listener right upon its launching and will

not unregister this listener until it is destroyed. However, the location listening is in

fact only necessary after users start the recording and before they stop the record-

ing. Then in those application states when there is no recording initiated by users

but the service is actively running, the obtained location data will not be processed

and stored (discarded instead), leading to energy waste. Developers later realized

this problem and fixed it eventually by registering location listener after users start

recording, and unregistering the listener after the recording is stopped [25] (revision

f07a22b). For comparison, we further analyzed the GPS location utilization of the

application after developers fixed the problem. As Figure 3.9(h) shows, there are no

application states where GPS data are not utilized in the fixed version.

Geohash Droid. Geohash Droid is an entertainment application for adventure

enthusiasts. It randomly picks up a location for adventure, and navigates its users

to that location using GPS data. We diagnosed Geohash Droid and found that its

55

utilization coefficient is no more than 0.4673 for 27.80% explored states, as shown in

Figure 3.9(i). We studied the diagnosis reports and found that at these states, GPS

data were used only to show the users’ current locations in an icon on the phone’s

notification bar (a phone’s notification bar is a GUI element container that is outside

an application’s normal GUI and is always visible when the phone’s screen is on).

However, in other states, GPS data were also used to update the navigation map as

well as computing detailed travel information (e.g., distance to destination). This

comparison shows that GPS data were not well utilized in those 27.80% explored

states, and this could cause energy waste. After realizing this, Geohash Droid’s

developers made a patch to slow down the application’s GPS sensing rate to every

30 seconds to save energy when GPS data are only used for updating the notifica-

tion bar [16] (issue 24). Figure 3.2 shows their comment after patching, and both

their own testing and user feedbacks confirmed that there is indeed a significant

improvement in Geohash Droid’s energy efficiency [16]. Besides, in later revisions

to Geohash Droid, developers redesigned the application by completely removing

this notification icon. They chose to automatically switch off GPS updates when

the navigation map and detailed information screen become invisible (see revision

80e5441d3e for details). We analyzed this new version and present the result in

Figure 3.9(j) for comparison. The result shows that in 94.29% explored states, the

GPS data are now effectively utilized.

Sofia Public Transport Nav. Sofia Public Transport Nav. uses its collected

GPS data to locate the nearest bus stops for its users, and provides arrival time

estimation for concerned buses by querying a remote server. GreenDroid diagnosed

its GPS data utilization, and reported that GPS data were poorly utilized for 24.81%

explored states, and for the next 52.38% states, the utilization coefficient was also

below 0.4138, as shown in Figure 3.9(k). We examined the diagnosis reports and

confirmed this energy problem. In Sofia Public Transport Nav., GPS data are mainly

used to update a map that shows nearby bus stops. However, for many states, the

56

dialog box showing bus arrival time is at foreground,16 hiding the map that shows

nearby bus stops. Then because users may keep refreshing the dialog box to check

bus arrival time, GPS data during this period will be used mainly to update the

map hidden by the dialog. This is a waste of energy. The application developers

later found this problem, and disabled its GPS update for states where the bus

arrival time estimation dialog is at foreground. Interestingly, although developers

closed the corresponding bug report [32] (issue 38) soon after creating this patch,

they mistakenly introduced another missing sensor deactivation problem. In later

development and communications with users, they realized this new problem and

eventually fixed it [32] (issue 76). This story suggests that: (1) developers lack

easy-to-use and effective tools to help detect energy problems in their applications,

and (2) fixing sensory data underutilization problems is non-trivial and may instead

introduce new energy problems. For comparison, we also analyzed the application

after developers eventually fixed all energy problems including this new one. As the

result in Figure 3.9(l) shows, there are now no application states whose GPS data

utilization coefficient is significantly lower than others.

From the above discussions, we can see how automated sensory data utilization

analysis can help diagnose energy problems for Android applications. When devel-

opers find that sensory data are clearly underutilized at certain states of their ap-

plications, they can consider whether their applications can reach these problematic

states frequently and stay there for long time (e.g., an activity can be left to back-

ground until users explicitly switch back to it). If yes, developers may have to tune

down the concerned sensors’ sensing rates or even disable them, as otherwise energy

cost can be very high, but produced benefits can be marginal instead. Besides, we

also find that in large-scale application subjects like Omnidroid and Zmanim, their

sensory data usage is very complex, involving hundreds of method/API calls. In

such subjects, manually examining how sensory data are utilized can be extremely

labor-intensive and error-prone. This justifies the great need for an automated di-

16GreenDroid models pop-up windows like dialog boxes by this strategy: (1) If a pop-up window
is being displayed, GreenDroid considers all GUI elements underneath invisible; (2) If a pop-up
window is dismissed, GreenDroid considers the GUI elements underneath visible again.

57

Table 3.9: GreenDroid diagnosis overhead and random execution result

Application
name

Diagnosis information and overhead
Random event handler

scheduling results
(runtime exceptions)Explored

states

Avg. number of handlers
executed during each
application execution

Diagnosis
time

(seconds)

Memory
consumption

(MB)

DroidAR 91,170 60 284 233 67/100

Recycle Locator 114,709 44 46 162 4/100

Ushahidi 55,269 75 32 175 58/100

AndTweet 98,410 33 47 192 82/100

Ebookdroid 57,330 42 22 149 86/100

BableSink 42,987 63 15 154 17/100

CWAC-Wakeful 30,705 46 11 118 11/100

Sofia Public
Transport Nav. 57,316 50 17 204 62/100

Osmdroid 120,189 43 159 575 79/100

Zmanim 54,270 34 114 237 31/100

Geohash Droid 144,710 60 185 229 71/100

My Tracks 82,137 45 207 341 74/100

Omnidroid 52,805 78 242 396 22/100

GPSLogger 58,824 28 41 153 9/100

agnosis tool like our GreenDroid to help locate potential energy problems caused

by sensory data underutilization. To reduce developers’ efforts in reading diagnosis

reports, GreenDroid prioritizes these reports according to their sensory data uti-

lization coefficients, and highlights ineffective API calls (e.g., those for updating

invisible GUIs). This can help developers quickly figure out the causes of some

subtle energy wastes.

C. Analysis overhead

Table 3.9 presents GreenDroid’s diagnosis overhead. For each of our 14 subjects, it

reports: (1) the number of application states GreenDroid explored, (2) the average

number of event handlers GreenDroid executed during each application execution,

58

including those handlers for system events,17 (3) diagnosis time, and (4) the amount

of memory GreenDroid consumed. For each subject, we conducted experiments

three times to obtain these results. The number of application states explored and

event handlers executed in different runs remained the same. The diagnosis time

and memory consumption slightly varied in different runs and Table 3.9 reports the

averaged results.

We observe that GreenDroid could quickly explore thousands of application

states and perform energy inefficiency diagnosis. For example, for the two largest

subjects My Tracks (over 16K LOC) and DroidAR (over 18K LOC), GreenDroid

explored over 80K states during its diagnosis and executed over 40 event handlers

in each application execution (recall that GreenDroid executes each subject many

times). It finished diagnosis within five minutes. The memory cost was less than 350

MB. Such overhead can be well supported by modern PCs, and compares favorably

with state-of-the-art testing or debugging techniques, which typically take hours to

explore up to 100K states [30]. This suggests that GreenDroid is a practical tool for

diagnosing energy problems in real-world Android applications.

3.3.3 Necessity and Usefulness of AEM Model

To answer research question RQ5 about the usefulness of our proposed AEM model,

we conducted two comparison experiments. First, we ran GreenDroid to diagnose

our experimental subjects with the AEM model disabled, assuming that event han-

dlers can be randomly scheduled. We examined whether GreenDroid could still

locate energy problems in such a setting. Second, to study whether the executions

of our experimental subjects in GreenDroid (with AEM model enabled) resemble

real executions, we instrumented all 149 event handlers defined in our largest sub-

ject DroidAR, and conducted the following experiment. We randomly selected 50

execution traces of DroidAR generated by GreenDroid. These executions on av-

17System events could result in several consecutive handler calls. For example, an activity-
destroying event may trigger the concerned activity’s onPause(), onStop(), and onDestroy()

handlers in turn.

59

erage involve 54 event handler calls (not necessarily distinct). We extracted from

them corresponding user interaction event sequences. We then ran DroidAR in the

Android emulator [1], which is included in the Android Software Development Kit,

and manually provided the same user interactions (i.e., the same event sequences).

We logged real event handler calling traces, and compared them with those from

GreenDroid. We discuss the results of these experiments below.

First experiment. We observe that without AEM model (i.e., scheduling event

handlers randomly), GreenDroid (actually JPF) already encountered great chal-

lenges in executing Android applications, not to mention diagnosing any of their

energy problems. The last column of Table 3.9 lists these execution results. Among

100 application executions, we observed many runtime exceptions. For example, 79

out of 100 executions of Osmdroid failed because of runtime exceptions, and these

exceptions also crashed JPF. We manually studied these exceptions, and found that

most of them arose from ignoring data flow dependencies between event handlers.

For instance, it is quite often that developers initialize a GUI widget instance in an

activity’s onCreate() handler, and later use this instance in other handlers. In ran-

dom handler scheduling, if other handlers are wrongly scheduled before onCreate(),

a null pointer exception may be thrown. Such exceptions cannot be easily addressed,

and can cause termination of our energy diagnosis. For two small-sized subjects

Recycle-locator and GPSLogger, fewer exceptions (4 and 9) were observed since

their data flow dependencies between event handlers are relatively simple. Still,

these exceptions seriously prevented GreenDroid from diagnosing our experimental

subjects. Besides, even for cases where no exceptions occurred, we found that the

diagnosis reports contain many meaningless handler calling traces that offer little

information to help developers pinpoint energy problems. This suggests that our

AEM model is indeed necessary for an effective diagnosis of energy problems in An-

droid applications. In addition, since our AEM model is essentially an abstraction of

event handler scheduling policies for the Android platform, it can easily be adapted

and used in other analysis techniques for Android applications.

Second experiment. We observe that in 39 out of 50 executions, GreenDroid

generated exactly the same handler calling traces as real executions. In the re-

60

maining 11 cases, GreenDroid failed to schedule event handlers in the same way

as real executions did due to two major reasons. First, we did not consider dy-

namic GUI updates when implementing GreenDroid. This could make GreenDroid

generate some user interaction events that are impossible in an Android emulator

(and also in real devices), because they are invalid due to runtime GUI updates (4

cases). Second, GreenDroid did not model concurrency adequately in its current

implementation because JPF did not fully model Java concurrency programming

constructs (e.g., java.util.concurrent.Executor was not modeled). This caused

GreenDroid to fail to handle some system events (e.g., broadcast events) that were

triggered in some worker threads (7 cases). Although these two problems did not

cause noticeable consequences on the effectiveness of our diagnosis, we will still con-

sider addressing them in future releases of our GreenDroid. This requires non-trivial

engineering effort.

3.3.4 Impact of Event Sequence Length Limit

Our research question RQ6 studies how the thoroughness of our energy diagnosis

can be affected by the length limits on generated user interaction event sequences.

To answer this question, we applied GreenDroid to analyze each of our application

subjects multiple times and studied how the code coverage would change accord-

ingly. Specifically, GreenDroid analyzed each application nine times. For these nine

runs, we gradually increased the length limit from zero to eight and measured the

percentage of source code lines that were executed (i.e., statement coverage). We

chose statement coverage as the metric for measuring the thoroughness of our diag-

nosis for two reasons. First, to the best of our knowledge, we are not aware of any

existing metrics that are designed for assessing the thoroughness of energy diagno-

sis. Second, statement coverage has been widely used for measuring code coverage

for general purposes because it strikes a good balance between utility and collection

overheads [40, 81]. Table 3.10 reports our study results and from them we obtain

two major findings as discussed in the following.

Coverage saturation. We observe that for all application subjects, the state-

ment coverage increases quickly at the beginning with the growth in the length of

61

Table 3.10: Statement coverage with respect to different event sequence
length limits

Application
name

activities

Statement coverage (%) w.r.t different event sequence length limits (0 to 8)

0 1 2 3 4 5 6 7 8

DroidAR 6 0.541 2.28 11.99 11.99 12.54 12.54 12.54 12.542 12.54

Recycle Locator 3 1.23 16.11 23.76 28.17 32.18 36.96 36.96 36.96 36.96

Ushahidi 17 1.47 4.06 10.97 15.17 19.87 25.35 25.39 25.39 25.39

AndTweet 6 1.74 10.25 12.07 15.94 15.94 15.94 15.94 15.94 15.94

Ebookdroid 8 0.20 2.02 2.79 12.72 25.81 25.81 25.81 25.81 25.81

BableSink 1 2.68 24.39 30.33 30.38 30.38 30.38 30.38 30.38 30.38

CWAC-Wakeful 1 1.12 10.27 32.37 42.30 42.30 42.30 42.30 42.30 42.30

Sofia Public
Transport Nav. 3 3.47 9.70 24.67 37.91 38.12 38.12 38.12 38.12 38.12

Osmdroid 8 1.01 11.36 18.09 18.93 24.68 30.15 30.15 30.15 30.15

Zmanim 3 1.72 11.81 27.71 27.96 28.04 28.08 28.08 28.08 28.08

Geohash Droid 9 2.96 10.31 19.87 22.94 25.58 25.62 25.62 25.62 25.62

My Tracks 12 1.06 5.30 12.72 20.17 23.56 23.56 23.56 23.56 23.56

Omnidroid 16 0.45 8.64 17.91 18.25 20.88 20.88 20.88 20.88 20.88

GPSLogger 1 4.86 14.11 44.31 46.13 46.13 46.13 46.13 46.13 46.13

1: Statement coverage is not 0 because in our implementation we do not count “launch the entry activity (when analysis
starts)” and “finish all active activities and services (when analysis ends)” when generating user interaction event sequences.
2: Underlined runs took more than one hour to finish. Memory consumption (maximum heap size set to 4GB) did not
increase much when we relaxed the length limits.

62

generated event sequences. The coverage gradually saturates at certain points and

stops increasing when the length limit further grows. Take Osmdroid as an example.

Its statement coverage increases from 1.01% to 24.68% when the length limit grows

from zero to four. When the length limit reaches five, the statement coverage satu-

rates at 30.15%, with no further increase even if the length limit grows to a larger

value. Other applications are similar. To understand why, we inspected all these

applications. We found that many of these applications contain only a small number

of activity components (with GUI). As listed in the second column of Table 3.10,

8 of our 14 applications contain no more than six activity components. Although

the applications Ushahidi and Omnidroid contain relatively larger number of ac-

tivity components, we found that many of these activity components are actually

designed only for displaying information. Besides, for user friendliness, developers

have made their applications’ GUIs intuitive. This means that users do not have to

perform very long sequences of interactions from an application’s entry GUI to reach

other GUIs for using their designed major functionalities. This explains why the

statement coverage measurement can quickly saturate for our studied applications.

Difficulties in achieving high coverage. We also observe that even if our

event sequence generation enumerates all possible combinations of user interaction

events, GreenDroid can still achieve only low statement coverage for some applica-

tions. For example, for DroidAR, AndTweet, My Tracks and Omnidroid, Green-

Droid covers less than 25% statements. We thus inspected these applications and

found three major difficulties in achieving higher code coverage. These findings can

benefit related research such as automated Android application testing [40, 55]. We

discuss these findings in the following:

• Sophisticated external stimulus. Achieving high code coverage may re-

quire sophisticated external stimulus for certain Android applications. For ex-

ample, Omnidroid registers a broadcast receiver with Android OS to monitor

26 different system broadcast events (e.g., “missing phone call” and “phone

connected to a physical dock” broadcast events). A large proportion of its

code is used for handling such broadcasted system events, while our Green-

Droid currently cannot actively generate such events. This suggests that in

63

order to cover such code, systematic simulation of external stimulus would be

necessary.

• Complex inputs and non-standard user interactions. Achieving high

code coverage may require complex inputs and non-standard user interactions

for certain Android applications. Take DroidAR, an augmented reality appli-

cation on Android, for example. It presents its user a live view of real-world

objects that are augmented with various sensory inputs, and allows the user to

interact with these objects digitally. In many cases, DroidAR requires video

input from phone cameras for recognizing and rendering augmented objects

accordingly. It contains two types of GUI elements: (1) standard GUI ele-

ments defined in Android libraries (e.g., buttons), and (2) augmented objects

rendered by native graphics libraries. Both types of GUI elements can be dy-

namically updated. Therefore, covering a high proportion of DroidAR code

would require its user not only to interact with standard GUI elements (e.g.,

clicking buttons), but also to interact with the non-standard GUI elements

(e.g., rotating augmented objects). However, our GreenDroid currently can-

not support video inputs or user interactions with non-standard GUI elements.

This explains why GreenDroid achieves low code coverage when diagnosing

DroidAR.

• Special running environment. Achieving high code coverage may require

special running environments for certain Android applications. For example,

AndTweet is a light-weight Twitter chat client. Covering most of its code

requires: (1) a valid Twitter account, (2) network connectivity, and (3) mean-

ingful data (e.g., tweets and followers) associated with this account. Failing

to satisfy any of these requirements would make the application run meaning-

lessly, leading to low code coverage. Our GreenDroid currently does not know

how to satisfy such application-specific requirements and this deserves further

research.

From the above discussions, we can make two observations. First, similar to

related studies [38], it is practical to limit the length of generated event sequences in

64

program analysis due to the combinatorial explosion problem. In our case, setting

the length limit to six is a cost-effective choice. This is because a larger length

limit does not further improve code coverage, but instead results in much longer

diagnosis time (as in a magnitude of hours), as reported by our experiments. In

practice, such settings should be made on a case by case basis as different appli-

cations may have different characteristics. Therefore, tools like our GreenDroid

should allow its users to customize their required depth of diagnosis and provide a

time budget [73]. Second, we observed that for some application subjects, Green-

Droid located their energy problems even with low statement coverage. This can be

explained. As discussed earlier (Section 3.1), energy problems typically only occur

at certain application states reached by handling corresponding user interactions.

For example, the energy problem in Zmanim can be exposed by the following four

steps: (1) switching on GPS, (2) configuring Zmanim to use current location, (3)

starting Zmanim’s main activity, and (4) hitting the “Home” button when GPS is

acquiring a location. Therefore, generating user interactions in a certain order is

a prerequisite for exposing such problems. GreenDroid essentially enumerates all

possible combinations of different types of user interaction events (e.g., button click

events and checkbox selection events) and provides appropriate event values when

generating these events. This explains why it can systematically explore an appli-

cation’s state space to locate potential energy problems. This also suggests that

although statement coverage can be used for measuring the code coverage achieved

by a certain energy diagnosis approach, it may not be a good metric for assessing

the effectiveness of such energy diagnosis.

3.3.5 Comparison with Resource Leak Detection Work

Our work shares some similarity with existing resource leak detection work [39,

53], [92, 94] since sensor listeners and wake locks are considered as valuable re-

sources in Android OS and applications. Our research question RQ7 studies how

our GreenDroid compares to such work in terms of detecting real missing sensor or

wake lock deactivation problems. To answer this question, we chose Relda for com-

parison [53]. Relda is the latest resource leak detection work dedicated for Android

65

applications. It is a fully automated static analysis tool for Android applications and

supports detecting leak of 65 types of system resources, which also include sensor

listeners and wake locks as studied in our work. Therefore, it would be interesting

to know whether Relda can also effectively help detect missing sensor or wake lock

deactivation problems in our studied Android application subjects. With the help of

Relda’s authors, we conducted experiments using their original tool (not our imple-

mentation, which can otherwise lead to bias in the comparison). In the experiments,

we successfully applied Relda on 13 of our application subjects listed in Table 3.8

(except My Tracks). Relda reported 36 resource leak warnings, out of which 15 are

related to sensors and wake locks, while the remaining 21 are related to other seven

types of resources (e.g., phone cameras), which are outside the scope of our study.

We further invited Relda’s authors to manually validate these raw data and remove

duplicate and false warnings as they did in their publication [53] (we did not do it

by ourselves in order to avoid bias). Finally, they confirmed that Relda detected

two real resource leak problems in DroidAR and one in Ebookdroid out of the 13

application subjects. By analyzing the experimental results, we obtained several

findings as discussed below.

First, the two problems Relda detected in DroidAR happened because developers

forgot to unregister a sensor listener and to disable a phone vibrator after usage,

respectively. The other problem Relda detected in Ebookdroid happened because

developers forgot to recycle a velocity tracker (it tracks the velocity of touch events

for detecting gestures like flinging) back to the Android OS after using it. From these

results, we can see that Relda can indeed detect more types of resource leaks than

GreenDroid since it has a much wider focus. However, two of the three detected real

problems are not related to sensors or wake locks. Within the scope of our study,

Relda actually detected only one real problem of our interest (i.e., the missing sensor

deactivation problem in DroidAR). As a comparison, our GreenDroid detected eight

missing sensor or wake lock deactivation problems in these 13 application subjects

as we discussed earlier. All these eight problems (including the one detected by

Relda) are real problems as confirmed by developers.

66

Second, we carefully studied Relda to understand why it cannot effectively de-

tect the other seven real missing sensor or wake lock deactivation problems that

can be detected by GreenDroid in our studied Android applications. Based on our

study results and our communications with Relda’s authors, we identified four major

reasons: (1) Relda does not conduct intra-procedural flow analysis. To avoid false

positives, which can be a major concern for static analysis, Relda does not report

any resource leak problem as long as a concerned resource can possibly be released

at any program path. Due to this conservative nature, Relda did not effectively

detect missing wake lock deactivation problems in BabbleSink and AndTweet. For

example, the wake lock acquired by AndTweet might be released in certain pro-

gram paths, but such paths could only be executed in exceptional cases that are

not feasible during normal running (see Section 3.1.4 for more details). As such,

AndTweet can constantly drain a phone’s batter energy during its normal usage,

but this problem cannot be reported by Relda. (2) Relda does not conduct points-to

analysis. Thus it cannot figure out what object(s) a reference is pointing to, and

this is a common limitation of static analysis techniques without points-to analysis.

Due to this reason, Relda did not effectively detect the missing sensor deactivation

problem in Ushahidi, where its developers mistakenly passed a newly created GPS

sensor listener to the unregistration API (Line 11 in Figure 3.8) instead of passing

the listener that has been registered earlier (Line 6 in Figure 3.8). (3) Relda does

not properly model or consider event handler scheduling as we studied in this work.

Thus it cannot handle message passing and receiving well. Due to this reason, it

did not detect the missing wake lock deactivation problem in CWAC-Wakeful. The

reason is that CWAC-Wakeful acquires a wake lock from the Android OS only when

it receives a message that asks it to perform some long running task at background.

(4) Relda did not detect missing sensor or wake lock deactivation problems in Re-

cycle Locator, Sofia Public Transport Nav. and Ebookdroid due to its incomplete

resource operation table. These applications use sensors or wake locks by calling

compound APIs that wrap basic sensor listener registration/unregistration APIs or

basic wake lock acquisition/releasing APIs. For example, Sofia Public Transport

Nav. calls Google Maps APIs to use a phone’s GPS sensor, and EbookDroid calls

67

the setKeepScreenOn() API in the android.view.SurfaceView class to acquire

wake locks. Our GreenDroid does not have these discussed issues. It systematically

executes an Android application. Its dynamic analysis is naturally flow-sensitive

and does not need points-to analysis. Besides, it relies on our AEM model to ensure

reasonable scheduling of event handlers so that it can handle messaging passing and

receiving properly. Moreover, GreenDroid only focuses on two types of resources,

i.e., sensor listeners and wake locks, so that we could prepare a more complete op-

eration table for them with affordable effort. This explains why Relda missed some

missing sensor or wake lock deactivation problems but GreenDroid could still detect

them.

Third, although Relda can detect energy problems caused by missing sensor or

wake lock deactivation as a form of resource leak, it cannot help diagnose energy

problems caused by sensory data underutilization. These problems are more com-

plicated as discussed throughout this chapter. Our GreenDroid supports automated

analysis of sensory data utilization and can help developers diagnose energy prob-

lems caused by cost-ineffective use of sensory data.

From the above discussions, we can observe that both Relda and GreenDroid have

their own scopes and strengths. Relda can detect a much wider range of resource

leak problems and some of them may lead to serious energy waste. On the other

hand, GreenDroid’s scope is more focused (sensor and wake lock related energy

problems) and its energy problem detection capability is satisfactory. In terms

of detecting energy problems caused by missing sensor or wake lock deactivation,

GreenDroid performs better than Relda. We did not compare GreenDroid to other

resource leak detection work due to various reasons including tool availability and

applicability (some work are for conventional Java programs, e.g., Torlak et al.’s

work [92]). The above comparisons and discussions confirm that GreenDroid is

useful and effective for diagnosing energy problems in Android applications, and its

idea may also complement and contribute to existing resource leak detection work

on the Android platform.

68

Table 3.11: Energy saving case study result

Experiment Time Application
version

Collected
GPS points

Discarded
GPS points

Discarding
rate

Energy consumption
(Joule)

Day 1 (1pm ~ 5pm) GPSLogger-r15 266 127 32.3% CPU: 709.7J; GPS: 4842.6J

Day 3 (1pm ~ 5pm) GPSLogger-r15 304 135 30.8% CPU: 835.2J; GPS: 5626.5J

Day 5 (1pm ~ 5pm) GPSLogger-r15 272 144 34.6% CPU: 761.4J; GPS: 5019.3J

Day 2 (1pm ~ 5pm) GPSLogger-clean 230 51 18.1% CPU: 601.4J; GPS: 4217.1J

Day 4 (1pm ~ 5pm) GPSLogger-clean 253 63 19.9% CPU: 625.3J; GPS: 4354.6J

Day 6 (1pm ~ 5pm) GPSLogger-clean 293 58 16.5% CPU: 680.5J; GPS: 4660.7J

3.3.6 Energy Saving: A Case Study

To answer research question RQ8 about potential energy saving if our detected en-

ergy problems can be fixed, we conducted a real case study. In practice, users may

interact with an application in different ways, and this could affect the application’s

energy consumption quite significantly [44]. To minimize the effect of such user inter-

actions, we selected the application GPSLogger as our case study subject because it

requires almost no human intervention after initial setup. We prepared two versions

of GPSLogger: one with energy problem (will be referred to as GPSLogger-r15) and

the other with our patch (will be referred to as GPSLogger-clean). We built this

patch conservatively by slightly modifying the GPS sensing part of GPSLogger. To

be realistic, we built this patch by following Geohash Droid’s real patch on fixing

its energy problem (issue 24) [16]. Specifically, the patched GPSLogger would slow

down its GPS sensing rate to every 30 seconds when it finds its collected GPS data

keep being of low quality (e.g., after five consecutive imprecise readings), and set

the sensing rate immediately back to the original value when it finds that GPS data

have become precise again (e.g., after two consecutive precise readings). In fact,

one can also do it in an aggressive way by disabling GPS sensing or setting a longer

slow-sensing period if the application keeps receiving imprecise GPS data. Although

this may save more energy, we took the previous conservative strategy for making

our best efforts in avoiding potential effect on the application’s functionality.

69

Table 3.11 compares the energy consumption between the two versions of GP-

SLogger. We conducted the case study for six consecutive days. On each day, our

study participant, a postgraduate student, who was unaware of our experimental

setup and purpose, strictly followed the same pre-specified activity pattern: (1)

walking from his office to canteen and having lunch there (from 1:00 pm to 1:45

pm), (2) walking back to his office and then studying (from 1:45 pm to 3:30 pm),

(3) walking to library and read some newspapers or magazines (from 3:30 pm to 4:15

pm), and (4) finally going to gym for physical exercises (from 4:15 pm to 5:00 pm).

This activity pattern is common for a postgraduate student. We had this participant

carry the same smartphone, Samsung Galaxy S3 (with Android 4.1.2), with different

versions of GPSLogger installed on different days (he is unaware of this difference),

as shown in Table 3.11. For each version, we arranged three days for experiments,

to minimize effects of unpredictable and uncontrollable physical environment (e.g.,

GPS signal strength may be subject to change for unknown reasons). At the end of

each day, we collected the following information from the smartphone: (1) number

of precise GPS points collected, (2) number of imprecise GPS points discarded, and

(3) energy consumed by GPSLogger during the experiment. We measured energy

consumption by PowerTutor [102], which is a highly rated tool for measuring real

energy consumption (in Joules) for selected Android applications or components.

Table 3.11 reports our study results. We give energy consumption data only for

CPU and GPS sensor in each day’s experiment. This is because GPSLogger ran at

background and thus battery energy was mostly consumed by its CPU computing

and GPS sensing. We can make two observations from Table 3.11. First, in six

experiments, the two versions of GPSLogger collected comparable numbers of GPS

data points, ranging from 230 to 304 with a mean of 270. Since GPSLogger is

mainly designed for recording its user’s location traces, such small difference has

little effect on the application’s functionality. In fact, our participant also did not

notice any difference in terms of user experience while using the two versions of this

application. Second, we observe a large drop in GPS data discarding rate for the

patched version GPSLogger-clean. On average, GPSLogger-clean discarded 18.2%

of GPS data, while GPSLogger-r15 discarded 32.6% of GPS data (79.1% more).

70

Accordingly, GPSLogger-clean consumed 635.7J in CPU computing and 4410.8J in

GPS sensing. For GPSLogger-r15, the energy consumption became 768.8J in CPU

computing (20.9% more) and 5162.8J in GPS sensing (17.0% more). Note that this

comparison is based on a conservative strategy, and in practice, the difference can be

even larger (e.g., if the patch adopts an aggressive strategy). This shows that fixing

GreenDroid’s detected energy problem can indeed save much energy consumption

on real smartphones.

With these promising results, we submitted our patch to GPSLogger developers.

The patch was recently accepted. We also helped release it online for trial downloads

for interested users.18 So far, this patch has received around 1,000 downloads. This

indicates that developers indeed acknowledge and accept our efforts in helping defend

their Android applications from energy inefficiency.

3.3.7 Discussions

Tool implementation. Our energy diagnosis approach is independent of its un-

derlying program analysis framework. Currently, we implemented it on top of JPF

because JPF is a highly extensible Java program verification framework with inter-

nal support for dynamic tainting. However, analyzing Android applications using

JPF is still challenging as discussed throughout this chapter. We have to carefully

address the problems of event sequence generation and event handler scheduling, as

well as Android library modeling. In particular, modeling Android libraries is known

to be a tedious and error-prone task [73]. This is why our current implementation

only modeled a partial, but critical, set of library classes and concerned APIs. Ex-

tending our tool to support more Android APIs is possible, but would require more

engineering effort, and our GreenDroid is evolving along this direction. Besides, in

GreenDroid’s current implementation, all temporal rules in our AEM model have

been translated into code for ease of use. We are considering building a more general

execution engine that can take these rules as inputs to schedule Android event han-

dlers reasonably. This would make our GreenDroid more extensible to new rules.

18https://code.google.com/p/gpslogger/downloads/list

71

https://code.google.com/p/gpslogger/downloads/list

To realize this, we need: (1) a new domain language to specify these rules, and

(2) a mechanism that automatically interprets and enforces these rules at runtime.

Moreover, we are also considering integrating our diagnosis approach into Android

framework by modifying the Dalvik virtual machine much the same as Enck et al.

did [48]. This can bring two benefits. First, it enables real-time energy inefficiency

diagnosis. Second, modeling Android libraries is no longer necessary, such that the

imprecision caused by inadequate library modeling can also be alleviated or avoided.

Lastly, GreenDroid can be designed to be interactive, providing its users visualiza-

tions of sensory data usage details. This would help developers quickly figure out

the root causes for a wide range of domain-specific energy problems.

Tainting quality. Our sensory data utilization analysis relies on dynamic taint-

ing for tracking propagation of sensory data. It is well known that designing precise

dynamic tainting is challenging [90]. Researchers have found that ignoring control

dependencies in taint propagation can cause undertainting (i.e., failing to taint some

data derived from taint sources), but considering control dependencies can also cause

overtainting (i.e., tainting some data that are not derived from taint sources) [61].

It is therefore suggested that the tainting policy should be designed according to

its application scenarios [90]. In our case, we need to track propagation of sensory

data and identify program data that are derived from such sensory data. For this

purpose, we adapted TaintDroid’s tainting policy [48] and added a special rule for

handling control dependencies (ignoring control dependencies is one of TaintDroid’s

limitations). While this rule may potentially result in overtainting in theory, we

did not observe any evident impact on our sensory data utilization analysis results.

We made some analysis of our studied application subjects. We found that unlike

user privacy data (e.g., phone number) handled by TaintDroid, sensory data in our

studied applications are typically updated frequently. These data can be quickly re-

placed with new data. Their consumption is thus short-term, implying that they are

unlikely to affect a large volume of program data in Android applications. This ex-

plains why our control dependency handling does not introduce evident overtainting

problems.

72

Limitations. Our current GreenDroid implementation has some limitations.

First, GreenDroid cannot generate complex inputs (e.g., video inputs or user ges-

tures). Thus, there can be application states not reachable by GreenDroid. If any

energy problem is associated with these states, GreenDroid would not be able to

detect them (i.e., the analysis may be incomplete, leading to false negatives in bug

detection). Second, GreenDroid’s event sequence generation belongs to the category

of model-based approaches [55, 73, 98]. One common problem with these approaches

is that they rely on a statically extracted model and lack runtime information. For

example, GreenDroid relies on a GUI model extracted by statically analyzing an

application’s layout configurations. It cannot cope with dynamic GUI updates (e.g.,

news reading applications can dynamically load a new list of items). Therefore, we

found in our evaluation that GreenDroid sometimes generated infeasible user inter-

action event sequences (e.g., a sequence containing a click event on a GUI element

that has been removed). For our largest subject DroidAR, GreenDroid generated

around 8% infeasible event sequences due to its inability to handle dynamic GUI

updates. Because of this limitation in event sequence generation, our analysis may

be unsound in certain cases, leading to false positives in bug detection. Third,

GreenDroid cannot systematically simulate different sensory data as this requires a

comprehensive characteristic study of real-world sensory data. Currently, we ran-

domly picked up mock sensory data from a pre-prepared data pool controlled by

different precision levels. It could be possible that the selection of sensory data has

an impact on a program’s control flow (e.g., an execution path that requires specific

data values cannot be explored). Although we did not observe the above three issues

affecting GreenDroid’s effectiveness in diagnosing our application subjects, we are

investigating them and plan to come up with more complete solutions in future.

For example, the second limitation may be addressed by integrating GreenDroid’s

energy inefficiency diagnosis into the Android framework. Then its event sequence

generation no longer needs pre-extracted GUI models for Android applications un-

der diagnosis. Instead, one can analyze an application’s GUI layout at runtime and

adapt automated testing tools like Robotium [30] for generating user interaction

events. This limitation may also be addressed by adding event sequence feasibility

73

validation to GreenDroid (e.g., using Jensen et al.’s work [55]). Then GreenDroid

can first validate the feasibility of its generated event sequences before presenting

them to developers for reproducing its detected energy problems. We leave these

potential improvements to our future work.

Alternative analysis approach. Our current sensory data utilization analysis

is only one possible approach. It analyzes how many times and to what extent

sensory data are utilized by an application at certain states. We believe that there

can also be other good designs for effective analysis of sensory data utilization.

We discuss one possible alternative here. For example, instead of accumulating

sensory data consumptions (i.e., analyzing how many times sensory data are utilized;

see Equation 3.2) in the analysis, we can also consider that as long as sensory

data are effectively utilized once, the battery energy for collecting the data is well

spent. Besides, when designing the “data usage” metric, we can also choose not

to distinguish different APIs that utilize sensory data. Specifically, we can choose

not to scale the usage metric value by the number of bytecode instructions executed

during the invocation of an API that utilizes sensory data (i.e., not analyzing to

what extent the sensory data are utilized). Such a design may also help locate energy

problems. For instance, although we cannot distinguish how many times sensory

data are utilized in different application states, we can still identify application

states that totally do not utilize sensory data. In our experiments, we found that

such “complete energy waste” cases indeed exist (i.e., GPSLogger’s energy problem).

However, for most of our studied energy problems, the concerned applications do

not totally discard collected sensory data. For example, Geohash Droid always uses

location data to update a phone’s notification bar (see Figure 3.3(a)), but still its

developers consider that if other remote listeners are not actively monitoring location

updates, then only updating phone notification bar is a waste of valuable battery

energy. In such cases, the alternative design might not be able to locate such energy

problems. As a comparison, our approach can not only help locate application

states that totally do not utilize sensory data, but also help locate those that do

not utilize sensory data in a fully effective manner. Therefore, it can generally

provide finer-grained information for energy diagnosis and optimization. Of course,

74

our design allows GreenDroid to report more energy problems than the alternative

design. This is why we also propose a prioritization strategy to help developers

focus on the potentially most serious energy problems, i.e., those have the lowest

data utilization coefficients.

Fixing detected energy bugs. Our GreenDroid can help detect three common

patterns of energy bugs. To fix the detected missing sensor or wake lock deactiva-

tion bugs, developers can simply add sensor listener unregistration and wake lock

releasing operations in the corresponding program locations. However, fixing sen-

sory data underutilization bugs is a non-trivial task for developers. In our empirical

study, we observed two commonly-used strategies: (1) temporarily reducing sens-

ing frequency when sensory data are not utilized in a fully-effective manner, and

(2) temporarily deactivating sensors when sensory data are completely not useful.

Based on this observation, GreenDroid would suggest developers to consider the

two optimization strategies when it detects energy bugs caused by sensory data

underutilization. Nevertheless, how to fix detected sensory data underutilization

bugs should be application-specific. In particular, if developers choose to follow the

second strategy, which is more aggressive than the first one, they should take into

account that activating and deactivating sensors have energy overhead. In other

words, developers need to carefully judge whether the energy consumed by the use-

less sensing operations in the inefficient version of their application outweighs the

energy cost of deactivation (when the sensory data are completely not useful) and

reactivation of sensors (when the application reaches a state where sensory data

will be effectively utilized). If yes, the optimization can bring overall energy saving.

Otherwise, they should consider to optimize their application using other strategies.

3.4 Related Work

Our GreenDroid work relates to several research topics, which include energy effi-

ciency analysis, energy consumption estimation, resource leak detection, and infor-

mation flow tracking. Some of them particularly focus on smartphone applications.

In this section, we discuss representative pieces of work in recent years.

75

3.4.1 Energy Efficiency Analysis

Smartphone applications’ energy efficiency is vital. In past several years, researchers

have worked on this topic mostly from two perspectives. First, various design strate-

gies have been proposed to reduce energy consumption for smartphone applications.

For example, MAUI [43] helped offload “energy-consuming” tasks to resource-rich

infrastructures such as remote servers. EnTracked [62] and RAPS [80] adopted dif-

ferent heuristics to guide an application to use GPS sensors in a smart way. Little

Rock [85] suggested a dedicated low power processor for energy-consuming sens-

ing operations. SALSA [88] helped select optimal data links for saving energy in

large data transmissions. Second, different techniques have been proposed to di-

agnose energy problems in smartphone applications. Kim et al. proposed to use

power signatures based on system hardware states to detect energy-greedy mal-

ware [60]. Pathak et al. conducted the first study of energy bugs in smartphone

applications, and proposed to use reaching-definition dataflow analysis algorithms

to detect no-sleep energy bugs, which can arise from mishandling of power control

APIs in Android applications (e.g., wake lock acquisition/releasing APIs) [82, 84].

Zhang et al. proposed a taint-tracking technique for the Android platform to detect

energy wastes caused by unnecessary network communications [101]. To help end

users troubleshoot energy problems on their smartphones, Ma et al. built a tool

to monitor smartphones’ resource usage behavior as well as system or user events

(e.g., configuration changes in certain applications) [70]. Their tool can help iden-

tify triggering events that cause abnormally high energy consumption, and suggest

corresponding repair solutions (e.g., reverting configuration changes) to users.

Our work shares a similar goal with these pieces of work, in particular, recent

work in the second category discussed above [70, 84, 101]. Nevertheless, our work

differs from them on several aspects. Regarding Pathak et al.’s work [101], our work

has two distinct differences. First, we found that detecting no-sleep bugs like missing

wake lock deactivation is not difficult. One can always adapt existing resource leak

detection (as we did in our work) or classic reaching-definition data flow analysis

(as they did in their work) techniques for this purpose. However, our empirical

76

study revealed more subtle energy problems caused by sensory data underutilization.

As discussed earlier, effectively detecting sensory data underutilization problems

is non-trivial. It requires a systematic exploration of an application’s state space

and a precise analysis of sensory data utilization. Second, to conduct data flow

analysis, Pathak et al. assumed that control flows between event handlers were

already available from application developers. This is not a practical assumption for

Android applications. Asking developers to manually derive program control flow

information is unrealistic, especially when applications contain hundreds of event

handlers (e.g., our experimental subjects DroidAR and Omnidroid). As such, we

chose to formulate handler scheduling policies extracted from Android specifications

as an AEM model so that it can be reusable across different applications for correctly

scheduling event handlers during program analysis. Our experimental results have

confirmed that this model is necessary and useful for effectively diagnosing energy

problems in Android applications.

Zhang et al.’s work also makes a similar observation to ours, i.e., using network

data to update invisible GUIs can be an energy waste [101]. However, our work

differs from theirs in three ways. First, we focus on energy problems caused by

cost-ineffective uses of sensory data instead of network data, as our empirical study

reveals that ineffective use of sensory data has often caused massive energy waste.

Second, besides analyzing how sensory data are utilized by Android applications,

we also studied ways of systematically generating event sequences to exercise an

application, while their work may require extra testing effort for effective analy-

sis (they did not study how to automate an application’s execution for analysis).

Third, we proposed a state-based analysis of sensory data utilization. It effectively

distinguishes different usage scenarios of sensory data, while Zhang et al.’s work

only supports distinguishing two types of scenarios, i.e., network data used to up-

date visible or invisible GUIs, respectively. As a result, our work can provide richer

information to help diagnose energy problems with a wider scope.

Our work also has a different objective from Ma et al.’s work [70]. Their work

does not analyze an application’s program code. Instead, it monitors a device’s

energy consumption as well as system or user events to help identify those events

77

that have likely caused abnormally high energy consumption. By reverting the effect

of these events (e.g., uninstalling a suspicious application), users can potentially

suffer less battery drain. On the other hand, our work directly diagnoses causes of

energy problems in an application’s program code and helps fix them by providing

concrete problem-triggering conditions.

3.4.2 Energy Consumption Estimation

One major reason why so many smartphone applications are not energy efficient is

that developers lack viable tools to estimate energy consumption for their applica-

tions. Extensive research has been conducted to address this topic. PowerTutor [102]

uses system-level power-consumption models to estimate the energy consumed by

major system components (e.g., display) during the execution of Android applica-

tions. Such models are a function of selected system features (e.g., CPU utilization)

and obtained by direct measurements during the controlling of the device’s power

state. Sesame [46] shares the same goal as PowerTutor, but can perform energy

estimation for much smaller time intervals (e.g., as small as 10ms). eProf [83] is an-

other estimation tool. Instead of estimating energy consumption at a system level

like PowerTutor and Sesame, eProf estimates energy consumption at an application

level by tracing system calls made by applications when they run on smartphones.

WattsOn [74] further extends eProf’s idea by enabling developers to estimate their

applications’ energy consumption on their workstations, rather than real smart-

phones. The most recent work is eLens [54]. It combines program analysis and

per-instruction energy modeling to enable much finer-grained energy consumption

estimation. However, eLens assumes that smartphone manufacturers should pro-

vide platform-dependent energy models for each instruction. This is not a common

practice as both the hardware and software of a smartphone platform can evolve

quickly. Requiring manufacturers to provide a new set of instruction-level energy

models for each platform update is impractical. Regarding this, eLens provides a

hardware-based technical solution to help obtain such energy models. Still, power

measurement hardware may not generally be accessible for real-world developers.

78

Typical scenarios for the techniques discussed above are to identify hotspots

(software components that consume the most energy) in smartphone applications,

such that developers can perform energy consumption optimization. However, sim-

ply knowing the energy cost of a certain software component is not adequate for

an effective optimization task. The missing key information is whether this energy

consumption is necessary or not. Consider an application component that continu-

ally uses collected GPS data to render a map for navigation. This component can

consume a lot of energy and thus be identified as a hotspot. However, although the

energy cost can be high, this component is evitable in that it produces great bene-

fits for its users by smart navigation. As such, developers may not have to optimize

it. Based on this observation, our GreenDroid work helps diagnose whether certain

energy consumed by sensing operations can produce corresponding benefits (i.e.,

high sensory data utilization). This can help developers make wise decisions when

they face the choice of whether or not to optimize energy consumption for certain

application components. For example, if they find that at some states, sensing op-

erations are performed frequently, but thus collected sensory data are not effectively

utilized, then they can consider optimizing such sensing mechanisms to save energy

as Geohash Droid developers did [16] (issue 24).

3.4.3 Resource Leak Detection

System resources are finite and usually valuable. Developers are required to release

acquired resources in a timely fashion for their applications when these resources are

no longer needed. However, tasks for realizing this requirement are often error-prone

due to a variety of human mistakes. Empirical evidence shows that resource leaks

commonly occur in practice [94]. To prevent resource leaks, researchers proposed

language-level mechanisms and automated management techniques [45]. Various

tools were also developed to detect resource leaks [39, 92]. For example, QVM [39]

is a specialized runtime environment for detecting defects in Java programs. It

monitors application executions and checks for violations of resource safety poli-

cies. TRACKER [92] is an industrial-strength tool for finding resource leaks in

Java programs. It conducts inter-procedural static analysis to ensure no resource

79

safety policy is violated on any execution path. Besides, Guo et al. recently col-

lected a nearly complete table of system resources in the Android framework that

require explicit release operations after usage [53]. Similar to our work, they also

adapted the general idea of resource safety policy checking discussed in QVM [39]

and TRACKER [92] for problem detection. The major differences between our work

and these pieces of work are two-fold. First, we proposed to systematically explore

an Android application’s state space for energy problem detection. This requires

addressing technical challenges in generating user interaction event sequences and

scheduling event handlers. Second, we also focused on studying more complex en-

ergy problems, i.e., sensory data underutilization. As discussed throughout this

chapter, detecting these energy problems requires precise tracking of sensory data

propagation and careful analysis of sensory data usage. Regarding this, we have

proposed analysis algorithms and automated problem detection in this work, and

they have not been covered by these pieces of existing work.

3.4.4 Information Flow Tracking

Dynamic information flow tracking (DFT for short) observes interesting data as

they propagate in a program execution [59]. DFT has many useful applications. For

example, TaintCheck [75] uses DFT to protect commodity software from memory

corruption attacks such as buffer overflows. It taints input data from untrustworthy

sources and ensures that they are never used in a dangerous way. TaintDroid [48]

prevents Android applications from leaking users’ private data. It tracks such data

from privacy-sensitive sources, and warns users when these data leave the system.

Leakpoint [42] leverages DFT to pinpoint memory leaks in C and C++ programs.

It taints dynamically allocated memory blocks and monitors them in case their

release might be forgotten. Our GreenDroid work demonstrates another application

of DFT. We showed that DFT can help track propagation of sensory data, such that

their utilization analysis against energy consumption can be conducted to detect

potential energy problems in smartphone applications.

80

3.5 Chapter Summary

In this chapter, we presented an empirical study of real energy problems in 402

Android applications, and identified two types of coding phenomena that commonly

cause energy waste: missing sensor or wake lock deactivation, and sensory data

underutilization. Based on these findings, we proposed an approach for automated

energy problem diagnosis in Android applications. Our approach systematically

explores an application’s state space, automatically analyzes its sensory data uti-

lization, and monitors the usage of sensors and wake locks. It helps developers locate

energy problems in their applications and generates actionable reports, which can

greatly ease the task of reproducing energy problems as well as fixing them for en-

ergy optimization. We implemented our approach into a tool GreenDroid on top of

JPF, and evaluated it using 14 real-world popular Android applications. Our exper-

imental results confirmed the effectiveness and practical usefulness of GreenDroid.

81

Chapter4

Characterizing and Detecting Performance Bugs

In this chapter, we focus on performance bugs in Android applications. We first

present an in-depth empirical study of real performance bugs from popular Android

applications in Section 4.1. The empirical study identified three common patterns of

performance bugs. With the findings, we then present a light-weight static analysis

technique to detect these performance bugs in Section 4.2. Next, we evaluate our

technique on a large set of real-world Android applications in Section 4.3. After

that, we discuss existing studies related to performance bug diagnosis in mobile

applications in Section 4.4. Finally, we give a chapter summary in Section 4.5. The

content of this chapter is based on two research papers [66, 67].

4.1 Characterizing Performance Bugs

In this section, we present our empirical study of real-world performance bugs from

Android applications. The study aims to answer the following four research ques-

tions:

• RQ1 (Bug types and impacts): What are common types of performance

bugs in Android applications? What impacts do they have on user experience?

• RQ2 (Bug manifestation): How do performance bugs manifest themselves?

Does their manifestation need special inputs?

• RQ3 (Debugging and bug-fixing effort): Are performance bugs more

difficult to debug and fix than non-performance bugs? What information or

tools can help with this?

82

Research questions (RQ1-4)
1. Bug types and impacts
2. Bug manifestation
3. Debugging and fixing effort
4. Common bug patterns

Combating performance bugs
• Bug avoidance techniques (RQ2, RQ4)
• Effective testing methodologies (RQ1, RQ2)
• Debugging assistance tools (RQ3)
• Bug detectors (RQ1, RQ4)

Figure 4.1: Potential benefits of our empirical findings

• RQ4 (Common bug patterns): Are there common causes of performance

bugs? Can we distill common bug patterns to facilitate automated performance

analysis and bug detection?

We formulated these research questions by studying related work [57, 99]. Through

answering them, we not only aim to understand the characteristics of performance

bugs in Android applications, but also wish to support follow-up research on per-

formance bug avoidance, testing, debugging and detection for Android applications,

as illustrated in Figure 4.1. For instance, with identified common bug patterns,

one can propose guidelines for avoiding certain performance bugs in application de-

velopment. One can also design and implement bug detection tools for identifying

performance optimization opportunities in application testing and maintenance.

4.1.1 Study Methodology

We selected open-source Android applications as our subjects for studying research

questions RQ1–4 because the study requires application bug reports and correspond-

ing code revisions. 29 candidate applications that satisfy the following three criteria

were randomly selected from four popular open-source software hosting platforms,

namely, Google Code [18], GitHub [17], SourceForge [34], and Mozilla reposito-

ries [24].

• Popularity. First, a candidate application should have achieved more than

10,000 downloads on market (i.e., popular).

• Traceability. Second, a candidate application should own a public bug track-

ing system (i.e., traceable).

83

• Maintainability. Third, a candidate application should have at least hun-

dreds of code revisions (i.e., well-maintained).

The above three criteria provide a good indicator of popular and mature ap-

plications. For these 29 candidates, we tried to identify performance bugs in their

bug tracking systems. Due to different management practices, some application de-

velopers explicitly labeled performance bugs using special tags (e.g., “perf”), while

others did not maintain a clear categorization of reported bugs. To ensure that we

study real performance bugs, we refined our application selection by keeping only

those containing clearly labeled performance bugs for our study. As a result, eight

applications were finally selected as our subjects (all 29 applications were still used

in our later evaluation for validating the usefulness of our empirical findings, see

Section 4.3). From them, we obtained a total of 70 performance bugs, which were

clearly labeled (confirmed) and later fixed.

Our selection process could miss some performance bugs (e.g., those not performance-

labeled). Some related studies selected performance bugs by searching keywords like

“slow” or “latency” in bug reports [57, 99]. We found that such searches resulted in

more than 2,800 candidate performance bugs in all 29 applications. We randomly

sampled and manually analyzed 140 of these candidate bugs (5%), and found that

most of them are inappropriate for our study. This is because more than 70% of

these candidates are either not related to performance (i.e., their bug reports ac-

cidentally contain such keywords) or are actually complex bugs that contain both

performance and functional issues (e.g., low performance as a side effect of wrongly

implemented functionality). To avoid introducing such threats or uncontrollable

issues to our empirical study, we refrained from keyword search, while focusing on

the 70 explicitly labeled performance bugs.

Table 4.1 lists the basic information of our eight selected Android applications.

They are large-scale (up to 122.9K LOC), popularly-downloaded (up to 100 million

downloads), and cover five different application categories. In the following, we

analyze the 70 performance bugs collected from these applications and report our

findings. The whole empirical study took about 180 person-days, involving three

84

Table 4.1: Subjects for studying performance bug characteristics

Application
name Category Size

(LOC)
Programming

language Downloads Availability # selected
bugs

Firefox2 Communication 122.9K1 Java, C++, C 10M1 ~ 50M Mozilla Repositories 34

Chrome2 Communication 77.3K Java, C++,
Python 50M ~ 100M Google Code 19

AnkiDroid Education 44.8K Java 500K ~ 1M Google Code 4

K-9 Mail Communication 76.2K Java 1M ~ 5M Google Code 3

My Tracks Health & Fitness 27.1K Java 10M ~ 50M Google Code 3

c:geo Entertainment 44.7K Java 1M ~ 5M GitHub 3

Open GPS
Tracker Travel & Local 18.1K Java 100K ~ 500K Google Code 2

Zmanim Books &
Reference 5.0K Java 10K ~ 50K Google Code 2

1: 1K = 1,000 & 1M = 1,000,000; 2: For Firefox and Chrome, we counted only their lines of code specific to Android.

students (two postgraduate and one final-year undergraduate) for data collection,

analysis and cross-checking.

4.1.2 Bug Types and Impact

We studied the bug reports and related discussions (e.g., comments and patch re-

views) of the 70 performance bugs, and assigned them to different categories ac-

cording to their major consequences. If a bug has multiple major consequences, we

assigned it to multiple categories (so accumulated percentages can exceed 100%).

We observed three common types of performance bugs in Android applications:

GUI lagging. Most performance bugs (53 / 70 = 75.7%) are GUI lagging bugs.

They can significantly reduce the responsiveness or smoothness of the concerned

applications’ GUIs and prevent user events from being handled in a timely way. For

example, in Firefox browser, tab switching could take up to ten seconds in certain

scenarios (Firefox bug 719493 [15]). This may trigger the infamous “Application Not

Responding (ANR)” error and cause an application to be no longer runnable, be-

cause Android OS would force its user to close the application in such circumstances

(see Section 2.2 for more details).

85

Energy leak. The second common type of performance bugs (10 / 70 = 14.3%)

is energy leak.1 With such bugs, the concerned applications could quickly consume

excessive battery power with certain tasks, which actually bring almost no benefits

to users. For example, the energy leak in Zmanim (bug 50 [37]) made the applica-

tion render invisible GUI widgets in certain scenarios, and this useless computation

simply wasted valuable battery power. If an Android application contains serious

energy leaks, its user’s smartphone battery could be drained in just a few hours.

For instance, My Tracks has received such complaints (bug 520 [25]):

“I just installed My Tracks on my Galaxy Note 2 and it is a massive

battery drain. My battery lost 10% in standby just 20 minutes after a

full charge.”

“This app is destroying my battery. I will have to uninstall it if there

isn’t a fix soon.”

Energy leaks in smartphone applications can cause great inconvenience to users.

Users definitely do not want their smartphones to power off due to low battery,

especially when they need to make important phone calls. As shown in the above

comments, if an application drains battery quickly, users may switch to other ap-

plications that offer similar functionalities but are more energy-efficient. Such a

“switch” can be common since nowadays users have many choices in selecting smart-

phone applications.

Memory bloat. The third common type of performance bugs (8 / 70 = 11.4%)

is memory bloat, which can incur unnecessarily high memory consumption (e.g.,

Firefox bug 723077 [15] and Chrome bug 245782 [7]). Such bugs can cause “Out of

Memory (OOM)” errors and application crashes. Even if a concerned application

does not crash immediately (i.e., mild memory bloat), its performance can become

unstable as Dalvik garbage collection would be frequently invoked, leading to de-

graded application performance.

1Interestingly, mobile developers consider energy bugs as a type of performance bugs, while in
conventional softwares, performance bugs typically refer to those bugs that can significantly slow
down a software or cause serious waste of computational resources (e.g., memory) [57].

86

These three performance bug types have occupied a majority of our studied 70

performance bugs (94.7%; some bugs belong to more than one type as aforemen-

tioned). There are also other types of bugs (e.g., those causing high disk consump-

tion or low network throughput), but we observed them only once for each type in

our dataset. Thus, we consider them not common.

Based on these findings, we answer our research question RQ1: GUI lagging,

energy leak and memory bloat are three dominant performance bug types in our

studied Android applications. Research effort can first be devoted into designing

effective techniques to combat them.

4.1.3 Bug Manifestation

Understanding how performance bugs manifest in Android applications can provide

useful implications on how to effectively test performance bugs. Our study reveals

some observations, which demonstrate unique challenges in such performance test-

ing.

Small-scale inputs suffice to manifest performance bugs. Existing studies

reported that two thirds of performance bugs in PC applications need large-scale

inputs to manifest [57]. However, in our study, we observed only 11 performance bugs

(out of 70) that require large-scale inputs to manifest. Here, we consider a database

with 100 data entries already large-scale (e.g., Firefox bug 725914 [15]). Other bugs

can easily manifest with small-scale inputs. For example, Firefox bugs 719493 and

747419 [15] only need one user to open several browser tabs to manifest. Manifested

bugs would significantly slow down Firefox and make its GUI less responsive. We

give some comments from their bug reports below:

“I installed the nightly version and found tab switching is so slow that it

makes using more than one tab very hard.”

“Firefox should correctly use view holder patterns. Otherwise, it will just

have pretty bad scrolling performance when you have more than a couple

of tabs.”

87

These comments suggest that Android applications can be susceptible to per-

formance bugs. If an application has issues affecting its performance, users can

often have uncomfortable experiences when conducting simple daily operations like

adding a browser tab (Firefox bug 719493 [15]). A few such operations can quickly

cause performance degradation. Due to this reason, cautious developers should try

their best to optimize the performance of their code. For example, c:geo developers

always try to avoid creating short-term objects (c:geo bug 222 [6]), because Android

documentation states that less object creation (even an array of Integers) means less

garbage collection [67].

Special user interactions needed to manifest performance bugs. More

than one third (25 out of 70) of performance bugs require special user interactions

to manifest. For example, Zmanim’s energy leak needs the following four steps to

manifest: (1) switching on GPS, (2) configuring Zmanim to use current location,

(3) starting its main activity, and (4) hitting the “Home” button when GPS is ac-

quiring a location. Such bugs are common, but can easily escape traditional testing.

They can only manifest after a certain sequence of user interactions happen to the

concerned application, but traditional code-based testing adequacy criteria (e.g.,

statement or branch coverage) do not really consider sequences of user interactions.

A recent study also shows that existing testing techniques often fail to reach certain

parts of Android application code [55]. Hence, our findings suggest two challenges

and corresponding research directions in testing performance bugs for smartphone

applications:

• Effectively testing performance bugs requires coverage criteria that explicitly

consider sequences of user interactions in assessing the testing adequacy. Since

the validity of user interaction sequences is essentially defined by an applica-

tion’s GUI structure, existing research on GUI testing coverage criteria [72]

may help in addressing this challenge.

• Test input generation should construct effective user interaction sequences to

systematically explore an application’s state space. Since such sequences can

be infinite, research effort should focus on effective techniques that can identify

88

equivalence among constructed user interaction sequences, avoiding redundant

sequences and wasted test efforts.

Automated performance oracle needed. Performance bugs can gradually

degrade an application’s performance. For example, Firefox becomes progressively

slower when its database’s size grows (bug 785945 [15]). Such bugs rarely cause fail-

stop consequences like application crashes, thus it is challenging to decide whether

an application is suffering from any performance bug. Yet, our study found three

common judgment criteria that have been used in real world to detect performance

bugs in Android applications:

• Human oracle. More than half of the judgments were made manually by

developers or users in our investigated Android applications. People simply

made judgments according to their own experiences.

• Product comparison. Many developers compared different products of sim-

ilar functionalities to judge whether a particular product contains any perfor-

mance bugs (e.g., checking whether conducting an operation in one product is

remarkably slower than in other products). We observed ten such cases in our

study. For example, upon receiving user complaints about performance, K9

Mail developers checked whether their application’s performance was compa-

rable to other email clients and then decided what to do next (K9 Mail bugs

14 and 23 [23]).

• Developers’ consensus. Developers also have some implicit consensus for

judging performance bugs. For instance, Google developers consider an appli-

cation sluggish (i.e., GUI lagging) if a user event cannot be handled within 200

milliseconds [97]. Mozilla developers assume that Firefox’s graphics-rendering

units should be able to produce 60 frames per second to make smooth anima-

tions (Firefox bugs 767980 and 670930 [15]).

Although these judgment criteria have been used in practice, they either require

non-trivial manual effort (thus not scalable) or are not generally defined (thus not

widely used). To facilitate performance testing and analysis, automated oracles are

89

desirable. Even if general oracles may not be possible, application or bug specific

oracles can still be helpful. Encouragingly, there have been initial attempts toward

this end [84, 101]. Besides, in this thesis, we also proposed a cost-benefit analysis

to detect energy leaks caused by improper or ineffective uses of smartphone sensors

(see Section 3.2.4). Still, more effort on general automated oracles for performance

bugs is needed to further advance related research.

Performance bugs can be platform-dependent. We also observed that a

non-negligible proportion (6 out of 70) of performance bugs require specific software

or hardware platforms to manifest. For example, Chrome’s caching scheme would

hurt performance on ARM-based devices, but not on x86-based devices (Chrome

bugs 170344 and 245782 [7]). Firefox’s animation works more smoothly on Android

4.0 than older systems (Firefox bug 767980 [15]). This suggests that developers

should consider device variety during performance testing, since Android OS can

run on different hardware platforms and has so many customized variants. This

feature differs largely from performance bugs in PC applications, which are not so

platform-dependent [57, 99].

Based on these findings, we answer our research question RQ2: Effective perfor-

mance testing needs: (1) new coverage criteria to assess testing adequacy, (2) ef-

fective techniques for generating user interaction sequences to manifest performance

bugs, and (3) automated oracles to judge performance degradation.

4.1.4 Debugging and Bug-Fixing Effort

To understand the effort required for performance debugging and bug-fixing for

Android applications, we analyzed 60 of our 70 performance bugs. We excluded

10 remaining bugs because we failed to recover links between their bug reports

and code revisions.2 To quantify debugging and bug-fixing effort for each of these

bugs, we measured three metrics that were also adopted in related studies [99]: (1)

bug open duration, which is the amount of time from a bug report is opened to

2Our manual analysis of commit logs around bug-fixing dates also failed to find corresponding
code revisions.

90

Table 4.2: Performance bug debugging and fixing effort

Metric Min. Median Max. Mean

Bug open duration (days) 1 47 378 59.2

Number of bug comments 1 14 71 16.7

Patch size (LOC) 2 72 2,104 182.3

the concerned bug is fixed; (2) number of bug comments, which counts discussions

among developers and users for a bug during its debugging and bug-fixing period;

(3) patch size, which is the lines of code changed for fixing a bug. Intuitively, if a

bug is difficult to debug and fix, its report would be open for a long time, developers

tend to discuss it more, and its patch could cover more lines of code changes.

Table 4.2 reports our measurement results. We observe that on average, it takes

developers about two months to debug and fix a performance bug in an Android

application. During this period, they can have tens of rounds of discussions, result-

ing in many bug comments (up to 71). Besides, on average, bug-fixing patches can

cover more than 182 lines of code changes, indicating non-trivial bug-fixing effort.

For comparison, we also randomly selected 200 non-performance bugs (bugs without

performance labels) from the bug database of Firefox and Chrome (we selected 100

bugs for each). We did not select non-performance bugs from other application sub-

jects for comparison, because each of these subjects contains only a few performance

bugs (about two to four). Such small sample sizes may lead to unreliable comparison

results, leaving a weak foundation for further research on related topics [47]. On the

other hand, the vast majority of our studied performance bugs come from Firefox

and Chrome, and therefore we selected non-performance bugs from these two sub-

jects for comparison. The severity levels of our selected 200 non-performance bugs

are comparable to those of performance bugs in Firefox and Chrome. Figure 4.2

compares these two kinds of bugs by boxplots (“Perf” means “Performance bug”

and “NPerf” means “non-performance bug” in the figure). The results consistently

show that performance debugging and bug-fixing require more effort than their non-

performance counterparts. For example, in Firefox, the median bug open duration is

91

NPerf

(a) Bug open duration (days)
Firefox

(b) Number of bug comments (c) Patch size (lines of code changes)

1
2

5
10
20

50
100
200

500
Chrome Firefox Chrome Firefox Chrome

NPerf Perf NPerf Perf NPerf Perf NPerf Perf NPerf Perf Perf
1
2

5
10
20

50
100
200

500

1

2

5

10

20

50

100

1

2

5

10

20

50

100

5
10

50
100

500
1000

5000

1

5
10

50
100

500
1000

5000

1

42

13
9.5

18

50.5
21

35

13.5 6.5

3
13.5

63

Figure 4.2: Comparison of debugging and bug-fixing effort

Table 4.3: p-values of Mann-Whitney U-tests

Subject
p-value

Bug open duration # bug comments Patch size

Firefox 0.0008 0.0002 0.0206

Chrome 0.0378 0.0186 0.0119

42 workdays for performance bugs, but only 13 workdays for non-performance bugs.

To understand the significance of the differences between these two kinds of bugs,

we conducted a Mann-Whitney U-test [71] with the following three null hypotheses:

• Performance debugging and bug-fixing do not take a significantly longer time

than their non-performance counterparts.

• Performance debugging and bug-fixing do not need significantly more discus-

sion than their non-performance counterparts.

• Patches for fixing performance bugs are not significantly larger than those for

fixing non-performance bugs.

Table 4.3 gives our Mann-Whitney U-test results (p-values). The results rejected

the above three null hypotheses all with a confidence level over 0.95 (i.e., p-values

are all less than 0.05). Thus, we conclude that debugging and fixing performance

bugs indeed requires more effort than debugging and fixing non-performance bugs.

This result can help developers better understand and prioritize bugs for fixing in

a cost-effective way, as well as estimating possible manual effort required for fixing

certain bugs.

92

We further looked into bug comments and bug-fixing patches to understand: (1)

why it is difficult to debug and fix performance bugs in Android applications, and

(2) what support is expected in debugging and bug-fixing. We found that quite

a few (22 / 70 = 31.4%) performance bugs involve multiple threads or processes,

which may have complicated the debugging and bug-fixing tasks. In addition, these

performance bugs rarely caused fail-stop consequences such as application crashes.

Due to this reason, traditional debugging information (e.g., stack trace) can offer

little help in performance debugging. We analyzed all 70 performance bugs, and

found that only four bugs have had their debugging and fixing tasks receiving some

help from such traditional information, as judged from their bug discussions (e.g.,

c:geo bug 949 [6] and Firefox bug 721216 [15]). On the other hand, we found that

debugging information from two kinds of tools has received more attention:

Profiling tools. Profiling tools (or profilers) monitor an application’s execution,

record its runtime information (e.g., execution time of a code unit), and trace de-

tails of its resource consumption (e.g., memory). For example, Firefox and Chrome

developers often take three steps in performance debugging: (1) reproducing a per-

formance bug with the information provided in its bug report if any, (2) running

the application of concern for a long while to generate a profile using their own

profilers [8, 13], and (3) performing offline profile analysis to identify performance

bottlenecks/bugs if possible. However, profile analysis can be very time-consuming

and painful, because current tools (e.g., those from Android SDK) can record tons

of runtime information, but which runtime information can actually help perfor-

mance debugging is still an open question. Firefox developers have designed some

visualization tools (e.g., Cleopatra [13]) to save manual effort in profile analysis, but

these tools are not accessible to other developers or applicable to other applications.

Researchers and practitioners are thus encouraged to design new general techniques

and tools for analyzing, aggregating, simplifying and visualizing profiling data to

facilitate performance debugging.

Performance measurement tools. Performance measurement tools can also

ease performance debugging. They can directly report performance for a selected

code unit in an application. For example, Firefox’s frame rate meter [14] measures

93

the number of frames a graphics-rendering unit can produce per second (e.g., when

debugging Firefox bug 670930 [15]). This information can help developers in two

ways. First, it prioritizes the code units that need performance optimization. Sec-

ond, it suggests whether a code unit has been adequately optimized. For example,

Firefox developers could stop further optimizing a graphics-rendering unit if the

frame rate meter reports a score of 60 frames per second (e.g., when fixing Firefox

bug 767980). Chrome developers also use similar tools (e.g., using smoothness mea-

surement tools for debugging Chrome bug 242976 [7]). Such tools are useful and

welcomed by Android developers. We show some comments about Firefox’s frame

rate meter from the developers’ mailing list:

“I found it very useful for finding performance issues in Firefox UI, and

web devs should find it useful too.”

“This is fantastic stuff. It’s a must-have for people hacking on front end

UI. Also for devs tracking animation perf.”

Besides understanding the challenges of performance debugging, we also looked

for reasons from bug-fixing patches why fixing performance bugs is so difficult. We

found that such patches are often complex and have to conduct: (1) algorithmic

changes (e.g., Firefox bug 767980 [15]), (2) design pattern reimplementation (e.g.,

Firefox bug 735636 [15]), or (3) data structure or caching scheme redesign (e.g.,

Chrome bug 245782 [7]). Such bug-fixing tasks are usually complex. This explains

why fixing performance bugs took a longer time and incurred much larger patch

sizes than fixing non-performance bugs, as illustrated in Figure 4.2.

Based on these findings, we answer our research question RQ3: Debugging and

fixing performance bugs are generally more difficult than debugging and fixing non-

performance bugs. Information provided by profilers and performance measurement

tools are more helpful for debugging than traditional information like stack trace.

Existing profilers expect improvement on automatically analyzing, aggregating, sim-

plifying and visualizing collected runtime profiles.

94

public void refreshThumbnails() {

//generate a thumbnail for each browser tab

- Iterator<Tab> iter = tabs.values().iterator();

- while (iter.hasNext())

- GeckoApp.mAppContext.genThumbnailForTab(iter.next());

+ GeckoAppShell.getHandler().post(new Runnable() {

+ public void run() {

+ Iterator<Tab> iter = tabs.values().iterator();

+ while (iter.hasNext())

+ GeckoApp.mAppContext.genThumbnailForTab(iter.next());

+ }

+ });

}

Note: the method genThumbnailForTab() compresses a bitmap to

produce a thumbnail for a browser tab.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

Figure 4.3: Firefox bug 721216

4.1.5 Common Patterns of Performance Bugs

To learn the root causes of our 70 performance bugs, we studied their bug reports,

patches, commit logs and patch reviews. We managed to figure out root causes for

52 of these bugs. For the remaining 18 bugs, we failed due to the lack of informative

materials (e.g., related bug discussions).

Performance bugs in Android applications can have complex or application-

specific root causes. For example, Firefox’s “slow tab closing” bug was caused by

heavy message communications between its native code and Java code (Firefox bug

719494 [15]), while AnkiDroid suffered GUI lagging because its database library was

inefficient (AnkiDroid bug 876 [5]). Despite such variety, we still identified three

common causes for 21 out of the 52 performance bugs (40.4%). We explain them

with concrete examples below.

Lengthy operations in main threads. As mentioned in Section 2.2, An-

droid applications should not block their main threads with heavy tasks [1]. How-

ever, when applications become increasingly more complex, developers tend to leave

lengthy operations in main threads. We observed quite a few occurrences of such

bugs (11 / 52 = 21.2%). Figure 4.3 gives a simplified version of Firefox bug

721216 [15] and its bug-fixing patch. This bug caused Firefox to suffer from GUI lag-

ging when its “tab strip” button was clicked. The bug occurred because the button’s

95

public class ZmanimActivity extends Activity {

private ZmanimLocationManager lm;

private ZmanimLocationManager.Listener locListener;

public void onCreate() {

//get a reference to system location manager

lm = new ZmanimLocationManager(ZmanimActivity.this);

locListener = new ZmanimLocationManager.Listener() {

public void onLocationChanged(ZmanimLocation newLoc) {

//build UI using obtained location in a new thread

rebuildUI(newLoc);

}

};

//register location listener

lm.requestLocationUpdates(GPS, 0, 0, locListener);

}

public void onResume() {

+ //register location listener if UI still needs update

+ if(buildingUINotFinished)

+ lm.requestLocationUpdates(GPS, 0, 0, locListener);

}

public void onPause() {

+ //unregister location listener

+ lm.removeListener(locListener);

}

public void onDestory() {

- //unregister location listener

- lm.removeListener(locListener);

}

}

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Figure 4.4: Zmanim bug 50

click event handler transitively called a refreshThumbnails() method, which pro-

duced a thumbnail for each browser tab by iteratively calling heavy-weight Bitmap

compression APIs (Lines 3–5). Later to fix this bug, developers moved such heavy

operations to a background thread (Lines 6–12), which can asynchronously update

Firefox’s GUI.

Wasted computation for invisible GUI. When an Android application switches

to background, it may still keep updating its invisible GUI. This brings almost no

perceptible benefit to its user, and thus the performed computation (e.g., collecting

data and updating GUI) simply wastes resources (e.g., battery power). Such bugs

also form a common pattern, which covers 6 of the 52 performance bugs (6 / 52 =

11.5%). For instance, Figure 4.4 lists the concerned code and corresponding bug-

96

Text 1

Text 2

Text 3

Text 4

Text 1

Text 2

Text 3

Text 4

Screen

System recycler

Text 1

Screen

//this callback constructs the new list item

View getView(int pos, View recycledView, ...)

Sc
ro

lli
ng

Old item goes
off screen and
gets recycled

New item goes
onto screen.

Figure 4.5: List view example

fixing patch for our aforementioned energy leak in Zmanim (bug 50) [37]. When

ZmanimActivity launches, it registers a location listener to receive location changes

for updating its GUI (Lines 5–14). The location listener is normally unregistered

when the activity is destroyed (Line 27). However, if a user launches Zmanim and

then switches it to background (Android OS will call onPause() and onStop() han-

dlers accordingly, but not onDestroy()), the application will keep receiving location

changes to update its GUI, which is, however, invisible. The location sensing and

GUI refreshing are then useless, but still drain battery power. This can be common

for many smartphone applications, because users often perform multiple tasks at

the same time (e.g., playing Facebook and Twitter while listening to music) and fre-

quently switch between them. To fix such bugs, developers have to carefully monitor

application states and disable unnecessary tasks when an application goes to back-

ground. For example, Firefox developers suggested disabling timers, animations,

DOM events, audio, video, flash plugins, and sensors when Firefox went to back-

ground (Firefox bug 736311 [15]). Similarly, as Figure 4.4 shows, Zmanim developers

disabled location sensing by unregistering the location listener in ZmanimActivity’s

onPause() handler (Line 23), and enabled it again in onResume() handler when

necessary (Lines 17–19).

Frequently invoked heavy-weight callbacks. Four out of the 52 performance

bugs (4 / 52 = 7.7%) concern frequently invoked callbacks. These callbacks need

to be light-weight since they are frequently invoked by Android OS. However, many

97

such callbacks in real-world applications are ill-implemented. They are heavy-weight

and can significantly slow down concerned applications. We illustrate such bugs with

a list view callback example below.

A list view displays a list of scrollable items and is widely used in Android

applications. Figure 4.5 gives one example, where each listed item contains two

elements (i.e., two inner views of the list item): an icon and a text label. When a

user scrolls up a list view, some existing items will go off the top of the screen while

some new items will be added to the bottom. To use a list view, developers need to

write an adapter class and define its getView() callback (see Figure 4.6 for example).

At runtime, when a new item needs to go onto the screen, Android OS will invoke

the getView() callback to construct and show this item. This callback conducts two

operations: (1) parsing the new item’s layout XML file and constructing a tree of

its elements (a.k.a., list item layout inflation), and (2) traversing the tree to retrieve

specific elements for updating (a.k.a., inner view retrieval and update). However,

XML parsing and tree traversing can be time-consuming when a list item’s layout is

complex (e.g., containing many elements or having hierarchical structures as Android

applications typically do). Screen scrolling can thus slow down if such operations

are commonly performed. For performance concerns, Android OS recycles each

item that goes off the screen while users scroll a list view. The recycled items can

be reused to construct new items that need to appear later. Such “recycle and

reuse” can be done as list items often have identical layouts.

We give two versions of getView() implementation in Figure 4.6. The first

inefficient version conducts two aforementioned operations (Lines 2–9) every time

the callback is invoked. The second version applies a “view holder” design pattern

suggested by Android documentation [67]. The basic idea is to reuse previously

recycled list items. It avoids list item layout inflation when there are recycled items

for reuse (Lines 24–25). Besides, when a list item is constructed for the first time,

the references to its inner view objects are identified and stored in a special data

structure (Lines 18–22; data structure defined at Lines 32–36). Later, when reusing

recycled items, these stored references can be used directly for updating content

(Lines 27–29), avoiding inner view retrieval operations. By doing so, the view holder

98

//inefficient version

public View getView(int pos, View recycledView, ViewGroup parent) {

//list item layout inflation

View item = mInflater.inflate(R.layout.listItem, null);

//find inner views

TextView txtView = (TextView) item.findViewById(R.id.text);

ImageView imgView = (ImageView) item.findViewById(R.id.icon);

//update inner views

txtView.setText(DATA[pos]);

imgView.setImageBitmap((pos % 2) == 1 ? mIcon1 : mIcon2);

return item;

}

//apply view holder pattern

public View getView(int pos, View recycledView, ViewGroup parent) {

ViewHolder holder;

if(recycledView == null) { //no recycled view to reuse

//list item layout inflation

recycledView = mInflater.inflate(R.layout.listItem, null);

holder = new ViewHolder();

//find inner views and cache their references

holder.text = (TextView) recycledView.findViewById(R.id.text);

holder.icon = (ImageView) recycledView.findViewById(R.id.icon);

recycledView.setTag(holder);

} else {

//reuse the recycled view, retrieve the inner view references

holder = (ViewHolder) recycledView.getTag();

}

//update inner view contents

holder.text.setText(DATA[pos]);

holder.icon.setImageBitmap((pos % 2) == 1 ? mIcon1 : mIcon2);

return recycledView;

}

//view holder class for caching inner view references

public class ViewHolder {

TextView text;

ImageView icon;

}

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Figure 4.6: View holder pattern

99

pattern can save both computation for list item layout inflation and inner view

retrieval, and memory for constructing new list items. Frequently invoked callbacks

should adopt such efficient designs.

Based on these findings, we answer our research question RQ4: Our study identi-

fied three common performance bug patterns: (1) lengthy operations in main threads,

(2) wasted computation for invisible GUI, and (3) frequently-invoked heavy-weight

callbacks. Researchers and practitioners should design effective techniques to prevent

and detect such performance bugs.

4.1.6 Discussions

Our findings of performance bugs in smartphone applications exhibit some unique

features, as compared with those from PC or server-side applications.

• Smartphone application platforms are new and quickly evolving. For example,

the current Android platform is not fully optimized and developers keep im-

proving its performance for better user experience. Smartphone applications

are thus susceptible to performance bugs due to such platform instability. As

shown earlier, Android users can easily manifest performance bugs by simple

daily operations.

• Smartphone applications run on devices with small-sized touch screens. Users

interact with these devices in a way that is very different from what they do

with PCs. For example, users perform screen scrolling much more frequently

on smartphones than on PCs. This makes GUI responsiveness and smoothness

more crucial for smartphones. Our study reported that GUI-related bugs

are pervasive and have become a dominant bug type that concerns Android

applications’ performance.

• Smartphone applications run on devices with small-capacity batteries, but

can access energy-consuming components like GPS sensor and accelerometer,

which are usually not available on PCs. Cost-ineffective uses of such compo-

nents can lead to high energy consumption. Indeed, we found energy leaks

100

were clearly severe in our studied Android applications. These comparisons

help researchers and practitioners understand how performance bugs occur

in smartphone applications, as well as explaining why they differ from their

counterparts in traditional PC or server-side applications.

Threats to validity. The validity of our study results may be subject to several

threats. The first is the representativeness of our selected Android applications. To

minimize this threat, we selected eight large-scale and popularly-downloaded An-

droid applications, which cover five different categories. We wish to generalize our

findings to more applications, and we will show in Section 4.3 how our findings can

help detect performance bugs for a wider range of Android applications. The second

threat is our manual inspection of the selected performance bugs. We understand

that manual inspection can be error-prone. To reduce this threat, we asked par-

ticipants to conduct manual inspections independently. We also re-examined and

cross-validated all results for consistency.

101

Algorithm 1: Detecting lengthy operations in main thread

Input : Application classes Classes

A list of heavy-weight or blocking APIs APIs

Output: A set of detected warnings Report

1. foreach cls ∈ Classes do

2. checkpoints← ∅;
// analyze class hierarchy

3. if isAppComponent(cls) then

4. handlers← findLifecycleHandlers(cls);

5. checkpoints.add(handlers);

6. end

7. if isGUIEventListener(cls) then

8. handler ← getGUIEventHandler(cls);

9. checkpoints.add(handler);

10. end

11. if checkpoints 6= ∅ then

12. foreach checkpoint ∈ checkpoints do

13. callgraph← makeCallGraph(checkpoint);

// depth-first call graph traversal

14. stack.push(checkpoint);

15. while stack is not empty do

16. method← stack.pop();

17. if method not visited before then

18. label method as visited;

19. if method ∈ APIs then

20. add a warning to Report;

21. end

22. push all callees of method to stack;

23. end

24. end

25. end

26. end

27. end

102

Algorithm 2: Detecting violations of the view holder pattern

Input : Application classes Classes

Output: A set of detected warnings Report

1. foreach cls ∈ Classes do

// analyze class hierarchy

2. if isListViewAdapter(cls) then

3. callback ← findGetViewCallback(cls);

4. cfg ← makeControlFlowGraph(callback);

5. pdg ← makeProgramDependencyGraph(cfg);

// traverse the PDG to find interesting CFG nodes

6. recycledItemCheckingNodes←
findRecycledItemCheckingNodes(pdg);

7. viewInflationNodes← findViewInflationNodes(pdg);

8. viewRetrievalNodes← findviewRetrievalnNodes(pdg);

9. if recycledItemCheckingNodes = ∅ then

// recycled list item is not reused

10. add a warning to Report;

11. else

12. foreach viNode ∈ viewInflationNodes do

13. depend←
checkDependency(pdg, viNode, recycledItemCheckingNodes);

14. if depend 6= true then

// unconditional list item layout inflation

15. add a waning to Report;

16. end

17. end

18. foreach vrNode ∈ viewRetrievalNodes do

19. depend←
checkDependency(pdg, vrNode, recycledItemCheckingNodes);

20. if depend 6= true then

// unconditional inner view retrieval

21. add a warning to Report;

22. end

23. end

24. end

25. end

26. end

103

Rule checkers

.apk / .class files

Analysis
Report

Warnings & suggestions
Static program analysis engine

Checkpoint locator

PerfChecker

Figure 4.7: Overview of our static analysis technique

4.2 Rule-based Performance Bug Detection

In order to help developers locate performance bugs in their applications, we de-

signed a light-weight static performance analysis tool PerfChecker on top of Soot [33],

a widely-used static analysis framework for Java programs, after observing common

performance bug patterns. Figure 4.7 gives a high level overview of PerfChecker. It

takes as input an Android application’s Java bytecode, performs static code analy-

sis, and generates warnings if it detects any issues that may affect the performance

of the application under analysis.3 Our current version of PerfChecker supports

detecting two of our identified performance bug patterns: (1) lengthy operations in

main threads, and (2) violations of the view holder pattern (as a concrete case of

the “frequently invoked heavy-weight callbacks” bug pattern). In the following, we

elaborate on the bug detection algorithms.

Detecting lengthy operations in main threads. Algorithm 1 describe the

detection process. For each application class, PerfChecker first conducts a class hi-

erarchy analysis to identify a set of checkpoints (Lines 2–10). These checkpoints

include the lifecycle event handlers defined in application component classes (e.g.,

the onCreate() handler of those classes that extend the Activity class) and GUI

event handlers defined in GUI event listener classes (e.g., the onClick() handler

of those classes that implement the View.OnClickListener interface). According

to Android’s single thread policy, these checkpoints are all executed in an Android

application’s main thread [1]. Therefore, any methods that are transitively called

3PerfChecker can also take an application’s installation .apk file as input and transform the
Dalvik bytecode to Java bytecode for analysis.

104

by a checkpoint would by default run in an application’s main thread unless they

are explicitly put to run in worker threads, which can be created by using various

concurrency programming mechanisms such as the APIs defined in the AsyncTask

class. Then, to detect lengthy operations in an Android application’s main thread,

PerfChecker constructs a call graph for each checkpoint, and traverses the graph in a

depth-first manner to check whether the following rule holds: the checkpoint should

not transitively invoke any heavy-weight or blocking operations (Lines 12–25). Cur-

rently, in our implementation, we have considered the following well-known heavy-

weight or blocking operations: networking, database query, file IO, Bitmap resizing

and media decoding. PerfChecker would check if any APIs for conducting these

operations are transitively invoked by any checkpoint. If yes, PerfChecker would

report warnings accordingly.

Detecting violations of the view holder pattern. Algorithm 2 describes the

view holder pattern violation detection process. Similarly, for each application class,

PerfChecker first conducts a class hierarchy analysis to identify a set of checkpoints

including all getView() callbacks defined in list view adapter classes (Lines 2–3).

PerfChecker then constructs a program dependency graph for each checkpoint (Lines

4–5), and traverses the graph to check whether the following three rules are violated:

• List item reuse. The list view callback should check if there are reusable list

items that were recycled by the system (Lines 9–10).

• Conditional list item layout inflation. List item layout inflation opera-

tions should be conditionally conducted based on whether there are reusable

list items (Lines 12–17).

• Conditional inner view retrieval. Inner view retrieval operations should be

conditionally conducted based on whether there are reusable list items (Lines

18–23).

PerfChecker would report a warning if it finds any violations of the above rules.

105

4.3 Experimental Evaluation

In this section, we conduct experiments to investigate whether our static perfor-

mance analysis tool can help developers fight with performance bugs in real-world

Android applications. The evaluation is driven by the following two research ques-

tions:

• RQ5 (Effectiveness and efficiency): Can PerfChecker efficiently and ef-

fectively identify performance optimization opportunities in real-world Android

applications?

• RQ6 (Performance improvement): How much can we improve the per-

formance of an Android application if its performance bugs detected by Per-

fChecker are fixed?

4.3.1 Effectiveness and Efficiency of PerfChecker

A. Experimental setup

To answer research question RQ5 about the effectiveness and efficiency of our static

performance analysis technique, we conducted experiments on real-world Android

applications. For the experiments, we selected two sets of Android applications as

subjects. The first set consists of the 29 open-source applications discussed earlier

in our empirical study (see Section 4.1). The second set consists of 10 top free

commercial Android applications selected from Google Play store. Tables 4.4 and 4.5

give the details of these applications. The tables report for each application: (1) its

name, (2) its category, (3) the revision / version used in our experiment,4 (4) its size,

(5) its number of downloads, and (6) its source code availability if it is open-source.

As we can see, our selected applications are large-scale, diverse (e.g., covering 14

different categories) and popular on market. We then downloaded these applications’

source code (for open-source applications) or installation .apk file (for commercial

4We chose the latest version / revision of these applications as our experimental subjects.

106

Table 4.4: Open-source Android applications used in PerfChecker evalu-
ation

Application name Application
Category Revision no. Size (LOC) Downloads Availability

Ushahidi Communication 59fbb533d0 43.3K 10K – 50K GitHub

c:geo Entertainment 6e4a8d4ba8 37.7K 1M – 5M GitHub

Omnidroid Productivity 865 12.4K 1K – 5K Google Code

Open GPS Tracker Travel & Local 14ef48c15d 18.1K 100K – 500K Google Code

Geohash Droid Entertainment 65bfe32755 7.0K 10K – 50K Google Code

Android Wifi Tether Communication 570 9.2K 1M – 5M Google Code

Osmand Travel & Local 8a25c617b1 77.4K 500K – 1M Google Code

My Tracks Health & Fitness e6b9c6652f 27.1K 10M – 50M Google Code

WebSMS Communication 1f596fbd29 7.9K 100K – 500K Google Code

XBMC Remote Media & Video 594e4e5c98 53.3K 1M – 5M Google Code

ConnectBot Communication 716cdaa484 33.7K 1M – 5M Google Code

Firefox Communication 895a9905dd 122.9K 10M – 50M Mozilla Repositories

APG Communication a6a371024b 98.2K 50K – 100K Google Code

FBReaderJ Books & References 0f02d4e923 103.4K 5M – 10M GitHub

Bitcoin Wallet Finance 12ca4c71ac 35.1K 100K – 500K Google Code

AnySoftKeyboard Tools 04bf623ec1 26.0K 500K – 1M GitHub

OI File Manager Productivity f513b4d0b6 7.8K 5M – 10M GitHub

IMSDroid Media & Video 553 21.9K 100K – 500K Google Code

Chrome Communication 58e8ec4010 77.3K 50M – 100M Google Code

EbookDroid Productivity 2013 69.8K 1M – 5M Google Code

Remote Notifier Productivity 7c31ec8497b5 6.1K 100K – 500K Google Code

SMSDroid Communication f5f2d9285e 6.9K 100K – 500K Google Code

Zmanim Books & References 505 4.3K 10K – 50K Google Code

Barcode Scanner Shopping 2833 10.1K 100M – 500M Google Code

Osmdroid Travel & Local 863 10.3K 50K – 100K Google Code

AnkiDroid Education 3f1522c2ab 44.8K 500K – 1M Google Code

Sofia Public Transport
Nav. Transportation d3360500cdc4 2.5K 50K – 100K Google Code

CSipSimple Communication 2278 46.6K 1M – 5M Google Code

K-9 Mail Communication 57c998becc 76.2K 1M – 5M Google Code

107

Table 4.5: Commercial Android applications used in PerfChecker evalu-
ation

Application name Category Version Size (MB) Downloads

Reddit is fun News & Magazines 3.1.13 4.0 1M – 5M

WeChat Communication 5.1 25.5 100M – 500M

BBC News News & Magazines 2.5.2 2.3 5M – 10M

Sina Weibo Social 4.2.6 22.4 5M – 10M

Flipboard News & Magazines 2.2.7 5.2 100M – 500M

Facebook Social 6.0.0.28.28 14.9 500M – 1B

LINE Communication 4.0.1 19.4 100M – 500M

Skype Communication 4.6.0.42007 17.2 100M – 500M

Dropbox Productivity 2.3.12.10 15.1 100M – 500M

Twitter Social 5.2.2 9.0 100M – 500M

Notes: 1M=1,000,000 and 1B= 1,000,000,000. We only count downloads from Google Play store.

applications) from corresponding software hosting platforms or Google Play store.

For open-source applications, we complied them for their target Android platform

version and obtained the Java bytecode for analysis. For commercial applications,

whose source code are not available, we transformed the Dalvik bytecode in their

.apk file to Java bytecode using the dex2jar tool [11]. After such preparation, we then

applied our tool on these application subjects for experiments. All our experiments

were conducted on a Linux server with 16 cores of Intel Xeon CPU @2.10GHz

running CentOS 6.4 64-bit. When analyzing each application subject, we set the

maximum JVM heap size to 4 GB. In the following, we discuss the results of our

experiments on the two sets of Android applications.

B. Experiment results on open-source Android applications

In our first set of experiments, we applied PerfChecker to the 29 open-source An-

droid applications, which comprise more than 1.1 million lines of Java code, to

study its effectiveness and efficiency of detecting performance bugs. PerfChecker

quickly finished the analyses of all subjects. Table 4.6 gives its analysis time for

108

Table 4.6: Analysis time for open-source Android applications

Application name
Analysis time (seconds)

VH checker LM checker

Ushahidi 3.29 35.94

c:geo 2.21 32.07

Omnidroid 2.82 8.75

Open GPS Tracker 1.83 15.68

Geohash Droid 1.17 6.35

Android Wifi Tether 1.41 9.82

Osmand 3.97 19.76

My Tracks 2.11 24.33

WebSMS 1.18 14.24

XBMC Remote 3.32 17.69

ConnectBot 2.01 16.89

Firefox 7.63 276.68

APG 2.21 10.72

FBReaderJ 2.64 23.89

Bitcoin Wallet 2.35 20.51

AnySoftKeyboard 1.65 7.22

OI File Manager 1.69 10.23

IMSDroid 2.20 15.12

Chrome 6.31 112.24

EbookDroid 3.67 26.72

Remote Notifier 2.97 9.72

SMSDroid 2.26 15.74

Zmanim 5.58 12.42

Barcode Scanner 8.71 13.26

Osmdroid 1.39 9.97

AnkiDroid 3.97 46.79

Sofia Public Transport Nav. 1.46 5.85

CSipSimple 3.97 17.18

K-9 Mail 6.12 61.64

Heap: 4096

109

Table 4.7: Performance bugs detected in open-source Android applica-
tions

Application name
Reported warnings True bug pattern instances

Bug ID(s)
VH (86) LM (82) VH (69) LM (57)

Ushahidi 13 3 9* 2 146, 159

c:geo 7 8 0 5 3054

Omnidroid 9 8 9 8 182, 183

Open GPS Tracker 3 1 1 0 390

Geohash Droid 0 1 0 1 48

Android Wifi Tether 1 3 1 3 1829, 1856

Osmand 19 19 18 17 1977, 2025

My Tracks 2 5 2* 0 1327

WebSMS 0 1 0 1 801

XBMC Remote 3 3 1 0 714

ConnectBot 0 7 0 6 658

Firefox 1 0 1 0 899416

APG 4 9 4 8 140, 144

FBReaderJ 6 12 6* 6 148, 151

Bitcoin Wallet 5 1 4 0 190

AnySoftKeyboard 2 0 2* 0 190

OI File Manager 1 0 1* 0 39

IMSDroid 10 1 10 0 457

Note: “VH” means “Violation of the view Holder pattern”, and “LM” means “Lengthy operations in Main threads”.

110

each application subject. As we can see, PerfChecker can finish detecting violations

of view holder pattern for each application within a few seconds (the second col-

umn of Table 4.6), and lengthy operations in main threads within a few minutes

(the third column of Table 4.6).5 The memory consumption of the analyses was

not high. During the experiments, we did not observe any memory pressure when

the maximum JVM heap size was set to 4 GB. In fact, the analyses of the view

holder pattern violations for our application subjects never consumed more than 1

GB memory. The analyses of lengthy operations in main threads can consume max-

imum 3 GB memory for some large-size application subjects such as Firefox, but

still such overhead can be well supported by PCs nowadays. Therefore, we consider

our analysis technique efficient and light-weight.

As for the effectiveness, PerfChecker reported 86 warnings of view holder pattern

violations and 82 warnings of lengthy operations in main threads in 18 out of the

29 analyzed applications, as shown in Table 4.7.6 Since the source code of these

applications are readily available, we then carefully examined the corresponding

source files to check whether the reported warnings are true bug pattern instances

or false alarms. After the manual inspection, we found that 126 (75%) of the 168

reported warnings are true bugs. For example, Osmand is a popular map and

navigation application for Android devices. PerfChecker detected 17 application

classes containing event handlers that invoke file IO and database query APIs in

Osmand’s main thread, and 18 violations of the view holder pattern.

We reported our findings (i.e., detected bugs) as well as optimization suggestions

to corresponding application developers. Encouragingly, we received prompt and

enthusiastic feedback from them. Altogether, 68 reported bugs (54.0%; bold and

underlined in Table 4.7) have been confirmed by developers as real issues that affect

application performance. These issues cover 9 of the 18 applications (50.0%). 20

5The results were averaged over three different runs.

6For each analyzed application class, PerfChecker may generate several warnings for each bug
pattern. For example, it may report that several lifecycle event handlers in an activity class can
transitively call heavy APIs. In such cases, when we count the number of warnings, we only count
once for the class. This also applies to our experiments on commercial Android applications.

111

of the 68 confirmed issues (29.4%; marked with “*” in Table 4.7) have been fixed

in a timely fashion by following our suggestions. Some developers, although not

immediately fixing their confirmed issues, promised to optimize their applications

according to our suggestions in future releases (e.g., My Tracks bug 1327 [25]).

Other reported issues are pending (their concerned applications may not be under

active maintenance). In addition to reporting bugs, we also communicated with

developers via bug reports and emails, and obtained some interesting findings as

discussed below.

First, developers showed great interest in our performance analysis tool. For

example, we received the following feedback:

“Thanks for reporting this. I’ll take a look at it. Just curious, where is

this static code checker? Anywhere I can play with it as well? Thanks.”

(Ushahidi bug 159 [35])

“Thanks for your report. The code is only a year old. That’s probably the

reason (why it’s not well optimized). Your static analyzer sounds really

interesting. I wonder if lint can also check this.7” (OI File Manager bug

39 [26])

These comments suggest that developers welcome performance analysis tools to

help optimize their Android applications. Our PerfChecker is helpful, especially for

complex applications. For example, it detected some applications transitively calling

heavy-weight APIs in their main threads, and the call chains can last for tens of

method calls (e.g., c:geo bug 3054 [6]). Such bugs can easily escape to production and

degrade user experience. Unfortunately, there are few industrial-strength tools to

support smartphone applications’ performance analysis. Thus there is a strong need

for effective tools to help smartphone application developers fight with performance

bugs.

7Lint is a static checker in Android Studio [3], which is an official integrated development
environment for Android applications. It can detect performance threats like using getters instead
of direct field accesses within a class, but did not support our identified performance bug patterns
at our study time. Details can be found at http://tools.android.com/tips/lint-checks.

112

http://tools.android.com/tips/lint-checks

Second, some developers held conservative attitudes toward performance opti-

mization. They concerned much, e.g., (1) whether optimization can bring significant

performance gains, (2) whether optimization can be done easily, and (3) whether

optimization helps toward an application’s market success. They hesitated to con-

duct performance optimization when the optimization seem to require a lot of effort

but bring no immediate benefits. For example, WebSMS and Firefox developers

responded as follows:

“You are totally right. WebSMS is ported from J2ME and has a very old

code base ... If I would write it from scratch, I’d do things differently.

I once started refactoring, but gave up in the end. There were other

things to do, and the SMS user base is shrinking globally If you want to

help, just fork it on GitHub and let me merge your changes. I’d be very

thankful.” (WebSMS bug 801 [36])

“Thanks for the report! This shouldn’t be a big concern; that UI is not a

high-volume part. We’ll keep this bug open, and I’d accept a patch which

improves the code, but it’s not a high-priority work item.” (Firefox bug

899416 [15])

Finally, some developers were cautious and willing to conduct code optimization

to improve performance or maintainability for their applications. For example, c:geo

developers responded:

“Such optimizations are ‘micro optimizations’, and they do not improve

the user visible performance. Good developers however will still refactor

code into the better version, mostly to make it more readable.” (c:geo

bug 222 [6])

They also quickly fixed this reported performance bug. This may explain why

c:geo keeps being highly-rated and popularly-downloaded (1M–5M downloads) on

the market.

113

Table 4.8: Analysis time and detected performance bugs in commercial
Android applications

Application name Analysis time (seconds) Reported warnings True violations

Reddit is fun 6.55 8 2

WeChat 10.69 18 12

BBC News 2.74 3 0

Sina Weibo 9.19 43 10

Flipboard 6.28 18 10

Facebook 3.77 1 0

LINE 8.60 5 2

Skype 4.94 13 5

Dropbox 4.22 5 1

Twitter 7.64 16 4

Heap: 4096

C. Experiment results on commercial Android applications

In our second set of experiments, we applied the view holder pattern violation

checker in PerfChecker to the 10 popular commercial Android applications shown

in Table 4.5 to study whether PerfChecker can help locate performance optimiza-

tion opportunities.8 PerfChecker quickly finished the analyses of these application

subjects and reported a set of warnings, as shown in Table 4.8. Similar to our first

set of experiments, we manually validated each reported warning by checking the

concerned application’s source code, which is decompiled from Java bytecode, to see

if it is a true bug or false alarm. However, due to obfuscation, the transformed Java

bytecode is of low quality and the source code obtained via decompilation has poor

comprehensibility. Therefore, in our manual validation, we conservatively consid-

8We also applied the lengthy operation checker to these application subjects. However, we were
not able to manually validate if the reported warnings are true issues due to the lack of source
code and heavy obfuscation (note that we need to check the method call chains of certain event
handlers). So we did not include the checker in this study.

114

ered a reported violation as a “true violation” only when we were highly confident

that we correctly understood the concerned source code and it is indeed problem-

atic. The last column of Table 4.8 reports the number of true violations after our

validation. We observe that PerfChecker found real performance threats for 8 out

the 10 applications. We then reported these true violations to corresponding devel-

oper teams and received enthusiastic confirmation and acknowledgement (confirmed

violations are underlined in Table 4.8):

“We really appreciate your valuable comments and suggestions on im-

proving Line. We would like to pass your comments to the relevant de-

partments, where they may be used for future versions of LINE.” (LINE

Customer Support)

“It feels great to be tested by your tool and it is awesome to connect with

bright developers this way. We want to explore more interesting stuff

around Android development with you.” (Flipboard Customer Support)

Interestingly, when analyzing Twitter, we found six warnings of view holder

pattern violation in the latest version of Samsung Mobile SDK (1.5 Beta1) [31],

which is used by Twitter. We also manually examined these warnings and confirmed

that they are all true issues. We reported our findings to Samsung developers . They

were very interested and generally agreed that improving the performance of this

SDK can benefit both application developers and end users.9

“With such powerful hardware, developers got lazy and started employ-

ing bad habits. . . . If we have better SDK (e.g., improving their perfor-

mance), we have happier developers and happier end-users.” (Samsung

developer)

Based on the experiment results discussed above, we can see that our perfor-

mance analysis tool detected quite a few previously-unknown issues that affect per-

formance in a wide range of real-world Android applications as well as a widely-used

9For more details, please refer to the Samsung developer forum: http://developer.samsung.
com/forum/board/thread/view.do?boardName=SDK&messageId=256618.

115

http://developer.samsung.com/forum/board/thread/view.do?boardName=SDK&messageId=256618
http://developer.samsung.com/forum/board/thread/view.do?boardName=SDK&messageId=256618

application development library. This validates the usefulness of our empirical find-

ings.

D. Discussions

Our PerfChecker reported some false alarms in the experiments. For the open-source

applications, 42 (25%) of the 168 reported warnings are not true issues. We checked

these warnings and found the major reason of such false positives. In order to pre-

cisely locate view holder pattern violations and lengthy operations in main threads,

our algorithms need precise call graphs and program dependency graphs as input.

However, these graphs constructed by Soot may not be precise in practice. For

example, without correctly knowing the type of a method call receiver when resolv-

ing a virtual call, Soot may not be able to determine the exact called method and

would produce a call graph with imprecise edges. For the commercial applications,

we observe that our PerfChecker generated more false alarms (we were only confi-

dent that 35.4% of the reported warnings are true issues after manual validation).

This is because these commercial applications are heavily obfuscated. The Java

bytecode obtained via transforming Dalvik bytecode is of low quality (e.g., some

type information can not be preserved after the transformation [78]), which seri-

ously affects the analysis precision of Soot and therefore our PerfChecker. However,

this will not be a problem in reality. Our PerfChecker is built to help developers

conduct performance analysis on their own smartphone applications. In such usage

scenarios, application source code is available and PerfChecker can take high-quality

Java bytecode as input for analysis. The results of our first set of experiments con-

firmed that PerfChecker’s analysis precision on open-source application subjects is

satisfactory.

During our communications with developers, we observed that many of them

are interested in our static performance analysis technique. In view of this, we later

contacted Android Studio developers and suggested to integrate the view holder vio-

116

Table 4.9: Subjects and bugs for the performance comparison experi-
ments

Application name Bug ID Buggy class Fixed
revision

Ushahidi 146 com.ushahidi.android.app.adapters.

ListMapAdapter
e1b4c17b33

My Tracks 1327 com.google.android.apps.mytracks.fragments.

ChooseActivityDialogFragment
f211d192b2

FBReaderJ 148 org.geometerplus.android.fbreader.TOCActivity 0b97ef54f4

AnySoftKeyboard 190 com.anysoftkeyboard.ui.settings.

AddOnListPreference
1325146f71

OI File Manager 39 org.openintents.filemanager.bookmarks.

BookmarkListAdapter
8c9c4292ca

lation checker into Lint, Android Studio’s built-in static checker [3]. The developers

took our suggestion and Lint now has included the checker from version 0.5.2.10

4.3.2 Performance Improvement Study

A. Experimental setup

To answer research question RQ6 about potential performance improvement if the

performance bugs detected by PerfChecker are fixed, we conducted a set of com-

parison experiments. Since our reported performance bugs in five open-source ap-

plication subjects have been fixed by the corresponding developers (see Table 4.7),

we used these five applications as our experimental subjects. For the experiments,

we randomly selected one fixed performance bug for each of the five applications.

Table 4.9 lists the basic information of each selected bug, including (1) the name

of the corresponding application subject, (2) the bug ID, (3) the buggy class, and

(4) the revision in which developers fixed the bug. These bugs are all view holder

pattern violations.

To conduct comparison experiments, we prepared two versions for each applica-

tion subject: one with the selected performance bug (will be referred to the “buggy

10See more details at http://tools.android.com/recent/androidstudio052released

117

http://tools.android.com/recent/androidstudio052released

1
,0

0
0
,0

0
0

1
,5

0
0
,0

0
0

2
,0

0
0
,0

0
0

3
,0

0
0
,0

0
0

4
,0

0
0
,0

0
0

Buggy Optimized

median:

 1,285,055

median:

 3,271,027

(a) Ushahidi

A
v
er

ag
e

li
st

 i
te

m
 r

en
d
er

in
g
 t

im
e

(n
an

o
 s

ec
o
n
d
s)

2
0
0
,0

0
0

5
0
0
,0

0
0

1
,0

0
0
,0

0
0

2
,0

0
0
,0

0
0

(b) My Tracks

Buggy Optimized

median:

 195,647

median:

 1,706,284

5
0
0
,0

0
0

1
,0

0
0
,0

0
0

2
,0

0
0
,0

0
0

(c) FBReaderJ

Buggy Optimized

median:

 453,892

median:

 1,419,688

1
,0

0
0
,0

0
0

2
,0

0
0
,0

0
0

3
,0

0
0
,0

0
0

5
,0

0
0
,0

0
0

Buggy Optimized

median:

 1,378,884

median:

 4,010,169

(d) AnySoftKeyboard

A
v
er

ag
e

li
st

 i
te

m
 r

en
d
er

in
g
 t

im
e

(n
an

o
 s

ec
o
n
d
s)

3
,0

0
0
,0

0
0

5
,0

0
0
,0

0
0

8
,0

0
0
,0

0
0

1
2
,0

0
0
,0

0
0

Buggy Optimized

median:

 4,953,093

median:

 7,962,814

(e) OI File Manager

Figure 4.8: Average list item rendering time of studied subjects

118

version”) and the other in which the performance bug has been fixed (will be re-

ferred to as the “optimized version”). For the buggy version of each subject, we used

the revision, which was used in our previous performance bug detection experiments

(see Table 4.4). To prepare the optimized version for each subject, we replaced the

buggy version’s list view callback getView() with that of the bug fixing revision.11

We did not simply use the bug fixing revision of each subject as its optimized ver-

sion because there were also other revisions between the buggy version and the bug

fixing revision. The code changes in those revisions may have unknown effect on the

performance of the application.

Next, we carefully studied our application subjects and designed a test scenario

for each of them. In these test scenarios, a tester will interact with the concerned list

view widgets in an intuitive manner, which represents real user behaviors. Specifi-

cally, each test scenario consists of the following steps: (1) start the application, (2)

go to the screen that contains the list view widget (the concrete actions required in

this step differ across applications), (3) scroll up the list view to the first item,12

(4) scroll down the list view to the last item, and (5) exit the application and go to

the “Home” screen. To measure the scrolling smoothness of the list view widgets,

we manually instrumented the two versions of each subject to calculate and record

the time used to render each list item (i.e., the execution time of the getView()

callback). A list view widget will have better scrolling smoothness if its list items

are rendered faster. After these preparations, we then conducted our experiments

on a Nexus 5 smartphone running Android 4.4. For each version of an application

subject, we ran the corresponding test scenario 100 times using the capture and

replay technique [51]. More specifically, before comparing the two versions of each

subject, we first manually performed the sequence of actions in the test scenario

11In some subjects, we also need to make other necessary modifications besides the callback
replacement. For example, the getView() callback in the bug fixing revision of FBReaderJ invoked
newly defined methods for implementing the view holder pattern and such new methods will also
be copied to the buggy version for preparing the optimized version.

12The content of list items was prepared by us. For example, in the application OI File Manager,
the list view widget is used to display bookmarks to certain folders or files and we created such
bookmarks. Such set up is necessary for the comparison experiments.

119

and captured the interaction using a tool named Finger Replayer [12]. We then

used the tool to replay the test scenario on each version 100 times. Besides, we also

killed other applications before running each version of our application subject to

avoid their effect on the performance of our application subject (e.g., other running

applications may compete for computational resources such as CPU and this can

affect the list item rendering time of our application subject). To further ensure that

we ran the two versions of each application subject in a consistent environment, we

always kept the device fully-charged, connected to the power source and running in

the airplane mode during the experiments.

B. Experiment results

We now discuss the results of our experiments. For each version of an application

subject, we measured its average list item rendering time 100 times. Figure 4.8

gives the results using boxplots. We can see that the results consistently show

that the optimized version of each subject requires less time to render list items.

Take the application My Tracks for example. The median of the average list item

rendering time is 1,706,284 nano seconds for its buggy version and 195,647 nano

seconds for its optimized version. In other words, the list items in the optimized

version of My Tracks can be rendered over 8 times faster than in the buggy version

(the improvements for other application subjects are shown in Table 4.10). To

understand whether the optimized version of each application subject can render

list items significantly faster than the buggy version, we further conducted Mann-

Whitney U-test [71] for each application subject with the following two hypotheses:

• Null hypothesis H0. The average list item rendering time of the optimized

version is not significantly smaller than that of the buggy version.

• Alternative hypothesis H1. The average list item rendering time of the

optimized version is significantly smaller than that of the buggy version.

Table 4.10 reports the results of the U-tests (p-values). The results rejected

the null hypotheses all with high confidence (i.e., p-values are all nearly 0 for all

120

Table 4.10: Performance improvement and Mann-Whitney U-test results

Application
name

Average list item rendering time (nano seconds)
p-value of U-testBuggy version

(mean value)
Optimized version

(mean value) Improvement

Ushahidi 3,273,540 1,292,408 2.5x 3.6e-41

My Tracks 1,712,820 200,001 8.6x 3.6e-41

FBReaderJ 1,404,155 460,557 3.0x 1.2e-32

AnySoftKeyboard 4,011,937 1,386,251 2.9x 4.3e-36

OI File Manager 8,391,398 4,774,003 1.8x 2.9e-36

application subjects). Thus, we conclude that there is a significant performance

improvement for all subjects after the detected bugs are fixed.

In practice, in oder to keep a Android application’s user interface (UI) smooth,

developers need to make sure that the system can render the UI at a frame rate of 60

FPS (frames per second) or above [1]. To achieve this target, an application typically

needs to be able to prepare a list item in a couple of milliseconds. Therefore, even

one millisecond saved in rendering a list item is helpful to guarantee satisfactory

user experience. This further shows the usefulness of our technique.

4.4 Related Work

Our work in this chapter relates to a large body of existing work on testing, de-

bugging, bug detection and understanding for application performance. We discuss

some representative pieces of work in recent years. Some of them focus on smart-

phone application performance, while others are for PC or server-side applications.

121

4.4.1 Detecting Performance Bugs

Much research effort has been devoted to automating performance bug/issue detec-

tion.13 For example, Xu et al. used cost-benefit analysis to detect high-cost data

structures that bring little benefit to a program’s output [96]. Such data struc-

tures can cause memory bloat. Xiao et al. used a predictive approach to detect

workload-sensitive loops that contain heavy operations, which often cause perfor-

mance bottlenecks [95]. Recent work Toddler by Nistor et al. detected repetitive

computations that have similar memory-access patterns in loops. Such computa-

tions can be unnecessary and subject to optimization [77]. These pieces of work

focused on performance issues in PC or server-side applications, while there are also

other pieces of work particularly focusing on smartphone application performance.

For example, Pathak et al. studied no-sleep energy bugs in Android applications

and used reaching-definition dataflow analysis to detect such bugs (e.g., an applica-

tion forgets to unregister a used sensor) [84]. Following in this direction, Guo et al.

further proposed a technique to detect general resource leaks, which often cause per-

formance degradation [53]. Similar to Xu et al.’s [96] and Zhang et al.’s work [101],

we previously leveraged cost-benefit analysis to detect whether an Android applica-

tion uses sensory data in a cost-ineffective way (see Chapter 3.2.4). Potential energy

leak bugs can be reported after cross-state data utilization comparisons.

4.4.2 Performance Testing

Performance testing is challenging due to the lack of test oracles and effective test

input generation techniques. Some ideas have been proposed to alleviate such chal-

lenges. For example, Jiang et al. used performance baselines extracted from histori-

cal test runs as tentative oracles for new test runs [56]. Grechanik et al. learned rules

from existing test runs, e.g., what inputs have led to intensive computations. They

used such rules to select new test inputs to expose performance issues [52] These

13Some researchers prefer “performance issue” to “performance bug”. We do not have a prefer-
ence and use the two terms interchangeably.

122

ideas work well for PC applications, but it is unclear whether they are effective

for smartphone applications. Our empirical study discloses that many performance

bugs in smartphone applications need certain user interaction sequences to mani-

fest. Besides, smartphone applications also have some unique features, e.g., long

GUI lagging can force an Android application to close. Such requirements and

features should be considered in order to design effective techniques to test the per-

formance of smartphone applications. We have observed initial attempts along this

direction. For example, Yang et al. tried to crash an Android application by adding

a long delay after each heavy API call to test GUI lagging issues [98]. Jensen et

al. studied how to generate user interaction sequences to reach certain targets in

an Android application [55]. These attempts support performance testing of An-

droid applications, but how to assess the testing adequacy is still unclear. Our work

thus motivates new attempts for performance testing adequacy criteria, as well as

effective techniques to expose performance issues in smartphone applications.

4.4.3 Performance Debugging and Optimization

Existing work on debugging and optimization for smartphone application perfor-

mance mainly falls into two categories. The first category estimates performance for

smartphone applications to aid debugging and optimization tasks [54, 63, 83, 102].

For example, Mantis [63] estimated the execution time for Android applications

on given inputs. This helps identify problem-inducing inputs that can slow down

an application, so that developers can conduct optimization accordingly. Power-

Tutor [102], Eprof [83] and eLens [54] estimated energy consumption for Android

applications by different energy models. They can help debug energy leak issues.

For example, eLens offered fine-grained energy consumption estimation at source

code level (e.g., method and line level estimation) to help locate energy bottlenecks.

The second category of existing work uses profiling to log performance-related in-

formation to aid debugging and optimization tasks [87, 89, 100]. For example,

ARO [87] monitored cross-layer interactions (e.g., those between the application

layer and the resource management layer) to help disclose inefficient resource usage,

which commonly causes performance degradation to smartphone applications. Ap-

123

pInsight [89] instrumented application binaries to identify critical paths (e.g., slow

execution paths) in handling user interaction requests, so as to disclose root causes

for performance issues. Panappticon [100] shared the same goal as AppInsight, and

further revealed performance issues from inefficient platform code or problematic

application interactions. There are also performance debugging techniques [58, 91]

for PC applications. For example, LagHunter [58] detected user-perceivable laten-

cies in interactive applications (e.g., Eclipse); Shen et al. constructed a system-wide

I/O throughput model to guide performance debugging [91]. These techniques may

not apply to multi-threaded and asynchronous smartphone applications, because

LagHunter tracked only synchronous UI event handling and Shen et al.’s work re-

quired a system-level performance model, which may not be available.

4.4.4 Understanding Performance Bugs

Finally, understanding and learning characteristics of performance bugs is a very

important step toward designing effective techniques to test and debug performance

issues. Existing characteristic studies have mainly focused on PC or server-side

applications [57, 76, 99]. For example, Zaman et al. [99] studied performance bug

reports from Firefox and Chrome (for PCs), and gave recommendations on how to

better conduct bug identification, tracking and fixing. Jin et al. [57] studied the

root causes of performance bugs in several selected PC or server-side applications,

and identified efficiency rules for their detection. The most recent work by Nistor

et al. [76] studied lifecycles of performance bugs (e.g., bug discovery, reporting and

fixing), and obtained some interesting findings. For instance, there is little evidence

showing that fixing performance bugs has a high chance of introducing new bugs.

This encourages developers to conduct performance optimization whenever possi-

ble. However, there is a lack of similar studies on performance bugs in smartphone

applications. Our work fills this gap by studying 70 real-world performance bugs

from large-scale and popularly-downloaded Android applications. Our study also

reveals some interesting findings, which differ from those for performance bugs in

PC or server-side applications. These findings can help researchers and practition-

ers to better understand performance bugs in smartphone applications, as well as

124

proposing new techniques to fight with these bugs (e.g., as we did in our evaluation

part).

4.5 Chapter Summary

In this chapter, we conducted an empirical study of 70 performance bugs from

real-world Android applications. We reported our study results, which revealed

several unique features of performance bugs in smartphone applications. We also

identified three common bug patterns, which can support related research on bug

detection, performance testing and debugging. To validate the usefulness of our em-

pirical findings, we designed a static performance analysis technique PerfChecker,

which supports detecting two of our identified performance bug patterns. We imple-

mented PerfChecker and applied it to a large set of real-world Android applications.

It detected many real and previously-unknown performance issues and developers

have fixed some critical ones after we reported to them. In addition, we also showed

by comparison experiments that fixing the bugs detected by PerfChecker can in-

deed significantly improve the performance of the corresponding applications. This

encouragingly confirmed the usefulness of our empirical findings and performance

analysis technique.

125

Chapter5

Conclusions

In this chapter, we summarize the research work we have completed in this thesis,

discuss our ongoing work, and explore our future work.

5.1 Summary of Completed Work

Energy efficiency and performance are two critical factors that affect mobile appli-

cations’ quality and user experience. However, many real-world mobile applications

suffer from serious energy and performance bugs, causing significant user frustra-

tions. In this thesis, we presented our research on understanding and detecting

energy and performance bugs in Android applications.

To understand energy and performance bugs, we conducted two large-scale em-

pirical studies of real energy and performance bugs collected from popular Android

applications. We carefully studied the characteristics of these bugs such as how

they manifest themselves and the difficulties developers encountered when diagnos-

ing these bugs. We also studied the root causes of these bugs and identified several

common bug patterns.

To help developers locate energy and performance bugs in their Android applica-

tions, we designed two automated techniques based on our identified bug patterns.

The first technique GreenDroid is a dynamic analysis technique. It systematically

generates user interaction events sequences to execute an Android application and

closely monitors the application’s runtime behavior to locate energy bugs that arise

from the misuse of device sensors and wake locks. The second technique PerfChecker

is a static analysis technique. It automatically scans an Android application’s byte-

code and checks the application’s implementation against a set of efficiency rules

126

formulated from our empirical studies to locate heavy-weight program callbacks and

operations that can seriously reduce an application’s responsiveness.

We evaluated GreenDroid and PerfChecker by extensive experiments. The ex-

periment results showed that our technique can efficiently and effectively locate real

energy and performance bugs in a wide range of popular open-source and commercial

Android applications. Fixing the detected bugs can significantly improve the energy

efficiency and performance of these applications. This confirms the usefulness of our

research.

5.2 Ongoing Work and Future Work

Our techniques presented in this thesis only addressed several common patterns

of energy and performance bugs in Android applications. In reality, energy ineffi-

ciency and performance degradation in mobile applications can be caused by various

reasons. There is much to explore in this research area.

In our ongoing work, we are studying another common pattern of energy bugs.

We found that in many Android applications, there are scenarios where an appli-

cation unnecessarily keeps the device awake for long time using wake locks. This

differs from the missing wake lock deactivation pattern studied in Chapter 3 in that

the wake locks are eventually released. Diagnosing such wake lock misuse is chal-

lenging because it is difficult to judge whether the computation during the wake lock

holding time is the critical computation, which should be protected by wake locks

(i.e., judging the necessity of wake locks is difficult). To address this challenge, we

are investigating a large number of real-world Android applications to study how

they use wake locks. Our preliminary finding is that when an Android application

holds a wake lock, it is typically using system resources to perform long running

computation that can bring users perceptible benefits (e.g., using the audio system

to play music in background). Such findings will help us formulate decidable criteria

to support detecting unnecessary use of wake locks.

In future, we plan to conduct more investigations of energy and performance

bugs in mobile applications (not restricted to the Android platform), aiming to

127

better understand these bugs and identify more bug patterns. For example, in

our energy bug empirical study, we found that a non-negligible proportion (about

16%) of energy bugs were caused by network issues (e.g., energy-inefficient data

transmission). We are planning to study these issues to further extend the detection

capability of our techniques. We hope that our research together with related work

can help improve the quality and user experience of mobile applications, which can

potentially benefit millions of users around the world.

128

List of Publications

Thesis-related publications:

• Yepang Liu, Chang Xu, and Shing-Chi Cheung. Diagnosing Energy Efficiency

and Performance for Mobile Internetware Applications. IEEE Software, 32(1):67–75,

Jan 2015.

• Yepang Liu, Chang Xu, Shing-Chi Cheung, and Jian Lu. GreenDroid: Au-

tomated Diagnosis of Energy Inefficiency for Smartphone Applications. IEEE

Transactions on Software Engineering, 40(9):911–940, Sept 2014.

• Yepang Liu, Chang Xu, and Shing-Chi Cheung. Characterizing and Detect-

ing Performance Bugs for Smartphone Applications. In Proceedings of the 36th

International Conference on Software Engineering, ICSE 2014, pages 1013–1024,

Hyderabad, India, June 2014. ACM SIGSOFT Distinguished Paper Award.

• Yepang Liu, Chang Xu, and Shing-Chi Cheung. Where Has My Battery Gone?

Finding Sensor Related Energy Black Holes in Smartphone Applications. In Pro-

ceedings of the 11th IEEE International Conference on Pervasive Computing and

Communications, PERCOM 2013, pages 2–10, San Diego, CA, USA, Mar 2013.

Other publications:

• Wenhua Yang, Yepang Liu, Chang Xu, and Shing-Chi Cheung. A Survey on

Dependability Improvement Techniques for Pervasive Computing Systems. In

Science China Information Sciences, 58(5):1–14, May 2015.

• Xiujiang Li, Yanyan Jiang, Yepang Liu, Chang Xu, Xiaoxing Ma, and Jian Lu.

User Guided Automation for Testing Mobile Apps. In Proceedings of the 21st

Asia-Pacific Software Engineering Conference, APSEC 2014, pages 27–34, Jeju,

Korea, Dec 2014.

129

• Wenhua Yang, Chang Xu, Yepang Liu, Chun Cao, Xiaoxing Ma, and Jian

Lu. Verifying Self-adaptive Applications with Uncertainty. In Proceedings of

IEEE/ACM International Conference on Automated Software Engineering, ASE

2014, pages 199–209, Vasteras, Sweden, Sept 2014.

• Yueqi Li, Shing-Chi Cheung, Xiangyu Zhang, and Yepang Liu. Scaling Up

Symbolic Analysis by Removing Z-Equivalent States. In ACM Transactions on

Software Engineering and Methodology, 23(4):1–32, Aug 2014.

• Yepang Liu, Chang Xu, Shing-Chi Cheung, and Wenhua Yang. Checker-

Droid: Automated Quality Assurance for Smartphone Applications. In Interna-

tional Journal of Software and Informatics, 8(1):21–41, Aug 2014.

• Yepang Liu, and Chang Xu. VeriDroid: Automating Android Application Ver-

ification. In Proceedings of the ACM/IFIP/USENIX International Middleware

Conference, MDS 2013, pages 1–6, Beijing, China, Dec 2013.

• Chang Xu, Yepang Liu, Shing-Chi Cheung, Chun Cao, and Jian Lu. Towards

Context Consistency by Concurrent Checking for Internetware Applications. In

Science China Information Sciences, 56(8):1–20, Aug 2013.

• Yepang Liu, Chang Xu, and Shing-Chi Cheung. AFChecker: Effective Model

Checking for Context-Aware Adaptive Applications. In Journal of Systems and

Software, 86(3):854–867, March 2013.

130

References

[1] Android developers website. https://developer.android.com/.

[2] Android official website. http://www.android.com/.

[3] Android Studio. https://developer.android.com/sdk/.

[4] AndTweet issue tracker. https://code.google.com/p/andtweet/issues/.

[5] AnkiDroid issue tracker. https://code.google.com/p/ankidroid/issues/.

[6] c:geo issue tracker. https://github.com/cgeo/cgeo/issues.

[7] Chrome issue tracker. https://code.google.com/p/chromium/issues/.

[8] Chrome testing tools. https://sites.google.com/a/chromium.org/dev/

developers/testing.

[9] Crawler4j. https://code.google.com/p/crawler4j/.

[10] CSipSimple issue tracker. https://code.google.com/p/csipsimple/

issues/.

[11] dex2jar. https://code.google.com/p/dex2jar/.

[12] Finger Replay: a capture and replay tool for Android. https://play.google.

com/store/apps/details?id=com.x0.strai.frep.

[13] Firefox built-in profiler for performance analysis. https://developer.

mozilla.org/en-US/docs/Performance.

[14] Firefox frame rate meter tool. http://blog.mozilla.org/devtools/tag/

framerate-monitor/.

[15] Firefox issue tracker. https://bugzilla.mozilla.org/.

131

https://developer.android.com/
http://www.android.com/
https://developer.android.com/sdk/
https://code.google.com/p/andtweet/issues/
https://code.google.com/p/ankidroid/issues/
https://github.com/cgeo/cgeo/issues
https://code.google.com/p/chromium/issues/
https://sites.google.com/a/chromium.org/dev/developers/testing
https://sites.google.com/a/chromium.org/dev/developers/testing
https://code.google.com/p/crawler4j/
https://code.google.com/p/csipsimple/issues/
https://code.google.com/p/csipsimple/issues/
https://code.google.com/p/dex2jar/
https://play.google.com/store/apps/details?id=com.x0.strai.frep
https://play.google.com/store/apps/details?id=com.x0.strai.frep
https://developer.mozilla.org/en-US/docs/Performance
https://developer.mozilla.org/en-US/docs/Performance
http://blog.mozilla.org/devtools/tag/framerate-monitor/
http://blog.mozilla.org/devtools/tag/framerate-monitor/
https://bugzilla.mozilla.org/

[16] Geohash Droid issue tracker. https://code.google.com/p/geohashdroid/

issues/.

[17] GitHub. https://github.com/.

[18] Google Code. https://code.google.com/.

[19] Google Play store. https://play.google.com/.

[20] Google Play Wikipedia page. http://en.wikipedia.org/wiki/Google_

Play.

[21] GPSLogger issue tracker. https://code.google.com/p/gpslogger/

issues/.

[22] GreenDroid project website. http://sccpu2.cse.ust.hk/greendroid/.

[23] K9Mail issue tracker. https://code.google.com/p/k9mail/issues/.

[24] Mozilla Cross-References. https://mxr.mozilla.org/.

[25] My Tracks issue tracker. https://code.google.com/p/mytracks/issues/.

[26] OI File Manager issue tracker. https://github.com/openintents/

filemanager/issues/.

[27] Omnidroid issue tracker. https://code.google.com/p/omnidroid/issues/.

[28] Osmdroid issue tracker. https://code.google.com/p/osmdroid/issues/.

[29] Real APKLeecher. https://code.google.com/p/real-apk-leecher.

[30] Robotium Testing Framework for Android Applications. http://code.

google.com/p/robotium/.

[31] Samsung developers website. http://developer.samsung.com/.

[32] Sofia Public Transport Nav. issue tracker. https://code.google.com/p/

sofia-public-transport-navigator/issues/.

132

https://code.google.com/p/geohashdroid/issues/
https://code.google.com/p/geohashdroid/issues/
https://github.com/
https://code.google.com/
https://play.google.com/
http://en.wikipedia.org/wiki/Google_Play
http://en.wikipedia.org/wiki/Google_Play
https://code.google.com/p/gpslogger/issues/
https://code.google.com/p/gpslogger/issues/
http://sccpu2.cse.ust.hk/greendroid/
https://code.google.com/p/k9mail/issues/
https://mxr.mozilla.org/
https://code.google.com/p/mytracks/issues/
https://github.com/openintents/filemanager/issues/
https://github.com/openintents/filemanager/issues/
https://code.google.com/p/omnidroid/issues/
https://code.google.com/p/osmdroid/issues/
https://code.google.com/p/real-apk-leecher
http://code.google.com/p/robotium/
http://code.google.com/p/robotium/
http://developer.samsung.com/
https://code.google.com/p/sofia-public-transport-navigator/issues/
https://code.google.com/p/sofia-public-transport-navigator/issues/

[33] Soot: a Java Program Optimization Framework. http://sable.github.io/

soot/.

[34] SourceForge. http://sourceforge.net/.

[35] Ushahidi issue tracker. https://github.com/ushahidi/Ushahidi_Android/

issues.

[36] WebSMS issue tracker. https://code.google.com/p/websmsdroid/

issues/.

[37] Zmanim issue tracker. https://code.google.com/p/android-zmanim/

issues/.

[38] Saswat Anand, Mayur Naik, Mary Jean Harrold, and Hongseok Yang. Au-

tomated Concolic Testing of Smartphone Apps. In Proceedings of the ACM

SIGSOFT 20th International Symposium on the Foundations of Software En-

gineering, FSE ’12, pages 59:1–59:11, Cary, NC, USA, 2012.

[39] Matthew Arnold, Martin Vechev, and Eran Yahav. QVM: An Efficient Run-

time for Detecting Defects in Deployed Systems. In Proceedings of the 23rd

ACM SIGPLAN Conference on Object-Oriented Programming Systems Lan-

guages and Applications, OOPSLA ’08, pages 143–162, Nashville, TN, USA,

2008.

[40] Tanzirul Azim and Iulian Neamtiu. Targeted and Depth-first Exploration

for Systematic Testing of Android Apps. In Proceedings of the 2013 ACM

SIGPLAN International Conference on Object Oriented Programming Sys-

tems Languages and Applications, OOPSLA ’13, pages 641–660, Indianapolis,

Indiana, USA, 2013.

[41] James Clause, Wanchun Li, and Alessandro Orso. Dytan: A Generic Dynamic

Taint Analysis Framework. In Proceedings of the 2007 International Sympo-

sium on Software Testing and Analysis, ISSTA ’07, pages 196–206, London,

United Kingdom, 2007.

133

http://sable.github.io/soot/
http://sable.github.io/soot/
http://sourceforge.net/
https://github.com/ushahidi/Ushahidi_Android/issues
https://github.com/ushahidi/Ushahidi_Android/issues
https://code.google.com/p/websmsdroid/issues/
https://code.google.com/p/websmsdroid/issues/
https://code.google.com/p/android-zmanim/issues/
https://code.google.com/p/android-zmanim/issues/

[42] James Clause and Alessandro Orso. Leakpoint: Pinpointing the Causes of

Memory Leaks. In Proceedings of the 32nd ACM/IEEE International Confer-

ence on Software Engineering, ICSE ’10, pages 515–524, Cape Town, South

Africa, 2010.

[43] Eduardo Cuervo, Aruna Balasubramanian, Dae-ki Cho, Alec Wolman, Stefan

Saroiu, Ranveer Chandra, and Paramvir Bahl. MAUI: Making Smartphones

Last Longer with Code Offload. In Proceedings of the 8th International Con-

ference on Mobile Systems, Applications, and Services, MobiSys ’10, pages

49–62, San Francisco, California, USA, 2010.

[44] Tuan Dao, Indrajeet Singh, and Harsha V. Madhyastha. Tide: A user-centric

tool for identifying energy hungrey applications on smartphones. In Proceed-

ings of the 35th IEEE International Conference on Distributed Computing

Systems, ICDCS ’15, Columbus, Ohio, USA, June 2015.

[45] Isil Dillig, Thomas Dillig, Eran Yahav, and Satish Chandra. The CLOSER:

Automating Resource Management in Java. In Proceedings of the 7th Interna-

tional Symposium on Memory Management, ISMM ’08, pages 1–10, Tucson,

AZ, USA, 2008.

[46] Mian Dong and Lin Zhong. Sesame: Self-Constructive Energy Modeling for

Battery-Powered Mobile Systems. In Proceedings of the 9th International Con-

ference on Mobile Systems, Applications, and Services, MobiSys ’11, pages

335–348, 2011.

[47] Paul D Ellis. The Essential Guide to Effect Sizes: Statistical Power, Meta-

Analysis, and the Interpretation of Research Results. Cambridge University

Press, 2010.

[48] William Enck, Peter Gilbert, Byung-Gon Chun, Landon P. Cox, Jaeyeon Jung,

Patrick McDaniel, and Anmol N. Sheth. TaintDroid: An Information-flow

Tracking System for Realtime Privacy Monitoring on Smartphones. In Pro-

ceedings of the 9th USENIX Conference on Operating Systems Design and

Implementation, OSDI ’10, Vancouver, BC, Canada, 2010.

134

[49] K. Etessami and T. Wilke. An Until Hierarchy for Temporal Logic. In Pro-

ceedings of the 11th Annual IEEE Symposium on Logic in Computer Science,

LICS ’96, pages 108–117, July 1996.

[50] Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song, and David Wag-

ner. Android Permissions Demystified. In Proceedings of the 18th ACM Con-

ference on Computer and Communications Security, CCS ’11, pages 627–638,

Chicago, Illinois, USA, 2011.

[51] Lorenzo Gomez, Iulian Neamtiu, Tanzirul Azim, and Todd Millstein. Reran:

Timing- and touch-sensitive record and replay for android. In Proceedings of

the 35th International Conference on Software Engineering, ICSE ’13, pages

72–81, San Francisco, CA, USA, 2013.

[52] Mark Grechanik, Chen Fu, and Qing Xie. Automatically Finding Performance

Problems with Feedback-directed Learning Software Testing. In Proceedings of

the 34th International Conference on Software Engineering, ICSE ’12, pages

156–166, Piscataway, NJ, USA, 2012.

[53] Chaorong Guo, Jian Zhang, Jun Yan, Zhiqiang Zhang, and Yanli Zhang. Char-

acterizing and detecting resource leaks in Android applications. In Proceedings

of the 28th IEEE/ACM International Conference on Automated Software En-

gineering, ASE ’13, pages 389–398, Nov 2013.

[54] Shuai Hao, Ding Li, William G. J. Halfond, and Ramesh Govindan. Esti-

mating Mobile Application Energy Consumption Using Program Analysis. In

Proceedings of the 2013 International Conference on Software Engineering,

ICSE ’13, pages 92–101, San Francisco, CA, USA, 2013.

[55] Casper S. Jensen, Mukul R. Prasad, and Anders Møller. Automated Testing

with Targeted Event Sequence Generation. In Proceedings of the 2013 Interna-

tional Symposium on Software Testing and Analysis, ISSTA ’13, pages 67–77,

Lugano, Switzerland, 2013.

135

[56] Zhen Ming Jiang. Automated Analysis of Load Testing Results. In Proceedings

of the 19th International Symposium on Software Testing and Analysis, ISSTA

’10, pages 143–146, Trento, Italy, 2010.

[57] Guoliang Jin, Linhai Song, Xiaoming Shi, Joel Scherpelz, and Shan Lu. Un-

derstanding and Detecting Real-world Performance Bugs. In Proceedings of

the 33rd ACM SIGPLAN Conference on Programming Language Design and

Implementation, PLDI ’12, pages 77–88, Beijing, China, 2012.

[58] Milan Jovic, Andrea Adamoli, and Matthias Hauswirth. Catch Me if You

Can: Performance Bug Detection in the Wild. In Proceedings of the 2011 ACM

International Conference on Object Oriented Programming Systems Languages

and Applications, OOPSLA ’11, pages 155–170, 2011.

[59] Vasileios P. Kemerlis, Georgios Portokalidis, Kangkook Jee, and Angelos D.

Keromytis. Libdft: Practical Dynamic Data Flow Tracking for Commodity

Systems. In Proceedings of the 8th ACM SIGPLAN/SIGOPS Conference on

Virtual Execution Environments, VEE ’12, pages 121–132, London, England,

UK, 2012.

[60] Hahnsang Kim, Joshua Smith, and Kang G. Shin. Detecting Energy-greedy

Anomalies and Mobile Malware Variants. In Proceedings of the 6th Inter-

national Conference on Mobile Systems, Applications, and Services, MobiSys

’08, pages 239–252, Breckenridge, CO, USA, 2008.

[61] Dave King, Boniface Hicks, Michael Hicks, and Trent Jaeger. Implicit Flows:

Can’t Live with ‘Em, Can’t Live without ‘Em. In Proceedings of the 4th

International Conference on Information Systems Security, ICISS ’08, pages

56–70, Hyderabad, India, 2008.

[62] Mikkel Baun Kjærgaard, Jakob Langdal, Torben Godsk, and Thomas

Toftkjær. EnTracked: Energy-efficient Robust Position Tracking for Mobile

Devices. In Proceedings of the 7th International Conference on Mobile Sys-

tems, Applications, and Services, MobiSys ’09, pages 221–234, 2009.

136

[63] Yongin Kwon, Sangmin Lee, Hayoon Yi, Donghyun Kwon, Seungjun Yang,

Byung-Gon Chun, Ling Huang, Petros Maniatis, Mayur Naik, and Yunheung

Paek. Mantis: Automatic Performance Prediction for Smartphone Applica-

tions. In Proceedings of the 2013 USENIX Conference on Annual Technical

Conference, USENIX ATC ’13, pages 297–308, San Jose, CA, USA, 2013.

[64] Yepang Liu, Chang Xu, and Shing-Chi Cheung. Verifying Android Applica-

tions Using Java Pathfinder. Technical report, HKUST-CS-12-03, 2012.

[65] Yepang Liu, Chang Xu, and Shing-Chi Cheung. Where Has My Battery Gone?

Finding Sensor Related Energy Black Holes in Smartphone Applications. In

Proceedings of the 11th IEEE International Conference on Pervasive Com-

puting and Communications, PerCom ’13, pages 2–10, San Diego, CA, USA,

March 2013.

[66] Yepang Liu, Chang Xu, and Shing-Chi Cheung. Diagnosing energy effi-

ciency and performance for mobile internetware applications. IEEE Software,

32(1):67–75, Jan 2015.

[67] Yepang Liu, Chang Xu, and Shing-Chi Cheung. Characterizing and Detecting

Performance Bugs for Smartphone Applications. In Proceedings of the 36th

International Conference on Software Engineering, ICSE 2014, pages 1013–

1024, Hyderabad, India, June 2014.

[68] Yepang Liu, Chang Xu, Shing-Chi Cheung, and Jian Lu. GreenDroid: Auto-

mated Diagnosis of Energy Inefficiency for Smartphone Applications. IEEE

Transactions on Software Engineering, 40(9):911–940, Sept 2014.

[69] Yepang Liu, Chang Xu, Shing-Chi Cheung, and Wenhua Yang. CHECKER-

DROID: Automated Quality Assurance for Smartphone Applications. Inter-

national Journal of Software and Informatics, 8(1):21–41, Aug 2014.

[70] Xiao Ma, Peng Huang, Xinxin Jin, Pei Wang, Soyeon Park, Dongcai Shen,

Yuanyuan Zhou, Lawrence K. Saul, and Geoffrey M. Voelker. eDoctor: Au-

tomatically Diagnosing Abnormal Battery Drain Issues on Smartphones. In

137

Proceedings of the 10th USENIX Conference on Networked Systems Design

and Implementation, NSDI ’13, pages 57–70, Lombard, IL, USA, 2013.

[71] H. B. Mann and D. R. Whitney. On a Test of Whether one of Two Random

Variables is Stochastically Larger than the Other. The Annals of Mathematical

Statistics, 18(1):50–60, March 1947.

[72] Atif M. Memon, Mary Lou Soffa, and Martha E. Pollack. Coverage Criteria

for GUI Testing. In Proceedings of the 8th European Software Engineering

Conference Held Jointly with 9th ACM SIGSOFT International Symposium on

Foundations of Software Engineering, ESEC/FSE ’01, pages 256–267, Vienna,

Austria, 2001.

[73] Nariman Mirzaei, Sam Malek, Corina S. Păsăreanu, Naeem Esfahani, and

Riyadh Mahmood. Testing Android Apps Through Symbolic Execution. SIG-

SOFT Software Engineering Notes, 37(6):1–5, November 2012.

[74] Radhika Mittal, Aman Kansal, and Ranveer Chandra. Empowering Develop-

ers to Estimate App Energy Consumption. In Proceedings of the 18th Annual

International Conference on Mobile Computing and Networking, MobiCom

’12, pages 317–328, New York, NY, USA, 2012. ACM.

[75] James Newsome and Dawn Song. Dynamic Taint Analysis for Automatic De-

tection, Analysis, and Signature Generation of Exploits on Commodity Soft-

ware. In Proceedings of the 12th Network and Distributed System Security

Symposium, NDSS ’05, 2005.

[76] Adrian Nistor, Tian Jiang, and Lin Tan. Discovering, Reporting, and Fixing

Performance Bugs. In Proceedings of the 10th Working Conference on Mining

Software Repositories, MSR ’13, pages 237–246, San Francisco, CA, USA,

2013.

[77] Adrian Nistor, Linhai Song, Darko Marinov, and Shan Lu. Toddler: Detecting

Performance Problems via Similar Memory-access Patterns. In Proceedings of

138

the 2013 International Conference on Software Engineering, ICSE ’13, pages

562–571, San Francisco, CA, USA, 2013.

[78] Damien Octeau, Somesh Jha, and Patrick McDaniel. Retargeting Android

Applications to Java Bytecode. In Proceedings of the ACM SIGSOFT 20th

International Symposium on the Foundations of Software Engineering, FSE

’12, pages 6:1–6:11, Cary, NC, USA, 2012.

[79] Adam J. Oliner, Anand P. Iyer, Ion Stoica, Eemil Lagerspetz, and Sasu

Tarkoma. Carat: Collaborative Energy Diagnosis for Mobile Devices. In

Proceedings of the 11th ACM Conference on Embedded Networked Sensor Sys-

tems, SenSys ’13, pages 10:1–10:14, Rome, Italy, 2013.

[80] Jeongyeup Paek, Joongheon Kim, and Ramesh Govindan. Energy-efficient

Rate-adaptive GPS-based Positioning for Smartphones. In Proceedings of the

8th International Conference on Mobile Systems, Applications, and Services,

MobiSys ’10, pages 299–314, 2010.

[81] Sangmin Park, B. M. Mainul Hossain, Ishtiaque Hussain, Christoph Csallner,

Mark Grechanik, Kunal Taneja, Chen Fu, and Qing Xie. CarFast: Achieving

Higher Statement Coverage Faster. In Proceedings of the ACM SIGSOFT

20th International Symposium on the Foundations of Software Engineering,

FSE ’12, pages 35:1–35:11, Cary, NC, USA, 2012.

[82] Abhinav Pathak, Y. Charlie Hu, and Ming Zhang. Bootstrapping Energy De-

bugging on Smartphones: A First Look at Energy Bugs in Mobile Devices. In

Proceedings of the 10th ACM Workshop on Hot Topics in Networks, HotNets

’11, pages 5:1–5:6, Cambridge, Massachusetts, 2011.

[83] Abhinav Pathak, Y. Charlie Hu, and Ming Zhang. Where is the Energy

Spent Inside My App?: Fine Grained Energy Accounting on Smartphones

with Eprof. In Proceedings of the 7th ACM European Conference on Computer

Systems, EuroSys ’12, pages 29–42, Bern, Switzerland, 2012.

139

[84] Abhinav Pathak, Abhilash Jindal, Y. Charlie Hu, and Samuel P. Midkiff.

What is Keeping My Phone Awake? Characterizing and Detecting No-sleep

Energy Bugs in Smartphone Apps. In Proceedings of the 10th International

Conference on Mobile Systems, Applications, and Services, MobiSys ’12, pages

267–280, 2012.

[85] B. Priyantha, D. Lymberopoulos, and Jie Liu. LittleRock: Enabling Energy-

Efficient Continuous Sensing on Mobile Phones. IEEE Pervasive Computing,

10(2):12–15, April 2011.

[86] Corina S. Pǎsǎreanu, Peter C. Mehlitz, David H. Bushnell, Karen Gundy-

Burlet, Michael Lowry, Suzette Person, and Mark Pape. Combining Unit-level

Symbolic Execution and System-level Concrete Execution for Testing Nasa

Software. In Proceedings of the 2008 International Symposium on Software

Testing and Analysis, ISSTA ’08, pages 15–26, Seattle, WA, USA, 2008.

[87] Feng Qian, Zhaoguang Wang, Alexandre Gerber, Zhuoqing Mao, Subhabrata

Sen, and Oliver Spatscheck. Profiling Resource Usage for Mobile Applications:

A Cross-layer Approach. In Proceedings of the 9th International Conference

on Mobile Systems, Applications, and Services, MobiSys ’11, pages 321–334,

Bethesda, Maryland, USA, 2011.

[88] Moo-Ryong Ra, Jeongyeup Paek, Abhishek B. Sharma, Ramesh Govindan,

Martin H. Krieger, and Michael J. Neely. Energy-delay Tradeoffs in Smart-

phone Applications. In Proceedings of the 8th International Conference on

Mobile Systems, Applications, and Services, MobiSys ’10, pages 255–270, San

Francisco, California, USA, 2010.

[89] Lenin Ravindranath, Jitendra Padhye, Sharad Agarwal, Ratul Mahajan, Ian

Obermiller, and Shahin Shayandeh. AppInsight: Mobile App Performance

Monitoring in the Wild. In Proceedings of the 10th USENIX Conference on

Operating Systems Design and Implementation, OSDI’12, pages 107–120, Hol-

lywood, CA, USA, 2012.

140

[90] Edward J. Schwartz, Thanassis Avgerinos, and David Brumley. All You Ever

Wanted to Know About Dynamic Taint Analysis and Forward Symbolic Exe-

cution (but Might Have Been Afraid to Ask). In Proceedings of the 2010 IEEE

Symposium on Security and Privacy, SP ’10, pages 317–331, 2010.

[91] Kai Shen, Ming Zhong, and Chuanpeng Li. I/O System Performance De-

bugging Using Model-driven Anomaly Characterization. In Proceedings of

the 4th Conference on USENIX Conference on File and Storage Technologies,

FAST’05, pages 23–23, San Francisco, CA, 2005.

[92] Emina Torlak and Satish Chandra. Effective Interprocedural Resource Leak

Detection. In Proceedings of the 32nd ACM/IEEE International Conference

on Software Engineering, ICSE ’10, pages 535–544, Cape Town, South Africa,

2010.

[93] W. Visser, K. Havelund, G. Brat, and Seungjoon Park. Model Checking

Programs. In Proceedings of the 15th IEEE International Conference on Au-

tomated Software Engineering, ASE ’00, pages 3–11, 2000.

[94] Westley Weimer and George C. Necula. Finding and Preventing Run-time

Error Handling Mistakes. In Proceedings of the 19th Annual ACM SIGPLAN

Conference on Object-Oriented Programming, Systems, Languages, and Ap-

plications, OOPSLA ’04, pages 419–431, Vancouver, BC, Canada, 2004.

[95] Xusheng Xiao, Shi Han, Dongmei Zhang, and Tao Xie. Context-sensitive

Delta Inference for Identifying Workload-dependent Performance Bottlenecks.

In Proceedings of the 2013 International Symposium on Software Testing and

Analysis, ISSTA ’13, pages 90–100, Lugano, Switzerland, 2013.

[96] Guoqing Xu, Nick Mitchell, Matthew Arnold, Atanas Rountev, Edith Schon-

berg, and Gary Sevitsky. Finding Low-utility Data Structures. In Proceedings

of the 2010 ACM SIGPLAN Conference on Programming Language Design

and Implementation, PLDI ’10, pages 174–186, New York, NY, USA, 2010.

ACM.

141

[97] Shengqian Yang, Dacong Yan, and A. Rountev. Testing for Poor Responsive-

ness in Android Applications. In Proceedings of the 1st International Work-

shop on the Engineering of Mobile-Enabled Systems, MOBS ’13, pages 1–6,

May 2013.

[98] Wei Yang, Mukul R. Prasad, and Tao Xie. A Grey-box Approach for Auto-

mated GUI-model Generation of Mobile Applications. In Proceedings of the

16th International Conference on Fundamental Approaches to Software Engi-

neering, FASE ’13, pages 250–265, Rome, Italy, 2013.

[99] S. Zaman, B. Adams, and A.E. Hassan. A Qualitative Study on Performance

Bugs. In Proceedings of the 9th IEEE Working Conference on Mining Software

Repositories, MSR ’12, pages 199–208, June 2012.

[100] Lide Zhang, David R. Bild, Robert P. Dick, Zhuoqing Morley Mao, and Peter

Dinda. Panappticon: Event-based Tracing to Measure Mobile Application and

Platform Performance. In Proceedings of the 11th International Conference on

Hardware/Software Codesign and System Synthesis, CODES+ISSS ’13, pages

1–10, Sept 2013.

[101] Lide Zhang, Mark S. Gordon, Robert P. Dick, Z. Morley Mao, Peter Dinda,

and Lei Yang. ADEL: An Automatic Detector of Energy Leaks for Smartphone

Applications. In Proceedings of the 10th IEEE/ACM/IFIP International Con-

ference on Hardware/Software Codesign and System Synthesis, CODES+ISSS

’12, pages 363–372, Tampere, Finland, 2012.

[102] Lide Zhang, Birjodh Tiwana, Zhiyun Qian, Zhaoguang Wang, Robert P. Dick,

Zhuoqing Morley Mao, and Lei Yang. Accurate Online Power Estimation and

Automatic Battery Behavior Based Power Model Generation for Smartphones.

In Proceedings of the 8th IEEE/ACM/IFIP International Conference on Hard-

ware/Software Codesign and System Synthesis, CODES/ISSS ’10, pages 105–

114, 2010.

142

	Title Page
	Authorization Page
	Signature Page
	Dedication Page
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	Abstract
	Introduction
	Preliminaries
	Application Component and Lifecycle
	Single Thread Policy
	Using Sensors on Android Platforms
	Wake Lock Mechanism

	Understanding and Diagnosing Energy Bugs
	Understanding Energy Bugs
	Study Methodology
	Problem Magnitude
	Diagnosis and Bug-Fixing Efforts
	Common Patterns of Energy Bugs
	Threats to Validity

	Energy Efficiency Analysis
	Approach Overview
	Application Execution and State Exploration
	Detecting Missing Sensor or Wake Lock Deactivation
	Sensory Data Utilization Analysis

	Experimental Evaluation
	Experimental Setup
	Effectiveness and Efficiency of our Approach
	Necessity and Usefulness of AEM Model
	Impact of Event Sequence Length Limit
	Comparison with Resource Leak Detection Work
	Energy Saving: A Case Study
	Discussions

	Related Work
	Energy Efficiency Analysis
	Energy Consumption Estimation
	Resource Leak Detection
	Information Flow Tracking

	Chapter Summary

	Characterizing and Detecting Performance Bugs
	Characterizing Performance Bugs
	Study Methodology
	Bug Types and Impact
	Bug Manifestation
	Debugging and Bug-Fixing Effort
	Common Patterns of Performance Bugs
	Discussions

	Rule-based Performance Bug Detection
	Experimental Evaluation
	Effectiveness and Efficiency of PerfChecker
	Performance Improvement Study

	Related Work
	Detecting Performance Bugs
	Performance Testing
	Performance Debugging and Optimization
	Understanding Performance Bugs

	Chapter Summary

	Conclusions
	Summary of Completed Work
	Ongoing Work and Future Work

	List of Publications
	References

