
FOCUS: INTERNETWARE AND BEYOND

0 7 4 0 - 7 4 5 9 / 1 5 / $ 3 1 . 0 0 © 2 0 1 5 I E E E 	 JANUARY/FEBRUARY 2015 | IEEE SOFTWARE � 67

Diagnosing
Energy
Efficiency and
Performance
for Mobile
Internetware
Applications
Yepang Liu, The Hong Kong University of Science and Technology

Chang Xu, Nanjing University

Shing-Chi Cheung, The Hong Kong University of Science and
Technology

// Many smartphone application bugs compromise energy

efficiency and performance, yet we lack powerful tools

to address them. Examining their characteristics and

diagnostic challenges offers a key step forward. //

MOBILE INTERNETWARE appli-
cations seamlessly connect physical
and cyber environments and pro-
vide smart services to users. How-
ever, unlike their desktop counter-
parts, smartphone applications run
on resource-constrained platforms,
so even small implementation ineffi-
ciencies can lead to a bad user expe-
rience. Ensuring a satisfactory user
experience is a nontrivial task for
developers, especially because many
smartphone applications have these
requirements:

•	 Seamless communication.
Smartphone applications (such as
email clients or shopping appli-
cations) often use the latest cloud
data. Inefficient communication
with Internet cloud services can
easily waste valuable battery
power and network bandwidth.

•	 Frequent sensing. Smartphone
applications often use various
sensors to detect users’ physi-
cal and cyber environments and
thereby provide context-aware
services (such as navigation).
However, sensing operations
consume considerable energy,
and problematic use of sensors
can easily waste energy.

•	 Intensive computation. Most
smartphones have fully fledged
operating systems, enabling com-
putationally intensive applications
(such as games). However, such
computation places a big burden
on smartphone GPUs and CPUs,
and inefficient computation easily
hurts application performance.

The smartphone application mar-
ket is extremely competitive. Devel-
opers rarely have sufficient time or
resources to carefully optimize their

FOCUS: INTERNETWARE AND BEYOND

s1liu.indd 67 12/9/14 3:02 PM

68 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: INTERNETWARE AND BEYOND

applications’ energy ef� ciency and
performance before pushing them to
market. So, many applications suffer
from energy and performance bugs.1

The former can seriously waste bat-
tery power; the latter can signi� -
cantly reduce smartphones’ respon-
siveness and available computational
resources (such as memory and net-
work bandwidth). These bugs se-
verely impact the user experience
and cause signi� cant user frustra-
tion.2,3 Despite such bugs’ pervasive-
ness, both the research and industry
communities haven’t suf� ciently un-
derstood them. The result is a lack
of mature tools to effectively help
developers locate energy black holes
and performance threats in their
smartphone applications.

Here, we discuss the challenges in
diagnosing energy and performance
bugs in real-life Android applica-
tions. We hope to inspire further
efforts to adequately address these
challenges. We also review state-of-
the-art diagnostic techniques and
tools. In particular, we offer results

from our case study, which applied a
representative tool to popular com-
mercial Android applications and
the Samsung Mobile Software De-
velopment Kit (SDK). Our study re-
sults demonstrate that such tools are
useful to and necessary for smart-
phone application developers; their
feedback further suggests our re-
search’s practical value.

Activities
Our article focuses on the Android
OS, which is Linux-based. Android
applications are written primarily
in Java, although, for performance
reasons, developers might write
critical parts using native languages
(such as C).

Android applications typically
comprise four types of components:
activity, service, broadcast receiver,
and content provider.1 Each compo-
nent follows a prescribed life cycle
de� ning how it’s created, used, and
destroyed. We describe the activity
component here to aid the under-
standing of our later discussion. (For

more on application components, see
the of� cial Android developer web-
site, http://developer.android.com.)

Application GUIs are de� ned in
activities. Figure 1 shows an activity’s
life cycle. It starts after the onCreate()
handler is called and ends after the
 onDestroy() handler is called. An activ-
ity’s foreground lifetime (its “run-
ning” state) starts after the onResume()
handler is called and lasts until the
 onPause() handler is called. At that
point, the activity goes to the back-
ground (its “stopped” state) and be-
comes invisible. An activity can in-
teract with users only when it’s in the
foreground. When it goes to the back-
ground, its onStop() handler is called.
When users navigate back to a paused
or stopped activity, the activity’s on-
Resume() or onRestart() handler is called,
and it returns to the foreground.
In exceptional cases, a paused or
stopped activity might be killed to
release memory to higher-priority
appl ications.

 Energy and
Performance Bugs
Our recent studies identi� ed that
the following three common bug
types seriously affect smartphone
applications’ energy ef� ciency and
performance:1,4

• Energy leak bugs can quickly
exhaust batteries.

• GUI-lagging bugs can sig-
ni� cantly reduce application
responsiveness.

• Memory bloat bugs can con-
sume too much memory.

Here, we discuss representative ex-
amples of these bugs from real-world
Android applications. For a more
comprehensive discussion, along with
additional bug patterns and exam-
ples, see our empirical studies.1,4

<<kill>> <<kill>>

1. onRestart()
2. onStart()
3. onResume()

1. onCreate()
2. onStart()
3. onResume()

onResume()

onPause()

Destroyed

Running

onStop()

Launch activity

onDestroy()

PausedStopped

 FIGURE 1. The life cycle of an Android application’s activity component. Application

GUIs are de� ned in activities. The activity’s life cycle starts when the onCreate() handler is

called and ends after the onDestroy() handler is called.

s1liu.indd 68 12/9/14 3:02 PM

JANUARY/FEBRUARY 2015 | IEEE SOFTWARE 69

Energy Leak Bugs
 Many applications that communi-
cate with the physical or cyber envi-
ronment through sensors or network
interfaces suffer from subtle energy
leak bugs. One common cause is

cost-ineffective use of sensory or net-
work data.4,5

Figure 2a shows a simpli� ed
version of a real-world bug.4 The
associated application uses GPS
data for navigation and location

tracking (which can be disabled).
When users launch the applica-
tion, MapActivity (lines 1–25) starts,
creating a live map for user inter-
actions. For navigation, the appli-
cation maintains a long-running

 1. public class MapActivity extends Activity {
 2. private Intent gpsIntent;
 3. private BroadcastReceiver myReceiver;
 4. public void onCreate(){
 5. gpsIntent = new Intent(GPSService.class);
 6. startService(gpsIntent); //start GPSService
 7. myReceiver = new BroadcastReceiver() {
 8. public void onReceive(Intent intent) {
 9. LocData loc= intent.getExtra();
10. updateMap(loc);
11. if(trackingModeOn) {
12. persistToDatabase(loc);
13. }
14. }
15. }
16. //register receiver for handling location changes
17. IntentFilter �lter = new IntentFilter(“loc_change”);
18. registerReceiver(myReceiver, �lter);
19 }
20. public void onDestroy() {
21. //stop GPSService and unregister broadcast receiver
22. stopService(gpsIntent);
23. unregisterReceiver(myReceiver);
24. }
25. }

31. public class GPSService extends Service {
32. private LocationManager lm;
33. private LocationListener gpsListener;
34. public void onCreate(){
35. //get a reference to system location manager
36. lm = getSystemService(LOCATION_SERVICE);
37. gpsListener = new LocationListener() {
38. public void onLocationChanged(Location loc) {
39. if(precise(loc)){
40. LocData formattedLoc= processLocation(loc);
41. //create and send a location change message
42. Intent intent = new Intent(“loc_change”);
43. intent.putExtra(“data”, formattedLoc);
44. sendBroadcast(intent);
45. }
46. }
47. };
48. //GPS listener registration
49. lm.requestLocationUpdates(GPS, 0, 0, gpsListener);
50. }
51. public void onDestroy() {
52. //GPS listener unregistration
53. lm.removeUpdates(gpsListener);
54. }
55. }

(a)

(b) (c)

 //recycled view is not reused, causing GUI lagging and memory bloat
 1. public View getView(int pos, View recycledView, ...) {
 2. //tab item layout in�ation
 3. View tab = mIn�ater.in�ate(tabItem, null);
 4. //�nd inner views
 5. TextView title = (TextView) tab.�ndViewById(tabTitle);
 6. ImageView icon = (ImageView) tab.�ndViewById(tabIcon);
 7. //update inner views
 8. title.setText(DATA[pos]);
 9. icon.setImageBitmap((pos% 2) == 1 ? mIcon1: mIcon2);
10. return tab;
11. }

Tab 2

Tab 3

Tab 1

Tab 1

Tab 2

Tab 3

System recycler

Screen
Old item goes
off screen and
gets recycled

New item
goes onto
screen.

//constructs new list items
getView(int pos, View recycledView, ...)

Sc
ro

lli
ng

Tab 1

FIGURE 2. Examples of energy and performance bugs. (a) An energy leak bug. The code implements a callback that uses sensory

data in an energy-inef� cient way. (b) A list view (Firefox’s tab tray) . (c) A GUI-lagging and memory bloat bug. The code implements an

inef� cient list view callback.

s1liu.indd 69 12/9/14 3:02 PM

70	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: INTERNETWARE AND BEYOND

GPSService in the background for lo-
cation sensing (lines 31–55). On re-
ceiving new location data, GPSService
checks whether the data satisfy cer-
tain precision criterion (line 39).
If that’s the case, it processes and
broadcasts the data (lines 40–44)
so that MapActivity can update its

navigation map (line 10). MapActivity
also stores the data on a database if
location tracking is enabled (lines
11–13). Background location sens-
ing is disabled only when MapActivity
is destroyed (lines 20–24 and 51–
54), which happens when users exit
the application.

This design works well in many
situations but can cause problems.
For example, when users enter an area
with weak GPS signals, the applica-
tion might continue discarding noisy
location data. This continual but use-
less location sensing can quickly drain
the phone battery. Another problem-
atic situation arises when users switch
MapActivity to the background without
enabling location tracking. In such
cases, even if GPSService obtains precise
location data, the data will be used
only to render the navigation map,
which is completely invisible. Again,
this wastes battery energy.

To fix the bug, developers can
tune down the application’s location-
sensing frequency or temporarily
disable location sensing in problem-
atic scenarios.

GUI-Lagging and Memory Bloat Bugs
This example, simplified from a

Firefox bug,1 relates to frequently in-
voked callbacks.

Android applications are event-
driven programs; a set of callbacks
defines their major functional-
ities. The list view, for example, is
a widely used GUI widget for dis-
playing scrollable data items (such

as an email list). Figure 2b shows an
abstraction of a list view (Firefox’s
tab tray). Each list item represents
a browser tab and contains two el-
ements: a webpage icon and a web-
page title label.

To render the list items, devel-
opers define a callback getView().
At run time, when users scroll the
list view, getView() is continually in-
voked for constructing new items.
The callback typically conducts two
operations:

•	 In item inflation, the callback
parses the list item’s layout con-
figuration files and constructs its
GUI element tree.

•	 In inner view update, the call-
back traverses the list item’s GUI
element tree to retrieve specific
elements for content updating.

However, file parsing and tree tra-
versing can be time-consuming, es-
pecially when list items have hierar-
chical inner structures. Frequently
conducting such operations can sig-
nificantly reduce a list view’s scroll-
ing smoothness.

To improve performance, the
Android OS recycles list items that

go off the screen during user scroll-
ing. Because list items often have
an identical layout, Android appli-
cations can reuse the recycled items
to render new ones, avoiding two
heavy operations on each invocation
of getView(). This approach is called
the view holder pattern (see http://
developer.android.com/training /
improving-layouts/smooth-scrolling.
html). Unfortunately, many real-
world applications don’t adopt this
good practice.

For example, Figure 2c shows how
Firefox developers implemented the
tab tray’s getView() callback. In this in-
efficient version, item inflation (line 3)
and inner view update (lines 5–9) oc-
cur each time getView() is invoked. This
hurts the tab tray’s scrolling perfor-
mance. This implementation also fails
to reuse items and consumes much
memory by continuously inflating list
items. Owing to the resulting mem-
ory pressure, the garbage collector
will run frequently, further degrading
the whole system’s performance.

Diagnosis Challenges
Diagnosing energy and performance
bugs in smartphone applications is
time-consuming and painful, and
poses three main challenges.

Triggering Energy
and Performance Bugs
Triggering bugs is a critical step be-
fore diagnosing and fixing them. Un-
fortunately, triggering energy or per-
formance bugs isn’t easy.1

First, the bugs often occur only in
certain usage scenarios, and expos-
ing them requires complex user in-
teractions. Consider our first bug ex-
ample. To expose the energy waste,
we had to

•	 launch the application and
switch on GPS,

Triggering bugs is a critical step
before diagnosing and fixing them.

s1liu.indd 70 12/9/14 3:02 PM

	 JANUARY/FEBRUARY 2015 | IEEE SOFTWARE � 71

•	 configure the application to dis-
able location tracking, and

•	 run the application for a
while and then switch it to the
background.

Such interaction is nontrivial. In re-
ality, users interact with applications
in many ways, so it’s hard to predict
which user interactions might trigger
energy inefficiency or performance
degradation.

In addition, triggering these bugs
could require external stimulus. In
the energy bug example, exposing
the energy waste might require sim-
ulating the physical environment,
such as poor GPS signals, which is a
nontrivial endeavor.

Finally, these bugs might be trig-
gered only under a sufficient work-
load. For example, to trigger Firefox’s
GUI-lagging and memory bloat bug,
we must open several browser tabs
before scrolling the tab tray.

Judging Energy Inefficiency or
Performance Degradation
Energy bugs might waste energy si-
lently, and performance bugs might
degrade performance gradually.
Such bugs rarely cause immediate
fail-stop consequences (such as a
crash). This makes judging their ex-
istence and extent difficult.

Developers often adopt three
judgment strategies:1

•	 Make the judgments manually
by running an application and
observing its energy consump-
tion and performance.

•	 Compare an application with
similar applications to check
whether its energy efficiency and
performance are comparatively
satisfactory.

•	 Rely on engineering experience.
For example, many developers

assume an application suffers
from performance bugs if it can’t
handle a user event within 200
milliseconds.1,3

However, these strategies either
require nontrivial manual effort or
haven’t been clearly defined. This
makes energy and performance di-
agnosis less systematic and difficult
to automate.

Diagnosis Adequacy and Effort
Diagnosing energy and performance
bugs often requires considerable ef-
fort.1 For example, to understand
the root cause of our example en-
ergy bug, developers must analyze
how the application uses GPS data in
many scenarios, including these:

	 1.	The GPS data are precise, and
the application is running in the
background with location track-
ing enabled.

	 2.	The GPS data are precise,
and the application is running
in the background with location
tracking disabled.

	 3.	The GPS data are continuously
noisy, and the application is
running in the background with
location tracking enabled.

	 4.	The GPS data are continuously
noisy, and the application is
running in the background with
location tracking disabled.

Following such analyses, develop-
ers might realize that

•	 battery energy is completely
wasted in scenarios 2 through
4 because all the collected GPS
data are either discarded or used
to render an invisible map; and

•	 in scenario 1, the application has
slightly better data utilization be-
cause it stores data for future use,
but battery energy is still wasted
in rendering an invisible map.

Similarly, to diagnose Firefox’s GUI-
lagging and memory bloat bug, devel-
opers must test how quickly Firefox
responds and how much memory it
consumes under different workloads.

Our examples are simplified. Diag-
nosing real-world bugs might require
analyzing many more scenarios. So,
it’s important to study how to improve
diagnosis efficiency and effectiveness.
For example, developers might want
to analyze a minimal set of critical ap-
plication usage scenarios to quickly
understand the energy and perfor-
mance bugs’ root causes. This would
definitely boost their productivity.

State-of-the-Art
Diagnosis
Here we review some of the most im-
portant energy and performance di-
agnosis techniques.

Measurement
and Estimation Techniques
Researchers have designed many tech-
niques to measure or estimate smart-
phone applications’ energy consump-
tion and performance. For example,
vLens,6 eProf,7 and PowerTutor8 esti-

Energy bugs might waste energy silently,
and performance bugs might degrade

performance gradually.

s1liu.indd 71 12/9/14 3:02 PM

72	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: INTERNETWARE AND BEYOND

mate energy consumption of Android
applications or system components
(such as GPS). In particular, vLens
can quickly calculate the energy con-
sumption of fine-grained source code
entities such as statements.

Such information can help devel-

opers effectively locate energy hot
spots in their applications and op-
timize them accordingly. Although
such techniques are applicable to
general smartphone applications,
Arvind Thiagarajan and his col-
leagues designed a framework spe-
cifically for smartphone browsers
to measure the energy used for ren-
dering webpages and their elements
(such as Cascading Style Sheets).9

Researchers have also tried to
design similar techniques for per-
formance estimation. For example,
Mantis constructs precise perfor-
mance models for Android applica-
tions and helps estimate their execu-
tion time on given inputs to pinpoint
performance bottlenecks.10

Event Profilers
Developers have long used profilers
to diagnose software energy and per-
formance bugs;11 researchers have
tailored these techniques for smart-
phone platforms.

For example, ARO (Applica-
tion Resource Optimizer) monitors
cross-layer interactions—such as
user events at the application layer
and network packets at the system
layer—to disclose inefficient radio
resource usage, which commonly

causes energy waste and performance
degradation.12 AppInsight helps in-
strument smartphone applications’
binaries to identify long latency ex-
ecution paths.13 Panappticon identi-
fies performance issues arising from
inefficient platform code or problem-

atic interactions among applications.3
Most recently, SunCat logs the events
in a test run and summarizes event
repetition patterns to help developers
understand and predict performance
problems.11 Such techniques suit in-
house testing and can help developers
reason about energy and performance
problems’ root causes.

Pattern-Based Analyzers
Researchers have expended great effort
to identify common patterns of energy
and performance bugs. On the basis
of these patterns, they’ve designed dy-
namic and static code analyzers.

ADEL (Automated Detector of
Energy Leaks)5 and GreenDroid4
locate Android application energy
bugs caused by ineffective use of
high energy-cost program data (such
as network and sensory data). These
dynamic analyzers execute an ap-
plication and track program-data
transformation, propagation, and
consumption to locate problematic
scenarios in which an application
fails to effectively use that data (as in
Figure 2a).

Static analyzers perform diag-
nosis without executing an applica-
tion, thus requiring no test effort
(generating reusable test cases for

event-driven programs is nontrivial).
State-of-the-art techniques often
scan an application’s source code or
binary to locate energy and perfor-
mance problems. For example, Abhi-
nav Pathak and his colleagues’ tech-
nique detects energy bugs caused by
the forgotten release of wake locks
(which keep smartphones awake).14
Lint, a popular static analyzer in the
Android Studio SDK, detects a range
of energy and performance bugs. Our
PerfChecker can detect eight patterns
of energy and performance bugs and
provide actionable diagnostic infor-
mation.1 (Android Studio developers
integrated an enhanced version of our
view holder violation checker into
Lint; see https://developer.android
.com/sdk for more information.)

End-User-Oriented Diagnosis
The techniques we’ve discussed so
far are primarily for developers, but
end-user-oriented techniques also ex-
ist. For example, eDoctor can cor-
relate system and user events (such
as configuration changes) to energy-
heavy execution phases.15 It can
thus help end users troubleshoot
abnormal battery drains and sug-
gest repairs (such as a configuration
rollback).

Carat shares the same goal as
eDoctor but adopts a collaborative,
big-data-driven approach.2 It col-
lects run-time data (for example, the
active apps and device model) from
a large community of smartphones
to infer energy usage models. It
thereby provides users with action-
able advice on improving smart-
phone battery life. It can provide
useful feedback without necessarily
needing to profile much of a user’s
smartphone data.

Such user-oriented techniques
can also give developers useful di-
agnostic information. Carat can tell

Researchers have expended great effort
to identify common patterns of energy

and performance bugs.

s1liu.indd 72 12/9/14 3:02 PM

	 JANUARY/FEBRUARY 2015 | IEEE SOFTWARE � 73

developers whether their applica-
tions would cause energy waste on
certain smartphone models. eDoc-
tor can tell them whether their ap-
plications would suffer from energy
bugs under some configurations or
whether new versions have energy
and performance regression.

Discussion
These techniques have certain
limitations.

Developers often use estima-
tion and measurement techniques
to identify energy and performance
hot spots. However, simply know-
ing an application’s energy cost or
response time might be inadequate
for effective optimization. The key
diagnostic information developers
need is whether the consumed en-
ergy or performed computation is
necessary. For example, one energy
measurement technique might iden-
tify an application component using
GPS for navigation as an energy hot
spot, even though it’s efficiently us-
ing the consumed energy to provide
a smart service. Further research

might study how to analyze such
cost–benefit relations.

In addition, profilers can generate
large profiles1,11 that contain consid-
erable redundant and useless infor-
mation. Effective profile aggregation,
simplification, and visualization
techniques are highly desirable to
improve developer productivity.1 Be-
sides, another open question is which
information is critical to collect dur-
ing profiling to effectively diagnose
energy and performance bugs.

Finally, although code-pattern-
based analyzers support a range of
bug patterns, the root causes of many
complex real-world energy and per-
formance bugs are unclear.1 In addi-
tion, analyzers such as ADEL require
test cases, but we don’t yet know
how to effectively and efficiently con-
struct test cases to manifest energy or
performance bugs.

A Case Study
We applied the view holder checker
in PerfChecker to 10 popular com-
mercial Android applications to see
whether PerfChecker can provide

useful diagnostic information to de-
velopers. We chose our own tool be-
cause it’s easier for us to preprocess
reported issues before communicat-
ing with developers. (Static analyz-
ers inevitably generate false warn-
ings; pruning them helps ensure that
developers aren’t overwhelmed with
useless information.)

Table 1 shows basic application
information. These applications fre-
quently fetch the latest cloud data
to interact with users. We obtained
their installation files (.apk) from
the Google Play store and trans-
formed them to Java bytecode for
analysis. (PerfChecker doesn’t re-
quire an application’s source code
for analysis, but if the source code is
available, it can highlight code that
might cause energy inefficiency or
performance degradation.)

PerfChecker analyzed each ap-
plication in a few seconds and re-
ported a set of warnings. We man-
ually validated the warnings by
checking the corresponding source
code, decompiled from Java byte-
code. Owing to obfuscation, this

TA
B

L
E

 1 The case study’s commercial applications.

Name Category Version Downloads* (in millions) Reported warnings True violations

Reddit is fun News & Magazines 3.1.13 1 – 5 8 2

Wechat Communication 5.1 100 – 500 18 12

BBC News News & Magazines 2.5.2 5 – 10 3 0

Sina Weibo Social 4.2.6 5 – 10 43 10

Flipboard News & Magazines 2.2.7 100 – 500 18 10

Facebook Social 6.0.0.28.28 500 – 1,000 1 0

LINE Communication 4.0.1 100 – 500 5 2

Skype Communication 4.6.0.42007 100 – 500 13 5

Dropbox Productivity 2.3.12.10 100 – 500 5 1

Twitter Social 5.2.2 100 – 500 16 4

*We counted downloads from the Google Play store only.

s1liu.indd 73 12/9/14 3:02 PM

74 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: INTERNETWARE AND BEYOND

obtained source code was of low
quality. So, we conservatively con-
sidered a reported warning as a true
violation only when we were highly
con� dent that we understood the
source code and that the violation
was indeed problematic.

The last column in Table 1 shows
the number of true violations after
inspection. PerfChecker found real
performance threats for eight ap-
plications. We reported these viola-
tions to the corresponding developer
teams; we received enthusiastic con-
� rmation and acknowledgment from
the Reddit is fun, Flipboard, and
LINE teams. Their comments in-
cluded these:

We really appreciate your valu-
able comments and suggestions on
improving LINE. We would like to
pass your comments to the relevant
departments, where they may be
used for future versions of LINE.
—LINE Customer Support

It feels great to be tested by your
tool, and it is awesome to connect
with bright developers this way. We
want to explore more interesting
stuff around Android development
with you. —Flipboard Customer
Support

When analyzing Twitter, we
found violations of the view holder

pattern in the latest version of the
Samsung Mobile SDK (1.5 Beta1),
which Twitter uses. Our manual
examination later veri� ed these
violations. We reported our � nd-
ings to Samsung developers. They
were quite interested and generally
agreed that improving this SDK’s
performance would bene� t both ap-
plication developers and end users
(see http:// developer.samsung.com/
forum/board/thread/view.do?board
Name=SDK&messageId=256618 for
details):

With such powerful hardware,
developers got lazy and started
employing bad habits. … If we have
better SDK [for example, improv-
ing their performance], we have
happier developers and happier end
users. —Samsung developer

These � ndings con� rm that diag-
nosis tools such as PerfChecker can
help developers � nd energy or perfor-
mance optimization opportunities.

W e hope that, in the fu-
ture, research commu-
nities and industries

will design useful techniques to help
developers combat energy and per-
formance bugs in their smartphone
applications. Energy and perfor-
mance diagnosis will surely become
increasingly important as mobile In-
ternetware continues to integrate it-
self into people’s daily lives.

Acknowledgments
This research was funded by the Research
Grants Council (General Research Fund
611813) of Hong Kong and the Nation-
al Basic Research 973 Program (grant
2015CB352202) and National Natural
Science Foundation (grants 61472174,
91318301, 61321491, and 61361120097)
of China.

YEPANG LIU is a PhD student in the Hong Kong University of
Science and Technology’s Department of Computer Science and
Engineering. His research interests include software engineer-
ing, software testing and analysis, and mobile computing.
Liu received a BSc in computer science and technology from
Nanjing University. Contact him at andrewust@cse.ust.hk.

CHANG XU is an associate professor in Nanjing University’s
State Key Laboratory for Novel Software Technology and
Department of Computer Science and Technology. His research
interests include software engineering, software testing and
analysis, and pervasive computing. Xu received a PhD in com-
puter science and engineering from the Hong Kong University of
Science and Technology. Contact him at changxu@nju.edu.cn.

SHING-CHI CHEUNG is a professor of computer science
and engineering at the Hong Kong University of Science and
Technology and a director at the Hong Kong R&D Centre for
Logistics and Supply Chain Management Enabling Technologies.
His research interests include program analysis, testing and
debugging, big-data software, cloud computing, the Internet of
Things, and mining software repositories. Cheung received a
PhD in computing from Imperial College London. Contact him at
scc@cse.ust.hk.

Chang Xu and Shing-Chi Cheung are the contact authors for this article.

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

s1liu.indd 74 12/9/14 3:02 PM

	 JANUARY/FEBRUARY 2015 | IEEE SOFTWARE � 75

References
	 1.	 Y. Liu, C. Xu, and S.C. Cheung, “Charac-

terizing and Detecting Performance Bugs
for Smartphone Applications,” Proc. 2014
Int’l Conf. Software Eng. (ICSE 14), 2014,
pp. 1013–1024.

	 2.	 A.J. Oliner et al., “Carat: Collaborative
Energy Diagnosis for Mobile Devices,”
Proc. 2013 ACM Conf. Embedded Net-
worked Sensor Systems (SenSys 13), 2013,
article 10.

	 3.	 L. Zhang et al., “Panappticon: Event-Based
Tracing to Measure Mobile Application
and Platform Performance,” Proc. 2013
Int’l Conf. Hardware/Software Codesign
and System Synthesis (CODES+ISSS 13),
2013, pp. 1–10.

	 4.	 Y. Liu, C. Xu, and S.C. Cheung, “Green-
Droid: Automated Diagnosis of Energy
Inefficiency for Smartphone Applications,”
IEEE Trans. Software Eng., vol. 40, no. 9,
2014, pp. 911–940.

	 5.	 L. Zhang et al., “ADEL: An Automated
Detector of Energy Leaks for Smartphone
Applications,” Proc. 2012 Int’l Conf.
Hardware/Software Codesign and System
Synthesis (CODES+ISSS 12), 2012, pp.
363–372.

	 6.	 D. Li et al., “Calculating Source Line Level
Energy Information for Android Applica-
tions,” Proc. 2013 Int’l Symp. Software

Testing and Analysis (ISSTA 13), 2013, pp.
78–89.

	 7.	 A. Pathak, Y.C. Hu, and M. Zhang,
“Where Is the Energy Spent inside My
App? Fine Grained Energy Accounting on
Smartphones with eProf,” Proc. 7th ACM
Euro. Conf. Computer Systems (EuroSys
12), 2012, pp. 29–42.

	 8.	 L. Zhang et al., “Accurate Online Power
Estimation and Automatic Battery Be-
havior Based Power Model Generation
for Smartphones,” Proc. 2010 Int’l Conf.
Hardware/Software Codesign and System
Synthesis (CODES+ISSS 10), 2010, pp.
105–114.

	 9.	 N. Thiagarajan et al., “Who Killed My
Battery: Analyzing Mobile Browser Energy
Consumption,” Proc. 21st Int’l Conf.
World Wide Web (WWW 12), 2012, pp.
41–50.

	10.	 Y. Kwon et al., “Mantis: Automatic
Performance Prediction for Smartphone
Applications,” Proc. 2013 Usenix Ann.
Tech. Conf. (ATC 13), 2013, pp. 297–308.

	11.	 A. Nistor and L. Ravindranath, “SunCat:
Helping Developers Understand and Pre-
dict Performance Problems in Smartphone
Applications,” Proc. 2014 Int’l Symp.
Software Testing and Analysis (ISSTA 14),
2014, pp. 282–292.

	12.	 F. Qian et al., “Profiling Resource Usage

for Mobile Applications: A Cross-Layer
Approach,” Proc. 10th Int’l Conf. Mobile
Systems, Applications, and Services (Mo-
biSys 11), 2011, pp. 321–334.

	13.	 L. Ravindranath et al., “AppInsight: Mo-
bile App Performance Monitoring in the
Wild,” Proc. 10th Usenix Conf. Operating
Systems Design and Implementation
(OSDI 12), 2012, pp. 107–120.

	14.	 A. Pathak et al., “What Is Keeping My
Phone Awake? Characterizing and Detect-
ing No-Sleep Bugs in Smartphone Apps,”
Proc. 10th Int’l Conf. Mobile Systems,
Applications, and Services (MobiSys 12),
2012, pp. 267–280.

	15.	 X. Ma et al., “eDoctor: Automatically
Diagnosing Abnormal Battery Drain Issues
on Smartphones,” Proc. 10th Usenix Conf.
Network System Design and Implementa-
tion (NSDI 13), 2013, pp. 57–70.

IEEE Software offers
pioneering ideas,
expert analyses, and
thoughtful insights for
software professionals
who need to keep up
with rapid technology
change. It’s the authority
on translating software
theory into practice.

www.computer.org/
software/subscribe

www.computer.org/software

cyber Dumpster Diving // 9

the airbus a380’s cabin software // 21

programming with ghosts // 74

January/february 2013

www.computer.org/software

from minecraft to minds // 11

Landing a spacecraft on mars // 83

Design patterns: magic or myth? // 87

marcH/aprIL 2013

www.computer.org/software

storytelling for software
professionals // 9

In Defense of Boring // 16

Beyond Data mining // 92

may/June 2013

Selected CS articles and columns
are also available for free at
http://ComputingNow.computer.org.

s1liu.indd 75 12/9/14 3:02 PM

