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// Many smartphone application bugs compromise energy 

efficiency and performance, yet we lack powerful tools 

to address them. Examining their characteristics and 

diagnostic challenges offers a key step forward. //

MOBILE INTERNETWARE appli-
cations seamlessly connect physical 
and cyber environments and pro-
vide smart services to users. How-
ever, unlike their desktop counter-
parts, smartphone applications run 
on resource-constrained platforms, 
so even small implementation ineffi-
ciencies can lead to a bad user expe-
rience. Ensuring a satisfactory user 
experience is a nontrivial task for 
developers, especially because many 
smartphone applications have these 
requirements:

•	 Seamless communication. 
Smartphone applications (such as 
email clients or shopping appli-
cations) often use the latest cloud 
data. Inefficient communication 
with Internet cloud services can 
easily waste valuable battery 
power and network bandwidth.

•	 Frequent sensing. Smartphone 
applications often use various 
sensors to detect users’ physi-
cal and cyber environments and 
thereby provide context-aware 
services (such as navigation). 
However, sensing operations 
consume considerable energy, 
and problematic use of sensors 
can easily waste energy.

•	 Intensive computation. Most 
smartphones have fully fledged 
operating systems, enabling com-
putationally intensive applications 
(such as games). However, such 
computation places a big burden 
on smartphone GPUs and CPUs, 
and inefficient computation easily 
hurts application performance.

The smartphone application mar-
ket is extremely competitive. Devel-
opers rarely have sufficient time or 
resources to carefully optimize their 
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applications’ energy ef� ciency and 
performance before pushing them to 
market. So, many applications suffer 
from energy and performance bugs.1

The former can seriously waste bat-
tery power; the latter can signi� -
cantly reduce smartphones’ respon-
siveness and available computational 
resources (such as memory and net-
work bandwidth). These bugs se-
verely impact the user experience 
and cause signi� cant user frustra-
tion.2,3 Despite such bugs’ pervasive-
ness, both the research and industry 
communities haven’t suf� ciently un-
derstood them. The result is a lack 
of mature tools to effectively help 
developers locate energy black holes 
and performance threats in their 
smartphone applications.

Here, we discuss the challenges in 
diagnosing energy and performance 
bugs in real-life Android applica-
tions. We hope to inspire further 
efforts to adequately address these 
challenges. We also review state-of-
the-art diagnostic techniques and 
tools. In particular, we offer results 

from our case study, which applied a 
representative tool to popular com-
mercial Android applications and 
the Samsung Mobile Software De-
velopment Kit (SDK). Our study re-
sults demonstrate that such tools are 
useful to and necessary for smart-
phone application developers; their 
feedback further suggests our re-
search’s practical value.

Activities
Our article focuses on the Android 
OS, which is Linux-based. Android 
applications are written primarily 
in Java, although, for performance 
reasons, developers might write 
critical parts using native languages 
(such as C).

Android applications typically 
comprise four types of components: 
activity, service, broadcast receiver, 
and content provider.1 Each compo-
nent follows a prescribed life cycle 
de� ning how it’s created, used, and 
destroyed. We describe the activity 
component here to aid the under-
standing of our later discussion. (For 

more on application components, see 
the of� cial Android developer web-
site, http://developer.android.com.)

Application GUIs are de� ned in 
activities. Figure 1 shows an activity’s 
life cycle. It starts after the  onCreate()
handler is called and ends after the 
 onDestroy() handler is called. An activ-
ity’s foreground lifetime (its “run-
ning” state) starts after the  onResume()
handler is called and lasts until the 
 onPause() handler is called. At that 
point, the activity goes to the back-
ground (its “stopped” state) and be-
comes invisible. An activity can in-
teract with users only when it’s in the 
foreground. When it goes to the back-
ground, its onStop() handler is called. 
When users navigate back to a paused 
or stopped activity, the activity’s on-
Resume() or onRestart() handler is called, 
and it returns to the foreground. 
In exceptional cases, a paused or 
stopped activity might be killed to 
release memory to higher-priority 
appl ications.

 Energy and 
Performance Bugs
Our recent studies identi� ed that 
the following three common bug 
types seriously affect smartphone 
applications’ energy ef� ciency and 
performance:1,4

• Energy leak bugs can quickly 
exhaust batteries.

• GUI-lagging bugs can sig-
ni� cantly reduce application 
responsiveness.

• Memory bloat bugs can con-
sume too much memory.

Here, we discuss representative ex-
amples of these bugs from real-world 
Android applications. For a more 
comprehensive discussion, along with 
additional bug patterns and exam-
ples, see our empirical studies.1,4

<<kill>> <<kill>>

1. onRestart()
2. onStart()
3. onResume()

1. onCreate()
2. onStart()
3. onResume()

onResume()

onPause()

Destroyed

Running

onStop()

Launch activity

onDestroy()

PausedStopped

 FIGURE 1. The life cycle of an Android application’s activity component. Application 

GUIs are de� ned in activities. The activity’s life cycle starts when the onCreate() handler is 

called and ends after the onDestroy() handler is called.
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Energy Leak Bugs
 Many applications that communi-
cate with the physical or cyber envi-
ronment through sensors or network 
interfaces suffer from subtle energy 
leak bugs. One common cause is 

cost-ineffective use of sensory or net-
work data.4,5

Figure 2a shows a simpli� ed 
version of a real-world bug.4 The 
associated application uses GPS 
data for navigation and location 

tracking (which can be disabled). 
When users launch the applica-
tion,  MapActivity (lines 1–25) starts, 
creating a live map for user inter-
actions. For navigation, the appli-
cation maintains a long-running 

  1. public class MapActivity extends Activity {
  2.  private Intent gpsIntent;
  3.  private BroadcastReceiver myReceiver;
  4.  public void onCreate(){
  5.   gpsIntent = new Intent(GPSService.class);
  6.   startService(gpsIntent); //start GPSService
  7.   myReceiver = new BroadcastReceiver() {
  8.    public void onReceive(Intent intent) {
  9.     LocData loc= intent.getExtra();
10.     updateMap(loc);
11.     if(trackingModeOn) {
12.      persistToDatabase(loc);
13.     }
14.     }
15.   }
16.   //register receiver for handling location changes
17.   IntentFilter �lter = new IntentFilter(“loc_change”);
18.   registerReceiver(myReceiver, �lter);
19  } 
20.  public void onDestroy() {
21.   //stop GPSService and unregister broadcast receiver
22.   stopService(gpsIntent);
23.   unregisterReceiver(myReceiver);
24.  }
25. }

31. public class GPSService extends Service {
32.  private LocationManager lm;
33.  private LocationListener gpsListener;
34.  public void onCreate(){
35.   //get a reference to system location manager
36.   lm = getSystemService(LOCATION_SERVICE);
37.   gpsListener = new LocationListener() {
38.    public void onLocationChanged(Location loc) {
39.     if(precise(loc)){
40.      LocData formattedLoc= processLocation(loc);
41.      //create and send a location change message
42.      Intent intent = new Intent(“loc_change”);
43.      intent.putExtra(“data”, formattedLoc);
44.      sendBroadcast(intent);
45.     }
46.    }
47.   };
48.   //GPS listener registration
49.   lm.requestLocationUpdates(GPS, 0, 0, gpsListener);
50.  }
51.  public void onDestroy() {
52.   //GPS listener unregistration
53.   lm.removeUpdates(gpsListener);
54.  }
55. }

(a)

(b) (c)

       //recycled view is not reused, causing GUI lagging and memory bloat
  1. public View getView(int pos, View recycledView, ...) {
  2.  //tab item layout in�ation
  3.  View tab = mIn�ater.in�ate(tabItem, null);
  4.  //�nd inner views
  5.  TextView title = (TextView) tab.�ndViewById(tabTitle);
  6.  ImageView icon = (ImageView) tab.�ndViewById(tabIcon);
  7.  //update inner views
  8.  title.setText(DATA[pos]);
  9.  icon.setImageBitmap((pos% 2) == 1 ? mIcon1: mIcon2);
10.  return tab;
11. }

Tab 2

Tab 3

Tab 1

Tab 1

Tab 2

Tab 3

System recycler

Screen
Old item goes
off screen and
gets recycled

New item
goes onto
screen.

//constructs new list items
getView(int pos, View recycledView, ...)

Sc
ro

lli
ng

Tab 1

FIGURE 2. Examples of energy and performance bugs. (a) An energy leak bug. The code implements a callback that uses sensory 

data in an energy-inef� cient way. (b) A list view (Firefox’s tab tray) . (c) A GUI-lagging and memory bloat bug. The code implements an 

inef� cient list view callback.
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GPSService in the background for lo-
cation sensing (lines 31–55). On re-
ceiving new location data, GPSService 
checks whether the data satisfy cer-
tain precision criterion (line 39). 
If that’s the case, it processes and 
broadcasts the data (lines 40–44) 
so that MapActivity can update its 

navigation map (line 10). MapActivity 
also stores the data on a database if 
location tracking is enabled (lines 
11–13). Background location sens-
ing is disabled only when MapActivity 
is destroyed (lines 20–24 and 51–
54), which happens when users exit 
the application.

This design works well in many 
situations but can cause problems. 
For example, when users enter an area 
with weak GPS signals, the applica-
tion might continue discarding noisy 
location data. This continual but use-
less location sensing can quickly drain 
the phone battery. Another problem-
atic situation arises when users switch 
MapActivity to the background without 
enabling location tracking. In such 
cases, even if GPSService obtains precise 
location data, the data will be used 
only to render the navigation map, 
which is completely invisible. Again, 
this wastes battery energy.

To fix the bug, developers can 
tune down the application’s location-
sensing frequency or temporarily 
disable location sensing in problem-
atic scenarios.

GUI-Lagging and Memory Bloat Bugs
This example, simplified from a 

Firefox bug,1 relates to frequently in-
voked callbacks.

Android applications are event-
driven programs; a set of callbacks 
defines their major functional-
ities. The list view, for example, is 
a widely used GUI widget for dis-
playing scrollable data items (such 

as an email list). Figure 2b shows an 
abstraction of a list view (Firefox’s 
tab tray). Each list item represents 
a browser tab and contains two el-
ements: a webpage icon and a web-
page title label.

To render the list items, devel-
opers define a callback getView(). 
At run time, when users scroll the 
list view, getView() is continually in-
voked for constructing new items. 
The callback typically conducts two 
operations:

•	 In item inflation, the callback 
parses the list item’s layout con-
figuration files and constructs its 
GUI element tree.

•	 In inner view update, the call-
back traverses the list item’s GUI 
element tree to retrieve specific 
elements for content updating.

However, file parsing and tree tra-
versing can be time-consuming, es-
pecially when list items have hierar-
chical inner structures. Frequently 
conducting such operations can sig-
nificantly reduce a list view’s scroll-
ing smoothness.

To improve performance, the 
Android OS recycles list items that 

go off the screen during user scroll-
ing. Because list items often have 
an identical layout, Android appli-
cations can reuse the recycled items 
to render new ones, avoiding two 
heavy operations on each invocation 
of getView(). This approach is called 
the view holder pattern (see http://
developer.android.com/training /
improving-layouts/smooth-scrolling.
html). Unfortunately, many real-
world applications don’t adopt this 
good practice.

For example, Figure 2c shows how 
Firefox developers implemented the 
tab tray’s getView() callback. In this in-
efficient version, item inflation (line 3) 
and inner view update (lines 5–9) oc-
cur each time getView() is invoked. This 
hurts the tab tray’s scrolling perfor-
mance. This implementation also fails 
to reuse items and consumes much 
memory by continuously inflating list 
items. Owing to the resulting mem-
ory pressure, the garbage collector 
will run frequently, further degrading 
the whole system’s performance.

Diagnosis Challenges
Diagnosing energy and performance 
bugs in smartphone applications is 
time-consuming and painful, and 
poses three main challenges.

Triggering Energy  
and Performance Bugs
Triggering bugs is a critical step be-
fore diagnosing and fixing them. Un-
fortunately, triggering energy or per-
formance bugs isn’t easy.1

First, the bugs often occur only in 
certain usage scenarios, and expos-
ing them requires complex user in-
teractions. Consider our first bug ex-
ample. To expose the energy waste, 
we had to

•	 launch the application and 
switch on GPS,

Triggering bugs is a critical step  
before diagnosing and fixing them.
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•	 configure the application to dis-
able location tracking, and

•	 run the application for a 
while and then switch it to the 
background.

Such interaction is nontrivial. In re-
ality, users interact with applications 
in many ways, so it’s hard to predict 
which user interactions might trigger 
energy inefficiency or performance 
degradation.

In addition, triggering these bugs 
could require external stimulus. In 
the energy bug example, exposing 
the energy waste might require sim-
ulating the physical environment, 
such as poor GPS signals, which is a 
nontrivial endeavor.

Finally, these bugs might be trig-
gered only under a sufficient work-
load. For example, to trigger Firefox’s 
GUI-lagging and memory bloat bug, 
we must open several browser tabs 
before scrolling the tab tray.

Judging Energy Inefficiency or 
Performance Degradation
Energy bugs might waste energy si-
lently, and performance bugs might 
degrade performance gradually. 
Such bugs rarely cause immediate 
fail-stop consequences (such as a 
crash). This makes judging their ex-
istence and extent difficult.

Developers often adopt three 
judgment strategies:1

•	 Make the judgments manually 
by running an application and 
observing its energy consump-
tion and performance.

•	 Compare an application with 
similar applications to check 
whether its energy efficiency and 
performance are comparatively 
satisfactory.

•	 Rely on engineering experience. 
For example, many developers 

assume an application suffers 
from performance bugs if it can’t 
handle a user event within 200 
milliseconds.1,3

However, these strategies either 
require nontrivial manual effort or 
haven’t been clearly defined. This 
makes energy and performance di-
agnosis less systematic and difficult 
to automate.

Diagnosis Adequacy and Effort
Diagnosing energy and performance 
bugs often requires considerable ef-
fort.1 For example, to understand 
the root cause of our example en-
ergy bug, developers must analyze 
how the application uses GPS data in 
many scenarios, including these:

	 1.	The GPS data are precise, and 
the application is running in the 
background with location track-
ing enabled.

	 2.	The GPS data are precise, 
and the application is running 
in the background with location 
tracking disabled.

	 3.	The GPS data are continuously 
noisy, and the application is 
running in the background with 
location tracking enabled.

	 4.	The GPS data are continuously 
noisy, and the application is 
running in the background with 
location tracking disabled.

Following such analyses, develop-
ers might realize that

•	 battery energy is completely 
wasted in scenarios 2 through 
4 because all the collected GPS 
data are either discarded or used 
to render an invisible map; and

•	 in scenario 1, the application has 
slightly better data utilization be-
cause it stores data for future use, 
but battery energy is still wasted 
in rendering an invisible map.

Similarly, to diagnose Firefox’s GUI-
lagging and memory bloat bug, devel-
opers must test how quickly Firefox 
responds and how much memory it 
consumes under different workloads.

Our examples are simplified. Diag-
nosing real-world bugs might require 
analyzing many more scenarios. So, 
it’s important to study how to improve 
diagnosis efficiency and effectiveness. 
For example, developers might want 
to analyze a minimal set of critical ap-
plication usage scenarios to quickly 
understand the energy and perfor-
mance bugs’ root causes. This would 
definitely boost their productivity.

State-of-the-Art 
Diagnosis
Here we review some of the most im-
portant energy and performance di-
agnosis techniques.

Measurement  
and Estimation Techniques
Researchers have designed many tech-
niques to measure or estimate smart-
phone applications’ energy consump-
tion and performance. For example, 
vLens,6 eProf,7 and PowerTutor8 esti-

Energy bugs might waste energy silently, 
and performance bugs might degrade 

performance gradually. 
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mate energy consumption of Android 
applications or system components 
(such as GPS). In particular, vLens 
can quickly calculate the energy con-
sumption of fine-grained source code 
entities such as statements.

Such information can help devel-

opers effectively locate energy hot 
spots in their applications and op-
timize them accordingly. Although 
such techniques are applicable to 
general smartphone applications, 
Arvind Thiagarajan and his col-
leagues designed a framework spe-
cifically for smartphone browsers 
to measure the energy used for ren-
dering webpages and their elements 
(such as Cascading Style Sheets).9

Researchers have also tried to 
design similar techniques for per-
formance estimation. For example, 
Mantis constructs precise perfor-
mance models for Android applica-
tions and helps estimate their execu-
tion time on given inputs to pinpoint 
performance bottlenecks.10

Event Profilers
Developers have long used profilers 
to diagnose software energy and per-
formance bugs;11 researchers have 
tailored these techniques for smart-
phone platforms.

For example, ARO (Applica-
tion Resource Optimizer) monitors 
cross-layer interactions—such as 
user events at the application layer 
and network packets at the system 
layer—to disclose inefficient radio 
resource usage, which commonly 

causes energy waste and performance 
degradation.12 AppInsight helps in-
strument smartphone applications’ 
binaries to identify long latency ex-
ecution paths.13 Panappticon identi-
fies performance issues arising from 
inefficient platform code or problem-

atic interactions among applications.3 
Most recently, SunCat logs the events 
in a test run and summarizes event 
repetition patterns to help developers 
understand and predict performance 
problems.11 Such techniques suit in-
house testing and can help developers 
reason about energy and performance 
problems’ root causes.

Pattern-Based Analyzers
Researchers have expended great effort 
to identify common patterns of energy 
and performance bugs. On the basis 
of these patterns, they’ve designed dy-
namic and static code analyzers.

ADEL (Automated Detector of 
Energy Leaks)5 and GreenDroid4 
locate Android application energy 
bugs caused by ineffective use of 
high energy-cost program data (such 
as network and sensory data). These 
dynamic analyzers execute an ap-
plication and track program-data 
transformation, propagation, and 
consumption to locate problematic 
scenarios in which an application 
fails to effectively use that data (as in 
Figure 2a).

Static analyzers perform diag-
nosis without executing an applica-
tion, thus requiring no test effort 
(generating reusable test cases for 

event-driven programs is nontrivial). 
State-of-the-art techniques often 
scan an application’s source code or 
binary to locate energy and perfor-
mance problems. For example, Abhi-
nav Pathak and his colleagues’ tech-
nique detects energy bugs caused by 
the forgotten release of wake locks 
(which keep smartphones awake).14 
Lint, a popular static analyzer in the 
Android Studio SDK, detects a range 
of energy and performance bugs. Our 
PerfChecker can detect eight patterns 
of energy and performance bugs and 
provide actionable diagnostic infor-
mation.1 (Android Studio developers 
integrated an enhanced version of our 
view holder violation checker into 
Lint; see https://developer.android 
.com/sdk for more information.)

End-User-Oriented Diagnosis
The techniques we’ve discussed so 
far are primarily for developers, but 
end-user-oriented techniques also ex-
ist. For example, eDoctor can cor-
relate system and user events (such 
as configuration changes) to energy-
heavy execution phases.15 It can 
thus help end users troubleshoot 
abnormal battery drains and sug-
gest repairs (such as a configuration 
rollback).

Carat shares the same goal as 
eDoctor but adopts a collaborative, 
big-data-driven approach.2 It col-
lects run-time data (for example, the 
active apps and device model) from 
a large community of smartphones 
to infer energy usage models. It 
thereby provides users with action-
able advice on improving smart-
phone battery life. It can provide 
useful feedback without necessarily 
needing to profile much of a user’s 
smartphone data.

Such user-oriented techniques 
can also give developers useful di-
agnostic information. Carat can tell 

Researchers have expended great effort  
to identify common patterns of energy  

and performance bugs. 
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developers whether their applica-
tions would cause energy waste on 
certain smartphone models. eDoc-
tor can tell them whether their ap-
plications would suffer from energy 
bugs under some configurations or 
whether new versions have energy 
and performance regression.

Discussion
These techniques have certain 
limitations.

Developers often use estima-
tion and measurement techniques 
to identify energy and performance 
hot spots. However, simply know-
ing an application’s energy cost or 
response time might be inadequate 
for effective optimization. The key 
diagnostic information developers 
need is whether the consumed en-
ergy or performed computation is 
necessary. For example, one energy 
measurement technique might iden-
tify an application component using 
GPS for navigation as an energy hot 
spot, even though it’s efficiently us-
ing the consumed energy to provide 
a smart service. Further research 

might study how to analyze such 
cost–benefit relations.

In addition, profilers can generate 
large profiles1,11 that contain consid-
erable redundant and useless infor-
mation. Effective profile aggregation, 
simplification, and visualization 
techniques are highly desirable to 
improve developer productivity.1 Be-
sides, another open question is which 
information is critical to collect dur-
ing profiling to effectively diagnose 
energy and performance bugs.

Finally, although code-pattern-
based analyzers support a range of 
bug patterns, the root causes of many 
complex real-world energy and per-
formance bugs are unclear.1 In addi-
tion, analyzers such as ADEL require 
test cases, but we don’t yet know 
how to effectively and efficiently con-
struct test cases to manifest energy or 
performance bugs.

A Case Study
We applied the view holder checker 
in PerfChecker to 10 popular com-
mercial Android applications to see 
whether PerfChecker can provide 

useful diagnostic information to de-
velopers. We chose our own tool be-
cause it’s easier for us to preprocess 
reported issues before communicat-
ing with developers. (Static analyz-
ers inevitably generate false warn-
ings; pruning them helps ensure that 
developers aren’t overwhelmed with 
useless information.)

Table 1 shows basic application 
information. These applications fre-
quently fetch the latest cloud data 
to interact with users. We obtained 
their installation files (.apk) from 
the Google Play store and trans-
formed them to Java bytecode for 
analysis. (PerfChecker doesn’t re-
quire an application’s source code 
for analysis, but if the source code is 
available, it can highlight code that 
might cause energy inefficiency or 
performance degradation.)

PerfChecker analyzed each ap-
plication in a few seconds and re-
ported a set of warnings. We man-
ually validated the warnings by 
checking the corresponding source 
code, decompiled from Java byte-
code. Owing to obfuscation, this 

TA
B

L
E

 1 The case study’s commercial applications.

Name Category Version Downloads* (in millions) Reported warnings True violations

Reddit is fun News & Magazines 3.1.13 1 – 5 8 2

Wechat Communication 5.1 100 – 500 18 12

BBC News News & Magazines 2.5.2 5 – 10 3 0

Sina Weibo Social 4.2.6 5 – 10 43 10

Flipboard News & Magazines 2.2.7 100 – 500 18 10

Facebook Social 6.0.0.28.28 500 – 1,000 1 0

LINE Communication 4.0.1 100 – 500 5 2

Skype Communication 4.6.0.42007 100 – 500 13 5

Dropbox Productivity 2.3.12.10 100 – 500 5 1

Twitter Social 5.2.2 100 – 500 16 4

*We counted downloads from the Google Play store only.
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obtained source code was of low 
quality. So, we conservatively con-
sidered a reported warning as a true 
violation only when we were highly 
con� dent that we understood the 
source code and that the violation 
was indeed problematic.

The last column in Table 1 shows 
the number of true violations after 
inspection. PerfChecker found real 
performance threats for eight ap-
plications. We reported these viola-
tions to the corresponding developer 
teams; we received enthusiastic con-
� rmation and acknowledgment from 
the Reddit is fun, Flipboard, and 
LINE teams. Their comments in-
cluded these:

We really appreciate your valu-
able comments and suggestions on 
improving LINE. We would like to 
pass your comments to the relevant 
departments, where they may be 
used for future versions of LINE. 
—LINE Customer Support

It feels great to be tested by your 
tool, and it is awesome to connect 
with bright developers this way. We 
want to explore more interesting 
stuff around Android development 
with you. —Flipboard Customer 
Support

When analyzing Twitter, we 
found violations of the view holder 

pattern in the latest version of the 
Samsung Mobile SDK (1.5 Beta1), 
which Twitter uses. Our manual 
examination later veri� ed these 
violations. We reported our � nd-
ings to Samsung developers. They 
were quite interested and generally 
agreed that improving this SDK’s 
performance would bene� t both ap-
plication developers and end users 
(see http:// developer.samsung.com/ 
forum/board/thread/view.do?board
Name=SDK&messageId=256618 for 
details):

With such powerful hardware, 
developers got lazy and started 
employing bad habits. … If we have 
better SDK [for example, improv-
ing their performance], we have 
happier developers and happier end 
users. —Samsung developer

These � ndings con� rm that diag-
nosis tools such as PerfChecker can 
help developers � nd energy or perfor-
mance optimization opportunities.

W e hope that, in the fu-
ture, research commu-
nities and industries 

will design useful techniques to help 
developers combat energy and per-
formance bugs in their smartphone 
applications. Energy and perfor-
mance diagnosis will surely become 
increasingly important as mobile In-
ternetware continues to integrate it-
self into people’s daily lives.
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