This is a post-peer-review, pre-copyedit version of an article published in Empirical Software Engineering. The final
authenticated version will be published online by Springer. The copyright of the article belongs to Springer.

Noname manuscript No.
(will be inserted by the editor)

DroidLeaks: A Comprehensive Database of Resource
Leaks in Android Apps

Yepang Liu - Jue Wang - Lili Wei -
Chang Xu : Shing-Chi Cheung -
Tianyong Wu - Jun Yan - Jian Zhang

Received: date / Accepted: date

Abstract Resource leaks in Android apps are pervasive. They can cause se-
rious performance degradation and system crashes. In recent years, many re-
source leak detection techniques have been proposed to help Android develop-
ers correctly manage system resources. Yet, there exist no common databases
of real-world bugs for effectively comparing such techniques to understand
their strengths and limitations. This paper describes our effort towards con-
structing such a bug database named DROIDLEAKS. To extract real resource
leak bugs, we mined 124,215 code revisions of 34 popular open-source Android
apps. After automated filtering and manual validation, we successfully found
292 fixed resource leak bugs, which cover a diverse set of resource classes,
from 32 analyzed apps. To understand these bugs, we conducted an empirical
study, which revealed the characteristics of resource leaks in Android apps and
common patterns of resource management mistakes made by developers. To
further demonstrate the usefulness of our work, we evaluated eight resource
leak detectors from both academia and industry on DROIDLEAKS and per-

Yepang Liu

Shenzhen Key Laboratory of Computational Intelligence, Department of Computer Science
and Engineering, Southern University of Science and Technology, Shenzhen, China. E-mail:
liuypl@sustech.edu.cn

Jue Wang, Chang Xu

State Key Laboratory for Novel Software Technology and Department of Computer Science
and Technology, Nanjing University, Nanjing, China

E-mail: juewang591@gmail.com, changxu@nju.edu.cn

Lili Wei, Shing-Chi Cheung
Department of Computer Science and Engineering, Hong Kong University of Science and
Technology, Hong Kong, China. E-mail: {lweiae, scc}@cse.ust.hk

Tianyong Wu, Jun Yan, Jian Zhang

Institute of Software, Chinese Academy of Sciences, University of Chinese Academy of Sci-
ences, Beijing, China

E-mail: {wuty, yanjun, zj}@ios.ac.cn


yepang
Typewritten Text
This is a post-peer-review, pre-copyedit version of an article published in Empirical Software Engineering. The final authenticated version will be published online by Springer. The copyright of the article belongs to Springer. 


2 Yepang Liu et al.

formed an detailed analysis of their performance. We release DROIDLEAKS for
public access to support future research.

Keywords Android apps - resource leak - mining code repository - bug
database - fault pattern - tool evaluation

1 Introduction

Mobile applications (or apps for short) such as those running on the An-
droid platform are gaining popularity in recent years. People rely on such
apps for various daily activities such as work, socializing, and entertainment.
Unlike PC software, mobile apps run on resource-constrained mobile devices
and are required to consume computational resources (e.g., memory, battery
power) more efficiently. However, many apps on the market fail to satisfy this
non-functional requirement. They often do not properly release the acquired
computational resources after use (Guo et al. 2013). Such software defects
are called resource leaks. They can gradually deplete the finite computational
resources in mobile devices at runtime, leading to severe performance degra-
dation and system crashes.

Ensuring proper resource usage in a program is a non-trivial task for devel-
opers (Torlak and Chandra 2010). Over the years, researchers have proposed
various techniques to help developers correctly manage resources used by their
apps, including static analyzers (e.g., Guo et al. 2013, Liu et al. 2016b), veri-
fication (e.g., Vekris et al. 2012, Liu et al. 2014) and testing techniques (e.g.,
Yan et al. 2013, Wu et al. 2018). Besides, industrial tools such as Infer (Face-
book 2018) and the built-in checkers in Android Studio (Google 2018b) can
also help pinpoint resource leaks in the code of mobile apps.

Despite the tremendous efforts towards automated resource management
and leak detection, there does not exist a widely-recognized database of real-
world resource leak bugs in mobile apps. Such bug databases are essential as
they can provide a reliable basis to evaluate and compare various resource man-
agement and leak detection techniques. Due to the lack of such bug databases,
existing techniques such as Relda2 (Wu et al. 2016) can only be evaluated on
a small set of open-source or commercial apps. The detected bugs were also
rarely confirmed by the original developers. As a result, it is hard to (1) fully
reproduce existing studies’ results to assess the effectiveness of the proposed
techniques in real settings and (2) quantitatively compare such techniques with
a fair basis to understand their strengths and limitations. In addition, existing
work only studied limited types of resource leaks in Android apps (e.g., those
causing energy waste). To the best of our knowledge, there does not exist a
comprehensive database of resource leak bugs in mobile apps.

In this work, we make an initial contribution towards benchmarking re-
source leak bugs for mobile apps and focus on the Android platform. To
collect real resource leak bugs in Android apps, we investigated 34 diverse
and popular open-source Android apps indexed by F-Droid (F-Droid 2018). A



DroIDLEAKS: A Comprehensive Database of Resource Leaks in Android Apps 3

straightforward approach for bug collection is to search these apps’ issue track-
ing systems. However, in practice, software bugs could be fixed without being
properly documented and this approach would miss many such bugs. In order
to address the problem, we searched for bugs by examining the revision history
of the apps. Our observation is that the patches to fix resource leak bugs (1)
usually demonstrate patterns (e.g., developers often add code to invoke certain
APITs to release the acquired resources) and (2) are eventually committed to
the apps’ code repository. Therefore, we can mine the apps’ code repository for
bug collection. To construct the bug database, we built a tool, which automat-
ically mined 124,215 code revisions of the 34 apps. After automated filtering
and manual validation, we successfully located 292 fixed resource leak bugs
in 32 apps, of which only 14 (4.8% = 14/292) were documented in the corre-
sponding apps’ issue tracking system. We call this bug database DROIDLEAKS
and collected the following data for each bug: (1) the type of the leaked system
resource (in terms of Java classes such as android.database.Cursor), (2) the
buggy code, (3) the bug-fixing patches, and (4) the bug report (if any).

To understand the characteristics of these bugs, we performed an empirical
study on DROIDLEAKS and made several interesting observations. For exam-
ple, developers can easily make resource management mistakes when the apps
have complex lifecycles or frequently interact with the running environment.
We also found three common patterns of resource management mistakes (e.g.,
APT misuses and losing references to resource objects). Moreover, we observed
that bugs in DROIDLEAKS are representative and comprehensive as they cover
the types of resource leak bugs studied by the existing work (Guo et al. 2013,
Liu et al. 2016b, Vekris et al. 2012, Wu et al. 2016), and additionally contain
many more types. Such findings suggest that our work not only can provide
practical programming guidance to Android developers (e.g., the bugs and
patches in DROIDLEAKS can be used for training or educational purposes) but
also can support follow-up research on developing or evaluating automated
resource leak bug finding and patching techniques. As an example, we im-
plemented a static checker to detect a common misuse of Android database
APIs and helped developers find 17 previously-unknown resource leaks in their
Android apps, of which 16 were fixed later (see Section 6.2).

To further demonstrate the usefulness of DROIDLEAKS, we experimentally
evaluated eight existing resource leak detectors for Android apps using it.
These detectors are freely accessible to Android developers. Some are research
prototypes, while others are of industrial strength, e.g., Facebook Infer. All
these detectors perform static analysis for bug detection. We did not evaluate
dynamic analysis techniques due to the lack of test cases to run the Android
apps. The results show that none of the existing detectors support detecting
all types of resource leaks indexed by DROIDLEAKS. These detectors also suffer
from high false negative or false positive rates, which would significantly hinder
their adoption. To help improve the detectors, we provide a detailed analysis
of their limitations with real-world bug examples in Section 5.4. In summary,
we make three major contributions in this paper:



4 Yepang Liu et al.

— We present DROIDLEAKS, a large database of real resource leak bugs in
popular open-source Android apps, and describe its construction process
in detail. DROIDLEAKS currently features 292 bugs covering 33 different
resource classes. To the best of our knowledge, DROIDLEAKS is the first of
its kind and we release it to facilitate future research (https://zenodo.
org/record/2589909).

— We performed an empirical study of the bugs in DROIDLEAKS. The study
revealed characteristics of resource leaks in Android apps and found common
patterns of resource management mistakes made by Android developers.

— We evaluated eight existing resource leak detectors for Android apps with
DroIDLEAKS and provide a detailed analysis of their strengths and weak-
nesses, which can shed light on future research to improve these detectors.

Paper organization. Section 2 introduces the preliminaries of Android
apps and resource leaks. Section 3 presents our approach to constructing DROI-
DLEAKS. Section 4 discusses the characteristics of bugs in DROIDLEAKS. Sec-
tion 5 evaluates existing resource leak detectors for Android apps. Section 6
discusses threats to validity, limitations of the work, the usefulness of DROI-
DLEAKS, and implications on future techniques. Section 7 reviews related work
and Section 8 concludes this paper.

2 Background

Android is a Linux-based open-source mobile operating system. Android apps
are mostly written in Java and compiled to Dalvik bytecode, which are then
encapsulated into Android app package files (i.e., .apk files) for distribution
and installation.

App components and event handlers. Android apps are event-driven
programs. An app usually consists of four types of components: (1) activities
contain graphical user interfaces (GUIs) for user interactions, (2) services run
in background for long-running operations, (3) broadcast receivers respond to
system-wide broadcast messages, and (4) content providers manage shared app
data for queries. Each app component can define and register a set of event
handlers, i.e., callback methods that will be invoked by the Android OS when
certain events occur. Developers implement the main logic and functionalities
of an app in these event handlers.

System resource management. In order to acquire system resources
for computation, Android apps need to invoke designated resource-acquiring
APIs provided by the Android SDK. When the computation completes, the
apps should release the acquired resources by invoking the resource-releasing
APIs. For example, wake lock is a critical system resource for power control on
Android devices. Listing 1 on page 5 shows how an app can acquire a partial
wake lock by calling the WakeLock.acquire() API (Line 3). The partial wake
lock will keep CPU running to protect the critical computation from being
disrupted by device sleeping. When the critical computation completes, the
app releases the wake lock by calling the WakeLock.release() API (Line 5).


https://zenodo.org/record/2589909
https://zenodo.org/record/2589909

DroIDLEAKS: A Comprehensive Database of Resource Leaks in Android Apps 5

1. PowerManager pm = (PowerManager) getSystemService (POWER SERVICE) ;
2. WakeLock wl = pm.newWakeLock (PARTIAL WAKE LOCK, “lockTag”);

3. wl.acquire(); //acquire a wake lock a a

4. //performing critical mputation when the wake lock is held

5. wl.release(); //release the wake lock

Listing 1: Example code for using wake locks

Resource leak. For correct resource management, developers should en-
sure that acquired resources are released on every possible program execution
path, including exceptional ones. Particularly, for reference-counted resources
(e.g., in Android, wake locks are by default reference-counted), each call to
the resource-acquiring API must be balanced by an equal number of calls
to the resource-releasing APL.! Otherwise, the resources will be leaked (e.g.,
when developers forget Line 5 of Listing 1), which can cause undesirable con-
sequences such as performance degradation and system crashes. In practice,
resource management tasks are error-prone (Torlak and Chandra 2010, Wu et
al. 2016). The complex and implicit control flows among Android event han-
dlers further complicate the tasks, giving rise to various resource leak bugs
(see Listing 2 and Listing 3 on page 14 for examples).

3 Collecting Resource Leak Bugs

This section presents our semi-automated approach for constructing the DrROI-
DLEAKS bug database.

3.1 Selecting Open-Source App Subjects

To construct DROIDLEAKS, we started by selecting representative open-source
Android apps for investigation. F-Droid (F-Droid 2018) is a well-known open-
source Android app database. It indexed 2,146 apps of different maturity levels
at our study time, of which 1,475 have an accessible source code repository
and are hosted on GitHub, a leading open-source project hosting site.? To
search for suitable app subjects, we defined the following four criteria: (1) a
selected app should have more than 10,000 downloads on the market (the app is
popular), (2) the app should also have a public issue tracking system (bugs are
traceable), (3) the app’s code repository should contain over 100 code revisions
(the app is actively-maintained), and (4) the app should contain at least 1,000
lines of Java source code (the app is non-trivial). These four criteria were
chosen to select non-trivial real-world apps and avoid toy-example projects.
Our intuition is three-fold. First, if an app is frequently downloaded and has
a large user base, users might have already encountered and reported various

Ihttps://developer.android.com/reference/android/os/PowerManager . WakeLock
®https://github. com/


https://developer.android.com/reference/android/os/PowerManager.WakeLock
https://github.com/

Yepang Liu et al.

‘xipuadde oYy Ul punoj oq ued sarr0jisodor opoo sdde oy 09 syul] oY, (F) ‘4107 ‘¥snSny ur pajepdn jse[ oIom pue 9I(g ‘19q030() Ul paureIqo
A[rerirur o1om d[qe) oY) ul ejep oy J, (g) ‘9109s L[ 91S00x) oY) WOIj vIep PaIopIsuod Auo am ‘sprojumop dde 104 (g) ‘000°000‘T = INT Pu® 000‘T = MT (T) :s910N

6% 1181 SIT'VCT relor,

4 9 $92°1 3g 8¢ NS — INT 184 UOIYeDTUNUWWOo)) 2qqex
62 z91 S08‘%1T 6L NOT — NG [ [eog SSOIJPIOA
0 )8 879°T MVY 3100 — 00T 'y UOIeDTUNUIWO) SINSIPM
a8 09 18%'¢ M1'8T N00S — INOOT ~ ¥'F SIOYIPH 29 ST19Ae[d 09PIA PlOIpuy-pIA
i 91 876 3LGE 3105 — 30T L€ UOIPeDTUNUWO)) pryeys
4 8 LTV 3G€T 31005 — 300T o0 4 s[ooT, proapsueiy,
4 ins Se0‘T SMLTT N0S — INOT 187 s[oog, Ioje[NWY [BUIWIT,
11 LL TLS'T MO TV 3100 — 00T 7 [eog jodgaing
4 4! €18 LY NG — INT 6'¢ UOIPeDTUNUIO)) PIOIJSINS
1 L €62 S TT NS — INT oV UOIPeDTUNUIO)) proxqdrg
61 Ly 09¢°T LTS NO0S — INOT LY EECLEREI DS i I (elefe | proIpuy Ioj ueind)
8 4] 7s'y M9'1€ 300S — M00T 9'¢ Ay1aronporg pnojpumo
i ¥I 00¥% 36°G 3100 — 00T €V [eD07] 23 [9ARL], I1BPRILINSO
m i3 188°T My 8T 300T — 310G 6'¢ uoryesiaeN 29 sdejy proxiqusQ
€1 Pe1 9££°6¢ SMLLET NOT — NG 47 uorjesiaeN 23 sdejy puewsQ
4 a4 960°T 3METT NT — 300¢ 184 [e20T] 27§ [9A®RL], @3eI], D uwedo
0 6 66€ 369 NOT — NG 4 Ayangonpord 198eueN O[] 10
1€ 86 TeT'9 3G°8L NOT — NG 7 uoredIUNUWoD I®IN 6-31
11 9¢1 998°T 3EGe 300T — 310G (7 UoIpedIUNUWo) PRo[DOYI
i 4 962 30V 3100T — 310S a7 SouIzeSeIN 2§ SMON 19pedY SMIN IR
g 1 6L1T see NOS — INOT ey S[00],  10jedIUAYINY O[F00D)
8 9. S00°6 36°0L N0S — INOT Sy S9OUDIRJAY 7§ SN0OH Topedyd.
8 06 8€¢‘6 3MTTS NG — INT 1% JUSUWIUTR)IOUG] 00%:0
1 8T 692°T 38°8T 300T — 310S L€ [e20T] 27§ [9A®RL], $199.11G9124D)
L 44 8LLT 30°6¥ WS — INT o 4 UOT}EDTUNWTO)) ordurrgdigp
g 44 67ET 3M9°LT NS — INT 9% UOIeDTUNUIWO) 10g300UUO0)
49 8TT 906 MgLE NT — 3009 0V UOIeDdTUNUIO) aImodagyey)
[0)8 L2 €92°c MGET NG — INT €V s[oog, 99N [1®D
i 4] 44784 30°8T NS — INT 0V doueul g 1OIRM. UIoDHG
S 47 61 39°0T NO0S — INOOT ~ T'F Surddoyg Iouuedg opodIRY
9 g T0T‘T 36°5C 3100S — 00T 187% soueulg proiqyueg
[0)8 69 99¢‘% 30TV 3100 — 00T 'y UOIedIUNUIWOo)) DAV
i 9% €08'c 3MEGT NG — INT 7% s[oog, preoqAe3 yogAuy
8T fired €0g‘8 e LY NS — INT e 4 UoIyednpiy proigqeuy
s8nq # SuoIsIAaJ Suljsagajur # SUOISIADI [810] F# Am>m3 D0OIS speojumo( Suryey Kao399e) swreu ddy

s8nq yeo[ 90Inosal 1Y) pur sjpoalqns dde sornos-uod() :1 9[qe],



DroIDLEAKS: A Comprehensive Database of Resource Leaks in Android Apps 7

— » Commit logs O 1,811 292 real
Code | « Code diffs 4 commits resource
_— _
Repos \, leak bugs
34 Android apps Keyword search Manual validation

Fig. 1: Resource Leak Bug Collection Process

Table 2: Keywords for mining commit logs

leak leakage release recycle cancel

unload unlock unmount unregister close

Table 3: keywords for mining code diffs

.close( .release( .removeUpdates (

.unlock( .stop( .abandonAudioFocus (

.cancel( .disableNetwork( .stopPreview(
.stopFaceDetection( .unregisterListener(

quality issues to the app’s developers. The app is likely of a higher quality
if developers have reacted to such user feedback. Second, if an app has a
repository with a large number of revisions, the app is likely to be mature and
more optimized than others. Third, if an app has at least thousands of lines
of code, it is more likely that the app might have encountered performance
issues than those smaller-scale ones.

170 of the 1,475 apps hosted on GitHub satisfied the above constraints.
From them we randomly selected 34 (20%) apps as the subjects for our study.
Table 1 (page 6) provides their basic information, including: (1) the app name,
(2) category, (3) user rating on the Google Play store (5.0 is the highest rating),
(4) number of downloads on the Google Play store, (5) app size (lines of Java
source code), and (6) number of code revisions. As we can see, our subjects
are diverse (covering 14 different app categories), of different sizes (from 3.3
KLOC to 137.7 KLOC with an average of 36.3 KLOC), popular (with millions
of downloads), and well-maintained (with 3,653 code revisions on average).

3.2 Keyword Search

In order to ensure the quality of DROIDLEAKS bug database, we decided only
to include those bugs that have already been confirmed and fixed by developers
based on a common-sense assumption: if developers take actions to fix an issue,
it is likely that the issue is worth fizing and the actions help improve app
quality. To collect fixed resource leak bugs, we mined the code repositories
of the 34 app subjects. Fig. 1 illustrates the overall process, which is semi-
automated and contains two major steps: (1) keyword search, and (2) manual
validation. This subsection introduces the first step and the next subsection
introduces the second step.



8 Yepang Liu et al.

The purpose of keyword search is to find interesting code revisions (or
commits) that contain fixes to resource leak bugs. A code repository may con-
tain a large number of code revisions. When committing each code revision,
developers usually provide a short natural language message to summarize
their changes, a.k.a. the commit log or commit message. The version control
systems (e.g., Git) can help compute and visualize the differences between a
committed revision and its parent revision(s), a.k.a. the code diff. When mak-
ing commits, developers may mention that they fixed certain resource leaks in
the commit logs. Since fixing resource leaks typically requires adding code to
invoke designated APIs to release resources, we defined two sets of keywords to
search for interesting commit logs and code diffs, respectively. The keywords
are listed in Table 2 (page 7) and Table 3 (page 7). The keywords in Table 3
are formulated from the existing work for Android resource leak detection (Wu
et al. 2016), which provides a list of frequently-used resource acquiring and
releasing APIs. The keywords in Table 2 are general natural language words
related to resource management.? Such natural language keywords are also
needed due to two reasons. First, there is no guarantee that the set of resource
releasing APIs (Table 3) provided by existing work is complete. Second, devel-
opers may wrap the resource releasing API calls in self-defined methods and
invoke them to release resources.

To search for interesting commit logs in an app’s code repository, we first
transformed all commit logs into a canonical form that contains only lower
case letters and no punctuation marks. We then removed certain patterns of
phrases, which accidentally include our keywords but are irrelevant to resource
leak bugs, from each commit log. For instance, we removed the phrases that
match these two regular expressions: “release (v|ver)?[0-91+(\.[0-9]+)%”
and “close issue #7[0-9]+” as phrases such as “release v1.0.1” and “close
issue #168” frequently occur in commit logs.* Next, we split each processed
commit log into a vector of words and stemmed each word into its root form.
Stemming (Lovins 1968) is necessary because the natural language words may
be in different forms. For example, the verb “release” may be in its gerund
form “releasing” in certain commit logs and we need to stem it into its root
from “releas”. After stemming, we applied the stemmed form of the keywords
in Table 2 for searching.

To search for interesting code diffs, we looked for those diffs that contain
lines (1) starting with the “+” symbol (representing code additions), and (2)
containing a keyword from Table 3 (for matching resource-releasing APT calls).

With the above two searching steps, we obtained a set of code revisions
that contain either interesting commit logs or interesting code diffs. Column 7
of Table 1 (page 6) lists the number of such code revisions we found for each
of the 34 open-source app subjects.

3We do not claim the completeness of our keyword set. With the current keywords, we
successfully located a large number of real resource leak bugs in the code repositories of 32
of our 34 app subjects, which are sufficient for our later studies.

4In our mining scripts, we defined 32 removal patterns after randomly sampling 1,000+
commit logs. We skip the details in this paper.



DroIDLEAKS: A Comprehensive Database of Resource Leaks in Android Apps 9

3.3 Manual Validation of the Collected Bugs

In total, keyword search located 1,811 interesting code revisions. We then
carefully investigated each of them to check whether it fixes resource leaks
by understanding the relevant code, the purpose of code changes, and re-
ferring to the relevant API specifications (Android API Guides 2018, Java
APIT Specification 2018). During the checking, we also analyzed bug reports (if
any), commit logs, and developer comments. The process involved four people.
First, two authors performed independent checking of each code revision and
discussed with each other to reach consensus once any disagreement occurred.
The other two authors then further checked the results for consistency. With
such manual validation, we successfully found 292 resource leak bugs from 171
code revisions (some code revisions fix multiple resource leaks). The remaining
code revisions are irrelevant but retrieved because their commit logs acciden-
tally contain our search keywords or their code diffs contain the addition of
resource-releasing APT calls for other purposes (e.g., for refactoring or when
new code that uses and correctly manages resources is introduced). We ob-
serve that 70 of the 292 bugs were found due to our code diff analysis. For
example, in WordPress revision 64d7687¢23,%> which fixes a leak of database
cursor, the commit log only mentions “fixing bugs for RC build”, but the code
diffs contain the added code “cursor.close()”. This bug can be found by
analyzing code diffs but cannot be found by commit log analysis as the mes-
sage is too general. We also observe that 18 of the 292 bugs were found due to
our commit log analysis. For example, in AnkiDroid revision b27£423£73, the
code diffs contain the added code “closeOpenedDeck()” to close an opened
database. The method will trigger a chain of method calls until reaching the
call to the standard SQLiteDatabase closing APl in com.ichi2.anki.AnkiDb
class. This bug cannot be found by analyzing only code diffs, but the commit
log of the revision mentions “close database properly to avoid errors”. There-
fore, the bug can be found by our commit log analysis. The remaining 204 of
the 292 bugs can be found by either code diff analysis or commit log analysis.

The last column of Table 1 (page 6) lists the number of real resource leak
bugs we found for each app subject. As we can see, 32 of the 34 randomly-
selected open-source Android apps contain snapshots where resources are not
properly released after use, which suggests the pervasiveness of resource leak
bugs in real-world Android apps.® Then for each bug, we further collected the
following data to construct DROIDLEAKS: (1) the buggy code, (2) the bug-
fixing patch, and (3) the bug report if we can find it in the issue tracking
system of the concerned app.

5For all open-source projects referenced in this paper, we provide the links to their code
repository in Table 10 of the appendix (on page 48). The readers can find the discussed
revisions in the code repository.

6Note that it is hard to confirm whether these snapshots had been released to market and
affected users due to the lack of data. There is a possibility that the “fixes” of resource leak
bugs found by our approach were actually committed to the code repositories to address the
warnings generated by IDEs or issues noticed by developers themselves instead of patching
observed bugs.



10 Yepang Liu et al.

4 Characteristics of Collected Resource Leak Bugs

To understand the characteristics of the bugs in DROIDLEAKS, we conducted
an empirical study. We aim to answer the following three research questions:

— RQ1 (Resource type and consequence of leak): What types of system
resources (in terms of Java classes) are leaked due to these bugs? What are
the consequences of these resource leaks? Are the leaked resources specific to
the Android platform?

— RQ2 (Resource leak extent): Did the developers completely forget to
release the concerned system resources on all program execution paths or
only forget to release the resources on certain program execution paths or
exceptional paths? Does the concerned resource escape local context?

— RQ3 (Common fault patterns): Are there common patterns of faults
made by developers, which can result in resource leaks?

To answer these questions, we carefully studied each bug in DROIDLEAKS
and examined the relevant code (e.g., patches) and data (e.g., bug reports),

API specifications (Android API Guides 2018, Java API Specification 2018).
This section reports our observations.

4.1 RQ1: Resource Type and Consequence of Leak

RQ1 aims to identify the resource classes involved in the resource leak bugs in
Android apps and understand the consequences of the bugs. This subsection
presents how we analyzed our dataset to investigate RQ1 and discusses our
major findings.

4.1.1 Resource Types

To identify the concerned resource classes, we studied the code related to each
bug in DROIDLEAKS. Overall, we found that the 292 bugs in DROIDLEAKS
cover 33 different resource classes listed in Table 4 (page 11). As we can see
from the table, 61.3% of the bugs (179 of 292) concern resource classes that
are specific to the Android platform. For instance, the SQLite database is
widely-used in Android apps and we found 143 bugs in DROIDLEAKS leak-
ing SQLite database cursors (see Listing 6 on page 21 for examples). The
remaining 113 bugs (38.7%) leak general Java platform resources, of which
I/O streams account for the majority. It is not surprising that the percent-
age of Java platform resource leaks is high (nearly 40%) since the majority of
Android apps are implemented in Java and can use various Java libraries to
leverage system resources for computational purposes.

Table 5 (page 12) lists the types of resources studied by existing Android
app resource leak analysis work. As the table shows, existing work only stud-
ied the resource leaks related to a limited number of resource classes (e.g.,



11

DroIDLEAKS: A Comprehensive Database of Resource Leaks in Android Apps

.:AVAP._”.HHHV: S® S9SSB[O 90INO0SaI JO SIOJONIISUOD O:QSQ 930ULP A\ e ‘sepmy) 1V ProIpuy ul punoj NﬁWSﬁUmEE
aq ueo ‘sedA3 1ejowrered poyjewr pue sewreu sse[o peyrenb A[mj Suipnpur ‘uoneuwIojul [JV ojo[dwo) ‘eweu poyjewr ® pue owreu sse[o ojduwils ' opraoid A[UO om
‘ordurexe [V yowro 10j ‘eords pojrwai] 0 ang ¢ T’V uo1joeg 99S) 193RI 9} UT I1XOIUO0D [0 o) $9dBISO 9DINOSOI POUIIOUOD 9} DISYM SOSeD JO Ioquunu oy} 110dor o T

()9sOTD " I9TPURHSTTA
()@soT2 " 1939°UIO]

()esoTo* 1epesyuresrsgandur
()esoto uesxagandangeaeq
()eso1o ureaxzgindangpadrd
()esoto uesaxagandangasalqg
()eso1o ureaxzganduraoalqg
()9soTo - I9UURdS

()osoT2 393208
()®soTo - 193 TIMuesIrgIndang
()eoso1o uwesaxajgiandinglexayorfg
()9soT2 " I91TIMPaISTING
()eseaTax axoydeusg
AvwWOHo.EMprmdeuzovaw%wdm
()eso1ojustTnd13HITNRFQ
()®soTo weax3ginduTIo)TT
()@so1o wesaxagandang
()@soTo ‘uweaxqgandanQIea Ty
()9s0T1> " I9peaypaIaFIng
()esoTo wesx3gandingeTtd
()osoto wesrggandureTtg
()esoto ureaxzgandur

()oseaTax eIdWR)

()oT2Lo9x" TedIRY

()@soT1o - 102dTIDS8eTTATOOTR]
()oT2£o91" JUSAFUOTION
()esoT1o - qusTTpd33gpPTOIPUY

() searepdpnenouwes - Ie8eUe{UOTIRIO]
()oseaTax ¥O0TTITM

()doas- 1efeTdgeTpol

()oseaTax" yo0ToNeM
()9s0T1> " eseqe1e@aaTINS

()<3TuT> I8TPURHeTTd  (T)
()<3Tut> " I9330WI0g  (0)
()<atut>- Iepesyuesarjgandur (1)
()<atur>-uwesxsgindingeieq (0)
()<atur>-wesxsgindingpedtd (g)
() <atur>-wesxigindingaselqg  (0)
()<3Tur>-wesazginduraoslag (0)
()<3tut>-1suuweds (0)

()<3TuT> 38008 (1)

() <atur>-zertapmwesrsginding  (0)
()<atur>-uwesaxagandinglerayearhg (0)
()<atut>-zeatampexezing  (0)
()oatnboe-axoydewsg (g)
()<3tut>-wesizgindingperezyng  (0)
()<3tut>-qustrpdiagatneseq (1)
(O <3tur> weaxjgindurresdttrd  (0)
(O <atur>-wearagindang  (g)

(O <atur>-wesrygindinpreattd  (7)
()<a3tutr>-Iepeeyperezing (g)
()<3tur>-wesxzgindingerrd (o)
()<3tur>-weexigindureTtd (g)

¢ ()<atut> wesxygindur

NOOODDDOWD FMHMMHMAANNANANANANN—~ — —~
—

()uedo-exawe)y (T)

()utezqo-Teoxed (0)
()uedo-1oadraosegerTgTedIed (1)
()uteaqo-jusaguotioN (1)
()edoueasurmeu-quatrpdaagproapuy  (0)
()seqepdpuotqedsoasenbex- redeueuorqedso] (g)
()extnboe ¥o0ITIIM  (T)

()3xeas - zeferderpen (9)

()eatnboe-yooTexeyM (8)

() eseqejequedo-eseqeie@eatIds  (8) €1

0010 AN AN AN~~~

(I) IeTpueqeTTq SutS8Sor Tran eael

(I) Ie3qemrog TTan eael

(I) xopeeyuesrjgindul- ot eael

(1) weaxagandangeseq-ot-eael

(1) uwesxagandangpedid-ot-eael

(1) wesaxzgandingioelqp-ot-eael

(1) uwesxaganduraoelqQ-ot-eael

(I) xouwedg-Trqn-eael

(I) 3e¥o0g-3eu-eael

(1) T9aTaMwesrzgindang-ot-eael

(1) uweaxagindanpherayearfg- ot -eael

(I) Ie3TaMpexagyng-or-eael

(III) oxoydewsg-juaianouod - Tran eael
(1) wesxagandangpexszgng-ot-eael

(1) 3uetrpdiagatneseq-ueto  Tdut d33yq-eyoede- 810
(1) weexagandurislTg ot eael

(1) weaxagandang-ot-eael

(1) wesxagandanQgieaTTg’oT eael

(I) Iepesyperszjyng’or-eael

(1) wesxsgindingeTtd ot eael

(1) wesxagandursrg ot eaRl

(1) uweaxjganduy-ot-eael

$204n0534 WLOLD)d DADL DIIUI L)

(III) exswe)- aJIeMpiel’ pTOIpuUR

(I) TedIed-so’proipue

(I) x03dTIoseQgeTIATo2Ied" SO PTOIpUR
(I) 2USAFUOTION MOTA ' PTOIpUE

(1) 3uetrodaagproxpuy-diay-3eu’proIpue
(II) I9U®3STTUOTIEDOT UOT]RDOT PTOIpPUR
(II) ¥OOTTFTN" IoSRURHTFTM TFTA 38U’ PTOIpPUR
(I) IofeTderTpsj eTpou" pTOIpUE

(II) Ho0ToyeM  Io8eUR|ISMOJ " SO PTOIPUR
(I) °seqeae@e3TThs’o3TTbs eseqeiep’proipue

()9soTo " x08IN) mﬁvhnwsv.meQMPmawpﬁqam 1(L2) ev1 (I) I0sIn)-eseqeiep’proIpue
$20UN0SIL WLOf1D]d PLOIPUY
I1dV Suises[oa e@oanosaa sajdurexy I1dV Suraimboe eoanosaa sajdwrexy s38nq # (>1e9] jo @ouanbasuod) SSB[O BAR[ PoUIadUO)

SMVATAION (] Ul $3Nq YBS[ 90INOSAI 9] JO UOTYRULIOJU] 7 d[qR],



12 Yepang Liu et al.

Table 5: Types of resources studied by existing work on Android app resource
leak analysis

PathakVekris Yan Liu Wu Wu Banerjee
Concerned Java class et al. et al. et al. et al. et al. et al. et al.
2012 2012 2013 2014 2016 2018 2018

android.database.Cursor v
android.os.PowerManager.WakeLock
android.media.MediaPlayer
android.net.wifi.WifiManager.WifiLock
android.location.LocationListener
android.hardware.Camera
android.hardware.Sensor
android.media.MediaRecorder
android.graphics.Bitmap v
android.os.Binder v
android.bluetooth.BluetoothAdapter
android.media.AudioManager

android.os.Vibrator

java.lang.Thread v

<
<
<

ENENENENENEN

ENENENEN
ANENENENE NN

SNEN

v
v

Underlined resource classes are not covered in the current version of DROIDLEAKS.

Wu et al. 2016 studied leaks related to eight resource classes). DROIDLEAKS
contains resource leak bugs related to 33 different resource classes, 11 of which
are specific to the Android platform. As a comparison, none of the exist-
ing work studied leaks related to such a large number of diversified resource
classes. Therefore, we can see that DROIDLEAKS is large-scale. It can serve
as a benchmark to evaluate resource leak detection techniques as we will
show in Section 5. However, since DROIDLEAKS is constructed by analyz-
ing the repositories of 34 open-source Android apps, it does not contain leaks
related to all possible resource classes. For example, three resource classes
studied by multiple pieces of existing work (i.e., android.hardware.sensor,
android.media.MediaRecorder, and android.media.AudioManager) are not
covered by the current version of DROIDLEAKS. In the future, we will analyze
more Android apps and further improve the completeness and diversity of the
resource leak bugs in DROIDLEAKS.

4.1.2 Consequence of Resource Leaks

Resource leaks are generally considered as non-functional issues that do not
cause immediate fail-stop consequences such as app crashes. To understand
the consequences of the bugs in DROIDLEAKS, we studied various data sources
including the bug reports, commit logs of the bug-fixing revisions, developers’
comments in the code, and API specifications (Android APT Guides 2018, Java
APT Specifications 2018). We observed three types of major consequences:

— Most of the resource leak bugs (276 of 292, marked with “I” in Table 4)
mainly lead to resource occupation and memory waste, which can gradually
slow down the whole system. For example, an android.database.Cursor
object has native file handles behind it because the SQLite database uses in-
dexed files for providing query functions. Forgetting to close a cursor object



DroIDLEAKS: A Comprehensive Database of Resource Leaks in Android Apps 13

will prevent its associated file handles from being released as well as causing
memory waste. While the consequence of a single instance of such resource
leak bugs may not seem serious, in cases where certain operations that leak
resources are repeatedly performed or apps run on low-end devices, users
can experience obvious system slowdowns or even crashes (e.g., due to the
out-of-memory exceptions). For example, after fixing multiple resource leak
bugs in revision 25256904da, the developers of AnkiDroid left the following
commit log:

“Surround all cursor statements with try...finally to make sure
that the cursor is closed at all times, even when an unexpected ex-
ception occurs. If a cursor is not closed, java will throw an exception,
but it is silently (well, it can be seen in the log) discarded and does not
cause a force close. However, it does cause a noticeable slow-down in
the execution.”

— The second common consequence is energy waste, concerning 12 bugs in
DROIDLEAKS (marked with “IT” in Table 4). These bugs leak wake lock,
Wi-Fi lock, and sensor-related resources, which are specific to the Android
platform. For example, as we mentioned in Section 2, wake locks provide a
mechanism to indicate that an app needs the device to stay awake for long-
running operations (e.g., large file downloading). Calling the acquire () API
on an android.os.PowerManager.WakeLock object will force the device to
stay awake. While this interface is convenient, the Android API Guides also
warns developers to carefully use wake locks:

“Call release() when you are done and don’t need the lock any-
more. It is very important to do this as soon as possible to avoid
running down the device’s battery excessively”.

Nonetheless, developers still make mistakes and we found nine wake lock
leaks in DROIDLEAKS. Besides wake locks, DROIDLEAKS also contains re-
source leak bugs related to Wi-Fi locks, which are used to keep the Wi-Fi
radio on for network communications, and sensor listeners, which are regis-
tered to obtain continuous updates from phone sensors. Such bugs can also
lead to serious energy waste.

— The remaining four bugs (marked with “III” in Table 4 on page 11) concern
exclusive resources: camera and semaphore (for restricting the number of
concurrent threads). Forgetting to release them can affect app functionali-
ties. For example, Android API Guides asks developers to release cameras
when their apps finish using them to avoid affecting their own or other apps:

“If your application does not properly release the camera, all sub-
sequent attempts to access the camera, including those by your own
application, will fail and may cause your or other applications to be
shut down”.

Similarly, forgetting to release semaphores can block acquiring threads and
the corresponding computational tasks, leading to unexpected app behavior
or even crashes in case apps stop responding to user interactions (Android
ANR Errors 2018).



14 Yepang Liu et al.

//FBReader revision 7907a9%9al3b
1 public class LibraryService extends Service ({
2 public void onCreate() {
3 //some set up work and open database
4 myDatabase = SQLiteBooksDatabase.Instance(..);
5. }
6. public void onDestroy () {
7 //some tear down work
8. + myDatabase.close () ;
9 }
10 }

Listing 2: A resource leak involving complex app component lifecycle

4.1.8 Typical Resource Leak Examples

In the following, we discuss recurring examples of resource leaks in Android
apps to ease understanding.

Complex app component lifecycle. As we mentioned in Section 2, An-
droid apps consist of four types of app components. Each app component
is required to follow a prescribed lifecycle that defines how this component
is created, used, and finally destroyed. At runtime, the lifecycle event han-
dlers (i.e., callback methods) defined in an app component will be invoked by
the Android OS when the component enters certain lifecycle stages after user
interactions. For instance, when a background service component is started,
its onCreate() handler will be invoked. When the service finishes its allo-
cated computational task, it will be destroyed and the onDestroy() handler
will be invoked. Typically, when starting a service component, certain system
resources need to be acquired for later computation. Listing 2 gives an exam-
ple. The LibraryService component of the E-book reading app FBReader
opens a database connection when it is launched (Line 4). The acquired re-
sources should be released when the service is destroyed. However, since that
the resources are acquired and released in different lifecycle stages (i.e., the
acquiring and releasing operations are in different callback methods), devel-
opers can easily forget to release the resources properly. In DROIDLEAKS, we
observed 14 such bugs and they are all leaks of Android-specific resources,
including SQLiteDatabase, WakeLock, MediaPlayer, LocationListener. To
fix the bug in FBReader, developers added the database closing statement in
the onDestroy() handler (Line 8) in revision 7907a9a13b.”

Complex GUI widget lifecycle. Besides the four types of top-level app
components, the complex lifecycles of interactive GUI widgets also make re-
source management difficult. For example, the SurfaceView class is popularly
used to create a window inside a view hierarchy that can be rendered by a
secondary thread (so as not to block the main thread of an app). When using
SurfaceView, developers need to carefully deal with the lifecycle changes of

"The code in all listings in this article has been simplified for readability. The readers
can refer to the corresponding code repositories, whose URLs are provided in Table 10 in
the appendix, to check the original code via the Git commit hash.



DroIDLEAKS: A Comprehensive Database of Resource Leaks in Android Apps 15

//IRCCloud revision d7ad44le3a6

1 public class ImageViewerActivity {
2 private MediaPlayer player;
3 private void loadVideo (String url) {
4. player = new MediaPlayer();
5 final SurfaceView v = (SufaceView) findViewById(..);
6 v.getHolder.addCallback (new SufaceHolder.Callback() {
7 public void surfaceCreated(..) {
8. ...
9. player.prepare () ;
10. player.start();
11. }
12. public void surfaceDestroyed(..) {
13. + if (player != null) {
14. + player.stop () ;
15. + player.release();
16. + }
17. }
18. }
19. }
20. public void onDestroy () {
21. super.onDestroy () ;
22. if (player != null) {
23. player.release();
24 . }
25. }
26. }

Listing 3: A resource leak involving complex widget lifecycle

a SurfaceView instance and that of its enclosing activity component. Unfor-
tunately, this is a non-trivial task and developers can easily make mistakes.
Listing 3 provides an example. The app IRCCloud, a group chatting app,
contains an activity ImageViewerActivity to view images and videos. The
activity class uses SurfaceView to implement a floating window for playing
videos. When the floating window pops up, the underlying media player is
started (Lines 9-10) to play video. When users quit the activity (e.g., by click-
ing the return button), the media player is released (Lines 22-24). However, if
users switch to another app or screen and put the ImageViewerActivity on
pause at background, the video player would not be properly stopped and its
associated resources cannot be released in a timely fashion (in such cases, the
onDestroy () callback will not be invoked because the activity is still alive). To
fix the resource leak, IRCCloud developers added the resource releasing code
to the surfaceDestroyed() callback (Lines 13-16), which will be invoked
during app or screen switching, in revision d7a441e3a6.

Environment interplay. Besides handling user inputs, Android apps also
need to frequently react to environmental changes (e.g., changes of user loca-
tion) to provide context-aware services. Similar to user inputs, environmental
conditions are hard to predict. Developers can make resource management
mistakes when handling environmental changes. Listing 4 gives an example.
The app CSipSimple, an Internet calling app, uses a reference-counted wake



16 Yepang Liu et al.

//CSipSimple revision da248d1132, in SipService class

1 protected void onChanged(String type, boolean connected) {
2 if (networkConnected()) {

3 if (mTask != null) {

4. mTask.cancel () ;

5. + sipWakeLock.release() ;

6 }

7 mTask = new MyTimerTask (type, connected);
8. if (mTimer == null) mTimer = new Timer () ;
9. mTimer.schedule (mTask, 2 * 1000L);

10. sipWakeLock.acquire () ;

11. }

12. 1}

Listing 4: A resource leak involving environment interplay

lock to keep device awake for phone calls. The background service SipService
monitors the network status by registering the ServiceDeviceStateReceiver
broadcast receiver, which actively listens to network state changes. When-
ever the network connection is restored, the broadcast receiver will invoke the
onChanged () callback defined in the SipService class to acquire a wake lock
for performing computational tasks (Lines 7-10) and cancel the existing task
if any (Line 4). Under stable network conditions, there is usually just one ac-
quisition of the wake lock and everything will work smoothly (in such cases,
onChanged () will only be called once when the app connects to the network
for the first time). However, when the network condition is poor (i.e., fre-
quent disconnections and reconnections), onChanged () and its enclosing code
for acquiring the wake lock will be executed many times, leading to repetitive
acquisitions of the held wake lock. The consequence is that this reference-
counted wake lock will not be properly closed and the device will stay awake
indefinitely, causing huge energy waste. This is because to properly release a
reference-counted wake lock, the number of calls to the releasing API should
be equal to the number of calls to the corresponding acquiring API. Later, de-
velopers fixed the resource leak by releasing the held wake lock when canceling
an existing timer task (Line 5) to balance the calls to the wake lock releas-
ing and acquiring APIs in revision da248d1132 with a commit log “release
wakelock if already hold when network status changes”.

High level of concurrency. Android apps adopt a single thread model.
All app components that run in the same process are instantiated in the
app’s main thread (a.k.a. UI thread), which is created by the Android OS
when the app is launched. System calls to each component are dispatched
from the main thread (Android Processes and Threads 2018). Hence, An-
droid apps usually leverage various concurrent programming constructs such
as android.os.AsyncTask and java.lang.Thread to perform intensive work
like network communications and database queries in worker threads in order
not to block the main thread (Lin et al. 2014), which would lead to poor run-
time performance or even app not responding (ANR) errors (Android ANR
Errors 2018). Such a high level of concurrency can easily cause resource leaks,



DroIDLEAKS: A Comprehensive Database of Resource Leaks in Android Apps 17

//K-9 Mail revision f1232all9a

1 public void checkMail (..) {

2 wakelock.acquire();

3 put (“checkMail”, new Runnable () {

4. public void run () {

5 ...//check mail and sync to client
6 putBackground (“finalize sync”, new Runnable () {
7. public void run() {

8. + if (wakelock != null) {

9. + wakelock.release();
10. + }
11. ...//other listener update work
12. }
13. 1)
14. }
15. )i
16. }

Listing 5: A resource leak involving multiple threads

especially when the resource acquiring and releasing operations are not in the
same thread. Listing 5 gives an example. The app K-9 Mail, a widely-used
email client, acquires a wake lock for keeping its device awake to check emails
(Line 2). For synchronizing emails to the local folders, it creates a worker
thread to communicate with the server (Lines 3-15). When the synchroniza-
tion is finished, the worker thread further creates another thread to notify
listeners (Lines 6-13). The acquired wake lock should be released after mail
syncing. However, developers forgot this as there are multiple threads involved
and the wake lock acquiring operation, which runs in the app’s main thread,
is quite far away (in Listing 5, the wake lock operations are close to each other
because the code was simplified to ease understanding). They later figured
out the mistake and released the wake lock properly (Lines 8-10) in revision
£1232a119a.

From the above examples, we can see that detecting resource leaks in An-
droid apps is a non-trivial task. For dynamic analyses, how to effectively gener-
ate user interactions and simulate environment conditions to trigger resource
leaking scenarios is a difficult task. For static analyses, how to handle the
implicit control flows among various callback methods for inferring possible
execution paths is a major challenge. Besides, static analyses also need to pre-
cisely model concurrency and perform points-to analysis, since resources may
not be acquired and released in the same method or thread.

Answer to RQ1: DROIDLEAKS features a diverse set of resource leak
bugs covering 33 different resource classes. Most bugs leak Android-specific
system resources and can waste memory and cause system slowdown. Other
consequences include battery drain and app crashes. Detecting resource
leaks in Android apps can be difficult when the bugs involve complex app
lifecycle, environment interplay, or concurrency.




18 Yepang Liu et al.

140

125
120 Percentage of each category:
*  Complete leak: 186 /292 =63.7%
100
* Leak on certain normal paths: 50 /292 =17.1%
80
61 » Leak on exceptional paths: 56 /292 =19.2%
60
40 33
23 27 21
20
0
Complete leak Leak on certain normal paths Leak on exceptional paths

B Resource escapes local context O Resource does not escape local context

Fig. 2: Resource leak extent

4.2 RQ2: Resource Leak Extent

RQ2 aims to study whether developers forgot to release the concerned system
resources on all program execution paths or only on certain execution paths.
We also analyze whether the concerned resource escapes local context or not.
In this subsection, we first present our analysis methodology and then discuss
the main findings.

Resource leaks are essentially code omission faults, where developers for-
get to release used system resources on certain or even all possible program
execution paths. Depending on what execution paths the resources are leaked
on, we categorize the bugs in DROIDLEAKS into three categories:

— Complete leak: developers completely forget to release the system resources
after use.

— Leak on exceptional paths: the system resources are properly released on
normal execution paths, but fail to be released in case exceptions occur.

— Leak on certain normal paths: the system resources are released on some
program paths during normal executions (i.e., without the occurrence of
exceptions), but fail to be released on others. Note that this category in-
cludes resource leaks that occur under app-specific erroneous conditions,
where no exceptions are thrown or handled but the concerned app enters a
wrong internal state.®

Classification methodology. The classification was manually performed
by studying each bug and its patch, which contains the call to the API that

8We observed only four such cases in DROIDLEAKS and therefore do not specifically
discuss them in this paper. Interested readers can refer to our project website for details.



DroIDLEAKS: A Comprehensive Database of Resource Leaks in Android Apps 19

releases the concerned resource. If before adding the API call, the concerned
resource is not released, we classify the bug as a “complete leak”. If before
adding the API call, the resource is released on some normal execution paths
and the added call is to be invoked on the other normal execution paths, we
classify the bug as a “leak on certain normal paths”. If the added call is within
a catch or finally block, we classify the bug as a “leak on exceptional path”.
We also analyzed whether a resource is local or escapes local context (used in
other methods or threads). We considered the following cases. If the concerned
resource variable is declared as a local variable and never used as a method call
argument or by another thread, we consider the resource local. If the resource
variable is declared as a local variable and used as an argument in a resource
wrapping method call, we also consider the resource local (e.g., the constructor
of FilterInputStream can take a FileInputStream object as an argument).
If the resource variable is declared as an instance/class variable, we consider
that the resource may escape local context. If the resource variable is declared
as a local variable but used as a method call argument or by another thread,
we consider that the resource escapes local context. The process involved four
people. Firstly, two authors of this paper, who are experienced Java and An-
droid developers, performed independent classifications for all bugs. Since the
criteria are clear, there were disagreements only for five bugs after the first
round of checking. The two authors then made further discussions and reached
consensus. After that, the other two authors of the paper further checked the
results for consistency. Fig. 2 on page 18 presents the result. By analyzing the
data, we made two major observations.

First, it is surprising that the majority (63.7% = 186/292) of bugs in
DROIDLEAKS caused system resources to be leaked on all program execution
paths. The remaining 36.3% bugs caused system resources to be leaked on
certain normal or exceptional paths. According to existing studies (Torlak
and Chandra 2010), it is understandable that Java developers, even experi-
enced ones, can easily fail to release all system resources along all possible
exceptional paths. However, in DROIDLEAKS, we observed that resource leaks
on exceptional paths only account for a minority (19.2% = 56/292). 44 re-
source leaks occurred due to improper handling of checked exceptions (e.g.,
forgetting to put resource releasing statements in a finally block that han-
dles a java.io.Exception). 12 resource leaks occurred due to runtime ex-
ceptions such as java.lang.IllegalStateException. In comparison, leaks
during normal executions are the majority (80.8% = (186 + 50)/292), which
is unexpected.

Second, for 188 (64.4%) of the 292 bugs, the resource variable does not
escape the local context. For example, as shown in Table 4 on page 11, for
the majority (116) of the 143 leaks of Cursor, the resource variable does not
escape the local context. For the remaining 104 (35.6%) bugs, the resource
variable escapes the local context. Example resource classes include WakeLock,
MediaPlayer, WifiLock, LocationListener, and Camera. For all bugs con-
cerning these Android-specific resource classes, the resource variables escape
the local context. Such acquired resources are typically used by multiple meth-



20 Yepang Liu et al.

ods or threads. For instance, the MediaPlayer object in Listing 3 (page 15)
is used by multiple methods and the WakeLock object in Listing 5 (page 17)
is used by multiple threads. For general Java platform resources, a large per-
centage of InputStream (26/32), OutputStream (5/6), and Semaphore (3/3)
variables also escape the local context. I/O stream variables are passed as
arguments to various methods that perform tasks such as parsing, decoding,
and encryption, while Semaphore variables are shared and used by multiple
threads. For these resources that escape the local context, detecting their leaks
via static analysis is non-trivial, which requires inter-procedural analysis that
handles concurrency.

Answer to RQ2: 63.7% bugs in DROIDLEAKS completely leak system
resources on all program execution paths. Only 19.2% resource leak bugs
leak system resources on exceptional paths. For 64.4% of our studied re-
source leaks, the concerned resource variable does mot the escape local
context. However, we found that for all bugs that are related to several
Android-specific resources including WakeLock, MediaPlayer, WifiLock,
LocationListener, Camera, the resource variables escape the local con-
text and could be used by multiple methods and threads. For general
Java platform resources, a large percentage (over 81.3%) of InputStream,
OutputStream, and Semaphore variables also escape the local context.

4.3 RQ3: Common Fault Patterns

RQ3 studies the common resource management mistakes made by Android app
developers. To answer RQ3, we analyzed all bugs in DROIDLEAKS and tried to
understand the mistakes made by Android developers. From the discussions
in Section 4.2, we can observe that in most cases, developers simply forgot to
release system resources after use (complete leaks account for 63.7% cases).
Nonetheless, we still observed three patterns of faults that recur across our
studied apps. We discuss them with examples in the following.

API misuses. The Android platform provides over ten thousand public
APIs (Felt et al. 2011) to developers to ease app development. In practice,
it is generally impossible for developers to get familiar with the specification
of each Android API before developing apps. Therefore, they can easily make
mistakes when using unfamiliar APIs and resource leaks can arise in such
cases. In DROIDLEAKS, 35 resource leak bugs, which affect 12 different apps,
occurred due to API misuses. In particular, we observed three widely-used
database APIs that Android developers often misuse.

— The first one is the moveToFirst () API defined in the Cursor class. Calling
it will move the concerned database cursor to the first row if the cursor
is not empty, or return false otherwise. Developers may think that only
non-empty database cursors need to be closed (i.e., when this APT returns
true). Listing 6(a) (page 21) gives an example bug in IRCCloud. The app’s



DRroIDLEAKS: A Comprehensive Database of Resource Leaks in Android Apps 21

() IRCCloud revision 827b5e1b2b

O J o Ul bW

Cursor c¢ = activity.getContentResolver () .query(..);
if(c != null && c.moveToFirst()) {

. - c.close();

} else { ... }
if(c != null) {
c.close();

+ +

+ 1}

(b) CSipSimple revision 920c6¢95d9

~N o U W N

Cursor ¢ = getContentResolver () .query(..);
if(c !'= null && c.getCount() > 0) {

c.close();

. + } else if(c != null) {

+ c.close();

}

(c) WordPress revision 57c0808aa4

1
2
3.
4
5
6

public class NotesAdapter extends CursorAdapter {

public void reloadNotes () {
- swapCursor (mQuery.execute()) ;

.+ changeCursor (mQuery.execute());

}
}

Listing 6: Leaks of database cursors due to API misuses

buggy version only closes the database cursor when moveToFirst () returns
true (Lines 2-4) and would not close the cursor when it is empty. Later,
developers realized this mistake and closed the database cursor properly
(Lines 6-8) in revision 827b5e1b2b.

The second API getCount () is also defined in the Cursor class and it
returns the number of rows in a cursor. Developers can use getCount ()
to check whether a database query returns an empty cursor (i.e., when
getCount () returns 0). Similar to moveToFirst (), developers may think
that only when there is at least one row returned by the query, the cursor
needs to be closed. Listing 6(b) gives an example bug in CSipSimple. Orig-
inally, the buggy version only closes the database cursor when getCount ()
returns a positive number (Line 2). This would cause the leak of the cursor
when no result is returned after querying the database. The developers
later realized the problem and closed the database cursor correctly (Lines
5-6) in revision 920c6c954d9.

The third typical example is the swapCursor () API defined in the class
android.widget.CursorAdapter, which can be used to adapt cursor data
to a list view widget (a view that shows items in a vertically scrolling list).



22 Yepang Liu et al.

//Owncloud revision dd35ee031b, in PreviewImageFragment class

1. Bitmap result = null;
2. + InputStream is = null;
3. try {
4. File picture = new File (storagePath);
5. if (picture != null) {
6. — result = BitmapFactory.decodeStream
7. - new BufferedInputStream(new FileInputStream(picture)));
8. + is = new BufferedInputStream(new FileInputStream(picture));
9. + result = BitmapFactory.decodeStream(is) ;
10. }
11. + } finally {
12. + if(is != null) {
13. + try {
14. + is.close();
15. + } catch(IOException e) {
16. + Log.e ("Unexpected exception...");
17. + }
18. + }
+

f
e}

Listing 7: A resource leak due to the lack of resource object reference

To replace the underlying database cursor associated with a CursorAdapter
with a new one (e.g., after a new query), developers have two APIs to use:
swapCursor (Cursor newCursor) or changeCursor(Cursor newCursor).
The only difference between the two APIs is that the former does not close
the old cursor, but returns it, while the latter closes the old cursor. We
found that developers may mistakenly thought that swapCursor () would
also close the old cursor. For example, the developers of WordPress, a
famous app for creating websites and blogs, made such a mistake. List-
ing 6(c) gives the concerned code. They originally used the swapCursor ()
API when reloading notes (Line 3). This would cause the leak of the old
database cursor that is replaced. Later, they found the mistake and revised
their code (Line 4) in revision 57c0808aa4 and left this commit log: “Use
changeCursor instead of swapCursor, so the old cursor is closed” .

Lacking references to resource objects is the second common pat-
tern of faults made by developers. In Android apps, resource operations are
performed by invoking certain APIs on resource objects. However, in DROI-
DLEAKS, we observe that developers often forget to create resource object
reference variables and simply put resource operations in nested method calls.
Listing 7 gives an example in OwnCloud, a private file sync and share app,
where the input stream opening API call is nested in the stream decoding
APT call (Lines 6-7), and there is no variable holding the reference to the
underlying input stream object. In such cases, developers can easily forget
to release the acquired resources and Lint (Android Lint 2018a), the built-in
static analyzer in Android Studio, would not report any resource leaks to warn
them (see Section 5.4 for more detailed discussions why Lint would miss such



DroIDLEAKS: A Comprehensive Database of Resource Leaks in Android Apps 23

//AnkiDroid revision d095337329

1. Cursor cur = null;

2. try{

3. cur = getDatabase () .rawQuery(..);

4. ...//some computation

5. + if(cur != null && !cur.isClosed()) {
6. + cur.close();

7. + }

8. //a new query

9. cur = getDatabase () .rawQuery(..);
10. ...//more computation
11. } finally {
12. if(cur != null && !cur.isClosed()) {
13. cur.close();
14. }
15. }

Listing 8: A resource leak due to losing resource object reference

bugs). Such faults affected seven apps and caused 12 resource leak bugs in
DRrOIDLEAKS.

Losing references to resource objects is the third common pattern of
faults, which affected five apps and caused eight resource leak bugs. Listing 8
on page 23 gives a typical example in the app AnkiDroid, a popular flashcard
app for education. As we can see from the code snippet, the app performs two
queries consecutively to retrieve data from its database (Lines 3 and 9). The
developers were aware that database cursors need to be closed after use and put
the cursor closing code in a finally block (Lines 11-15). However, since there
are two queries, two cursor objects are constructed, but the local variable cur
only holds the reference to the second cursor object. The reference to the first
cursor object is lost after requery (Line 9). The consequence is that the first
database cursor is left unclosed, resulting in the leak of its associated resources,
which would not be automatically recycled by the garbage collector (Torlak
and Chandra 2010). Developers later fixed their mistake by releasing the leaked
cursor (Lines 5-7) in revision d095337329. Besides database cursors, we also
observed similar faults, where developers mistakenly override the variables
that hold references to I/O streams.

Answer to RQ3: We observed three common patterns of faults made by
Android developers in DROIDLEAKS: (1) API misuses, (2) lacking refer-
ences to resource objects, and (3) losing references to resource objects.

5 Performance of Existing Resource Leak Detectors

As we discussed earlier, DROIDLEAKS can provide a common and reliable basis
for evaluating and comparing existing resource leak detectors for Android apps.



24 Yepang Liu et al.

To show such usefulness, in this section, we perform large-scale experiments to
evaluate and compare the following eight static resource leak detectors, which
are freely available to Android developers. The first six are general-purpose
detectors, while the last two were specifically designed for finding the leaks of
wake locks.

— Android Lint (Google 2018a) is a static code analysis tool for Android
apps. It scans the source files (e.g., Java code files, resource and configura-
tion files) of an Android app to identify micro-optimization opportunities
(Linares-Védsquez et al. 2017) for improving the apps’ correctness, security,
performance, usability, accessibility, and internationalization.’ It supports
detecting various types of resource leaks as we will show shortly. Lint is
built-in in Android Studio, the official IDE for Android app development.

— Code Inspection (JetBrains 2018) is a robust, fast, and flexible static
source code analysis tool provided by the IntelliJ IDEA, a popular Java
IDE with a large user base. It supports detecting various kinds of compiler
errors, runtime errors, and code inefficiencies such as resource leaks. It also
suggests corrections and improvements for developers to enhance the quality
of their Java and Android apps. Since Android Studio is built on IntelliJ
IDEA, Code Inspection is also freely accessible to Android developers.

— FindBugs (Hovemeyer and Pugh 2004) is a popular open-source static
analysis tool for detecting bugs in Java programs. It operates on Java byte-
code and performs efficient analysis to look for potential problems by match-
ing the bytecode against a list of bug patterns,'? some of which are related
to resource leaks. Since Android apps are typically written in Java and first
compiled to Java bytecode before being translated to the Dalvik bytecode,
FindBugs can also help detect quality threats in Android apps’ code.

— PMD (PMD 2018), similar to FindBugs, is another open-source and static
analysis tool for Java programs. It uses rule-sets to define when a piece of
source code is erroneous. PMD by default includes a set of built-in rules,!!
some of which describe resouce leaks, and analyzes Java source files to find
common programming flaws. As Android apps are mostly Java programs,
PMD is also popularly used by Android developers for app quality assur-
ance.

— Relda2 (Wu et al. 2016) is a light-weight static analysis tool for detecting
resource leaks in Android apps. It directly analyzes the .apk file of an
Android app for bug detection and focuses on Android-specific resources
such as camera, media player, and sensors. It provides a general framework
to support the analysis of various kinds of resources in a conservative way
that identifies the resource releasing points as suggested by the Android
API Guides. Relda2 can be configured to perform flow-sensitive or flow-

9nttp://tools.android.com/tips/lint-checks
Ohttp://findbugs.sourceforge.net/bugDescriptions.html
Hhttps://pmd.sourceforge.io/pmd-4.3.0/rules/index.html


http://tools.android.com/tips/lint-checks
http://findbugs.sourceforge.net/bugDescriptions.html
https://pmd.sourceforge.io/pmd-4.3.0/rules/index.html

DroIDLEAKS: A Comprehensive Database of Resource Leaks in Android Apps 25

insensitive analyses to adapt to different analysis precision and efficiency
requirements.

— Infer (Facebook 2018) is a popular open-source static analysis tool provided
by Facebook to detect potential bugs in Java and C/C+4/Objective-C
code. It can help developers intercept critical bugs before they ship their
products to users and help prevent program crashes and poor performance.
It takes information from the compilation process of the programs under
analysis and translates the source files to its own intermediate language
for detecting different patterns of bugs. Currently, for Android apps and
Java programs, Infer detects and reports resource leaks and null pointer
exceptions.

— Elite (Liu et al. 2016b) is a static analysis technique designed by us to
detect the misuses of wake locks in Android apps. It takes an app’s . apk file
as input and systematically explores different executions of each Android
app component that uses wake locks to locate the problematic program
points, where wake locks are not needed but acquired, by performing an
interprocedural data flow analysis. It also suggests the earliest program
points to release wake locks by analyzing whether the uses of wake locks at
different application states can bring users peceptible benefits.

— Verifier (Vekris et al. 2012) is a static verification technique proposed by
Vekris et al. It analyzes an Android app’s .apk file to verify the absence
of the leaks of wake locks with respect to a set of resource management
policies derived by studying the lifecycle of Android app components. The
policies specify that at key program exit points, where an app component
has finished computation, the component must be in a low energy state with
all acquired wake locks released. Similar to Elite, Verifier also leverages data
flow analysis for the policy checking.

5.1 Research Questions

Our experiments aim to answer two research questions:

— RQ4 (Resource Class Coverage): What types of system resources (in
terms of Java classes) does each resource leak detector support?

— RQ5 (Bug Detection Effectiveness): How does each resource leak de-
tector perform in terms of bug detection rate and false alarm rate? Here,
bug detection rate evaluates to what extent each resource leak detector can
successfully detect the bugs in DROIDLEAKS, whose resource classes are
supported by it. False alarm rate, on the other hand, evaluates to what ex-
tent each detector reports false warnings. We will define the two evaluation
metrics shortly in Section 5.2.



26 Yepang Liu et al.

5.2 Experimental Setup

This subsection explains our experimental setup in detail. We first present our
bug selection process. We then explain how we compiled the app subjects and
ran the existing tools to evaluate their performance.

5.2.1 Bug Selection

DROIDLEAKS features a large set of resource leak bugs in Android apps. For
our experiments, we selected a subset of bugs in DROIDLEAKS. We did not
evaluate the above-mentioned eight detectors on all bugs due to two major
reasons. First, as demonstrated by our findings in Section 4.3, some bugs in
DROIDLEAKS were caused by the same patterns of faults, and hence there
is no need to use all such bugs to evalute the eight detectors to understand
their strengths and limitations. Second, compiling open-source Android apps
is a labor-intensive process, especially for the versions that rely on specific
libraries and do not have well-prepared build scripts or instructions. To select
a comprehensive subset of bugs, we followed several criteria: (1) the subset
should contain leaks of each type of system resource (see Section 4.1), (2) the
subset should contain bugs from each of the 32 app subjects with resource
leak bugs (see Table 1 on page 6), (3) the subset should contain bugs with all
three different extents of resource leaks (see Section 4.2), and (4) the subset
should contain resource leak bugs of each fault pattern (see Section 4.3). With
these criteria, we selected 116 resource leak bugs from the whole set of 292
bugs in DROIDLEAKS. Table 6 (page 27) lists the number of bugs selected for
each type of system resource. These bugs will be used to evaluate the eight
detectors.

5.2.2 App Compilation

For each of the 116 bugs, we compiled the corresponding buggy version and
bug-fixing version (i.e., patched version) of the concerned app into both Java
bytecode and .apk files (different tools take different types of inputs). The
compilation was done in Android Studio. If the source code of the apps contain
Gradle build scripts, we simply used the scripts to compile the apps. For the
other cases, we prepared the Gradle build scripts by ourselves and compiled
the apps for the Android versions specified in the apps’ configuration file, i.e.,
the AndroidManifest.xml file.

5.2.8 Tool Running & Result Analysis

Lint and Code Inspection are built-in in Android Studio. FindBugs and PMD
provide Android Studio plugins. So, in the experiments, we ran these four
detectors, namely Lint (built-in in Android Studio version 3.1.3)'2, Code In-

2nttps://developer.android.com/studio/releases/


https://developer.android.com/studio/releases/

DroIDLEAKS: A Comprehensive Database of Resource Leaks in Android Apps

Table 6: Resource leak bugs selected for our experiments

Resource class # Bugs Related Projects
AnkiDroid, AnySoftKeyboard, APG, BankDroid,

Cursor 38 ChatSecure, CSipSimple, Google Authenticator,
IRCCloud, Osmand, OSMTracker, Owncloud,
SMSDroid, TransDroid, WordPress

SQLiteDatabase 3 AnySoftKeyboard, ConnectBot, FBReader

s i, Comeehon im0 Mol

MediaPlayer 3 IRCCloud, SureSpot

WifiLock 1 IRCCloud

LocationListener 2 OsmDroid, Ushahidi

AndroidHttpClient 2 Barcode Scanner

MotionEvent 1  Xabber

ParcelFileDescriptor 1 K-9 Mail

Parcel 1 c:geo

Camera 1  SipDroid

InputStream 9  K-9 Mail, SureSpot, Terminal Emulator

FileInputStream 1 CycleStreets

FileOutputStream 2 Quran for Android, Xabber

BufferedReader 1  SureSpot

FilterOutputStream 7  ChatSecure

OutputStream 4 K-9 Mail, SureSpot, Terminal Emulator

FilterInputStream 5  ChatSecure

DefaultHttpClient 4 BankDroid

BufferedOutputStream 1 Quran for Android

Semaphore 3 BitCoin Wallet, K-9 Mail, Ushahidi

BufferedWriter 1 VLC-Android

ByteArrayOutputStream 2 SureSpot

OutputStreamWriter 1 VLC-Android

Socket 2 IRCCloud, K-9 Mail

Scanner 2  c:geo

ObjectInputStream 2 Hacker News Reader

ObjectOutputStream 2 Hacker News Reader

PipedOutputStream 2 K-9 Mail

DataOutputStream 1  APG

InputStreamReader 1 FBReader

Formatter 1 BitCoin Wallet

FileHandler 1 Osmand

Total 116 32

Note: This table only provides the simple names of resource classes. Please refer to
Table 4 on page 11 for the fully qualified names.



28 Yepang Liu et al.

. public class MainActivity extends AppCompatActivity {
@Override
protected void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;

1

2

3

4

5. PowerManager pm = (PowerManager) getSystemService (POWER SERVICE) ;
6 WakeLock wl = pm.newWakeLock (PARTIAL WAKE LOCK, “wakelock”);

7 wl.acquire();

8. }

9. }

Listing 9: Example code in the test app

spection (built-in in Android Studio version 3.1.3), FindBugs (version 1.0.1)!3,
PMD (version 6.0.1, integrated into Android Studio Plugin QAPlug-PMD ver-
sion 1.4.0)'#, directly within Android Studio on a Macbook Pro with Intel Core
i7 CPU @3.1 GHz and 16 GB RAM. The other four detectors are stand-alone
ones with only command-line interfaces. Infer (version 0.15.0)'® was also run
on the Macbook Pro. Relda2, Elite and Verifier were run on a Linux server
with 16 cores of Intel Xeon CPU @2.10GHz and 192GB RAM, running Cen-
tOS 7.3. These three tools are research prototypes without specific version
numbers and we used their latest accessible copies for the experiments.

To answer RQ4, we manually constructed a test app by simply requesting
system resources without releasing them. For example, in the code snippet
in Listing 9, we make the test app acquire a wake lock in its main activ-
ity’s onCreate() callback (Line 7), which will be invoked when the app is
launched, without releasing it. In our test app, the main activity acquires all
kinds of resources in Table 4 (page 11) but does not release any of them. In
this way, we can test whether a tool supports detecting a certain type of re-
source leak or not. We ran the above-mentioned tools except the three ones
from academia, whose supported resource classes are clearly reported in the
corresponding research papers, to analyze this test app. If the tool detects a
certain type of resource leak in our simple test app, we will further evaluate its
bug detection effectiveness with real-world resource leaks of the type indexed
by DROIDLEAKS. Otherwise, we conclude that the tool does not support de-
tecting this type of resource leak. This is because if the tool cannot detect the
simple case in our test app, it is unlikely to be able to detect other complex
cases. Our experimental results are reported in Section 5.3.

After knowing the resource classes supported by each detector, we further
selected the applicable bugs from our earlier selected 116 bugs to evaluate
them. As we mentioned earlier, we aim to evaluate the bug detection rate and
false alarm rate of the eight detectors. We define the two metrics in Equa-
tions (1) and (2), respectively. To evaluate the bug detection rate of a detec-
tor t, denoted BDR(t), we leveraged the buggy app versions. Specifically, for

13https://plugins. jetbrains.com/plugin/3847-findbugs-idea/
Mhttps://plugins. jetbrains.com/plugin/4596-qaplug--pmd/
5https://github.com/facebook/infer/releases/tag/v0.15.0


https://plugins.jetbrains.com/plugin/3847-findbugs-idea/
https://plugins.jetbrains.com/plugin/4596-qaplug--pmd/
https://github.com/facebook/infer/releases/tag/v0.15.0

DroIDLEAKS: A Comprehensive Database of Resource Leaks in Android Apps 29

each selected bug that is applicable to evaluate t, we performed the following
checking: when analyzing the corresponding buggy app version, if the tool ¢
reports a warning that describes the leak of the concerned resource at the
corresponding bug location, we consider this warning as a true one, i.e., the
tool ¢ successfully detects the bug. Otherwise, we consider that the tool misses
the bug. After evaluating ¢ with all applicable bugs, t’s bug detection rate
can be calculated by Equation (1). To evaluate the false alarm rate of each
tool ¢, denoted FAR(t), we leveraged the patched app versions. Specifically, for
each selected bug that is applicable to evaluate t, we performed the following
checking: when analyzing the corresponding patched app version, if the tool
t reports a warning that describes the concerned resource leak bug (it should
not since the bug is fixed), we consider this warning as a false alarm. Similar to
calculating bug detection rate, after evaluating ¢ with all applicable bugs, t’s
false alarm rate can be calculated by Equation (2). One can observe that dur-
ing the experiments, we would ignore the warnings that are not related to the
experimented bugs. This is due to the lack of ground truth to judge whether
the warnings are true ones. Preparing such ground truth requires tremendous
manual effort, which individual researchers like us cannot afford, as each tool
could report hundreds of warnings when analyzing each of our app subjects.

b detected by t b ;
BDR(t) = # bugs detected by on buggy app versions )
# bugs experimented on t

# false alarms reported by t on patched app versions

FAR(t) = 2)

# bugs experimented on t

5.3 RQ4: Resource Class Coverage

Table 7 (page 31) reports the supported types of system resources for the eight
evaluated resource leak detectors. We mark a table cell with the “v"” symbol
if the concerned resource leak detector supports the corresponding type of
system resource. From the results, we can observe several interesting findings.

Finding 1: None of the existing detectors supports all 33 types of
systems resources indexed by DroidLeaks. As we can see from Table 7,
the six detectors have very different resource leak detection capabilities. Code
Inspection supports the most (22 out of 33) types of system resources. Find-
Bugs and Infer support 14 and 11 types, respectively. In comparison, Relda2
and Android Lint only support a few types. Unexpectedly, PMD does not
support any type of system resource covered by DROIDLEAKS. We further
checked the rule set of PMD (see Footnote ' on page 24) and found out the
reason. PMD indeed supports detecting the leaks of system resources in Java
programs, including the Connection, Statement, and ResultSet classes in
the java.sql package. However, since Android apps typically use the SQLite
database APIs in the android.database.sqlite package, no resource leak



30 Yepang Liu et al.

bugs indexed by DROIDLEAKS are related to the types of resources supported
by PMD. Therefore, we believe that PMD is less useful in detecting resource
leaks for Android apps comparing to the other detectors and we will not further
evaluate it.

Finding 2: While we found that 29 of the 33 types of system re-
sources are supported by at least one existing resource leak detector,
the remaining four types, which are highlighted in Table 7, are not
supported by any existing detector. Although there are only 10 (3.4%
of 292) bugs related to the four types of system resources in DROIDLEAKS,
the leaks of such resources can cause serious consequences. For example, as
we discussed earlier in Section 4.1, the leak of the exclusive system resource
java.util.concurrent.Semaphore can affect app functionality and lead to
thread blocking, which could cause app crashes (Android ANR Errors 2018)
and significantly affect user experience. It would be helpful if the widely-used
detectors can support detecting such resource leaks.

Finding 3: While the majority (18 out of 22) of the general Java
platform resources are supported by multiple resource leak detec-
tors, only two (out of 11) types of Android platform resources are
supported by multiple detectors. How to detect the leak of general Java
platform resources has long been studied by researchers (Weimer and Nec-
ula 2004). This may explain that most general Java platform resources have
multiple detectors. In comparison, we observe that there is still the lack of
research and tool support for detecting Android-specific resource leaks. This
is likely because Android, as a mobile computing platform, has much shorter
history than the traditional computing platforms and the resources on the
Android platform that are newly introduced have their special characteris-
tics (e.g., the SQLite database cursor object is not reference-counted, but the
wake lock object is reference-counted by default). We advocate that more ef-
forts should be devoted into designing and developing useful tools for detecting
the leaks of Android platform resources. We believe that the large number of
real-world bugs in DROIDLEAKS can guide the design of such tools and help
reliably evaluate them in the future.

Answer to RQ4: FEuxisting resource leak detectors, especially those de-
signed for Android apps, only support detecting the leaks of limited types
of system resources. We advocate that more efforts can be spent to make
the existing detectors support detecting the leaks of more types of system
resources.

5.4 RQ5: Bug Detection Effectiveness

All our evaluated detectors finished analyzing each subject quickly. Android
Lint, Code Inspection, and FindBugs could finish analyzing an app in a couple
of seconds, while Facebook Infer, Relda2, Elite, and Verifier could finish in a



31

DROIDLEAKS: A Comprehensive Database of Resource Leaks in Android Apps

'S[009 PaIpN)s Ino jo Aue Aq porroddns j0u oIe S[[0D POPRYS UT SISSB[D 9DINO0SAY |

IoTpueHeTTd Sut880T  TTan eael

IoqjewIo  TTan eael
gopeoyuesxigaindur ‘o1 ‘eael
wesaxagandingeseq ot eael
wesaxigindangpedig ot eael
weaxagandangaoelqQg ot -eael
weaxjginduraoelqp ot -eael
Touuedg ' TTan-eael
393008 3ou-eael
Io3Tapwesxzgandang ot -eael
wesaxjgindanglerayeqfg - ot eael
IojTaIMpeoxaFyng ot eael
sxoydewsg 3USIINOUOD * TT3N eAR[
wesxjgindyngpereFyng ot eael
jueTT9d33HaTnRIeq " 3ueTTo " Tdut *d33y- eyoede- 310
weax3ganduT ey [T o1 ‘eael
wesaxjgandang ot -eael
weex3giandangre3 T ot eael
Iopeoyporoyyng ot eael
weax3gindanpeTT - ot ‘eael
weex3gyndure T ot ‘eael
ueaxjgandur ot -eael

sooanosax wiojje(d eaer [erouar)
N eI8WE) - SIRMPICY  PTOIPUR
A T921Rd " SO pTOIpPUR
2 103dTI089(QOTTITO2IR] SO  pPTOIpPUR
N JUSAJUOT IO} " MOTA  PTOIPULR
qus11pdaagproIpuy " d33y - 39U  pTOIpUR
I9US3STTUOTFRO0T UOTJRDOT ' PTOIpUR
{OOTTFTN  T0BeURBHTFTN  TFTA® 40U  PTOIPUR
IoKkeTdeTpo) eTpauW " pTOIpUER
yo0ToxepM - I98RURISMO] ‘SO PTOIpPUR
A aseqe1eqel IS  #31Tbs eseqesep proipue
A 2 2 I0SIn)  oSeqelep  proipue

saoanosaa wiojye[d proapuy

>
SN NS

SHSSSSSENESNSSSSSSSSNSNSS

SNSOONS S
SNHSSSSSNSENES NS

5SS SS

EXiiic| JOYLIDA Jayuy zeprey and sSngpur uorjdadsuy apo) JuI proJpuy SSE[D BAR[ PaUJISOUO))

$1039939P B9[] 9JINO0SAI JUISIXD JO S9[R) 9DINOSAY :J, d[qR],



32 Yepang Liu et al.

Table 8: Resource leak detector performance

Detector # experimented # detected bugs # false alarms
bugs (Bug detection rate) (False alarm rate)
Code Inspection 89 61 (68.5%) 47 (52.8%)
Infer 72 40 (55.6%) 16 (22.2%)
Lint 40 12 (30.0%) 0 (0.0%)
FindBugs 38 6 (15.8%) 0 (0.0%)
Relda2-FS ! 15 13 (86.7%) 10 (66.7%)
Relda2-FI ! 15 9 (60.0%) 4 (26.7%)
Elite 8 7 (87.5%) 5 (62.5%)
Verifier 8 4 (50.0%) 3 (37.5%)

1 Relda2 supports two analysis modes: flow-sensitive and flow-insensitive. Relda2-FS and
Relda2-F1I represents the two modes, respectively.

few minutes. Table 8 reports the bug detection rate and false alarm rate of
these detectors. As we can see from the results, the performance of these
detectors vary a lot and is generally not satisfactory. In the following, we
analyze the results of the detectors in details.

Finding 4: The static analysis of Lint, Code Inspection, and Find-
Bugs is not inter-procedural. Lint, Code Inspection, and FindBugs can
analyze an Android app in a matter of seconds and provide nearly real-time
feedback to developers. However, despite such efficiency, their analyses are not
inter-procedural, meaning that the analyses do not take into account the way
that information flows among method calls. Due to this limitation, Lint, Code
Inspection, and FindBugs missed 13, 20, and 10 of the experimented resource
leak bugs, respectively. Take a resource leak bug in the Xabber app for exam-
ple. Listing 10 (page 33) gives the simplified code snippet with the patch that
fixed the resource leak. As we can see from the code, after the creation of the
file and the output stream out, the method rotateImageIfNeeded() further
invokes the bitmap compressing API compress() with out as an argument.
Shortly after the API call returns, rotateImageIfNeeded () also returns with-
out properly closing the output stream out. Such resource leak bugs would not
be detected by Lint, Code Inspection, or FindBugs because when analyzing
rotateImageIfNeeded (), the three detectors would not further analyze the
compress () method call, but conservatively assume that the output stream
out would be closed by the method call compress(). Unfortunately, the API
call would not close the stream and hence the leak occurs. In comparison, the
other two general resource leak detectors Infer and Relda2 do not have such
a limitation. Their analyses are inter-procedural. However, for practical con-
cerns, there is still a length limit on the call chain in inter-procedural analyses,
meaning that such analyses cannot handle cases where the call chains are ex-
ceptionally long. Although rare, we did observe one case, where Infer failed to
detect the leak of database cursors (see Owncloud revision 0c8dfb6e8d).

Finding 5: Lint, Code Inspection, FindBugs, and Infer are not
lifecycle-aware and cannot detect resource leak bugs where the re-



DroIDLEAKS: A Comprehensive Database of Resource Leaks in Android Apps 33

//Xabber revision 749fc810b6

1 public class AccountInfoEditorFragment {

2 private Uri rotateImageIfNeeded (Uri srcUri) {

3. FileOutputStream out = null;

4. try {

5 Bitmap oriented = Bitmap.createBitmap(..);

6 final File rotateImageFile = createlImageFile(..);
7 out = new FileOutputStream(rotateImageFile);
8 oriented.compress (.., out);

9. oriented.recycle();
10. return Uri.fromFile (rotateImageFile);
11. } catch (Exception e) {

12. e.printStackTrace () ;

13. return srcUri;

14. + } finally {

15. + try {

16. + if (out !'= null) { out.flush(); out.close(); }
17. + } catch (IOException e) {

18. + e.printStackTrace();

19. + }
20. }
21. }
22. '}

Listing 10: A resource leak in Xabber. The resource variable escapes local
context. The leak requires inter-procedural analysis to detect.

//ConnectBot revision ef8ab06c34

1 public class PubkeyListActivity extends ListActivity {
2 protected PubkeyDatabase pubkeydb;

3. @Override

4. public void onCreate(..) {

5 //set up the SQLiteDatabase pubkeydb...

6

7

8

}
//other methods will query the database

. protected void updateCursor () {
9. ...
10. }
11. @Override
12. public void onStop() {
13. ...
14. + if (this.pubkeydb != null) ({
15. + this.pubkeydb.close () ;
16. + }
17. }
18. 1}

Listing 11: A resource leak in ConnectBot. The resource variable is an instance
variable.



34 Yepang Liu et al.

source variables are defined at class level. In Java programs, there are
three kinds of variables: local variables, instance variables, and class/static
variables. When evaluating the general resource leak detectors, we observed
that Lint, Code Inspection, FindBugs, and Infer can only detect resource leak
bugs, where the resource variables are local ones defined in a method under
analysis. Take a bug in ConnectBot as an example. Listing 11 (page 33) gives
the simplified code snippet with the bug-fixing patch. As we can see, the activ-
ity component PubkeyListActivity has an instance variable pubkeydb of the
type PubkeyDatabase, which is a subclass of SQLiteDatabase. The database is
connected when the activity starts (i.e., when onCreate () is invoked). It would
remain connected while the activity interacts with users. However, when the
activity component is terminated, pubkeydb is forgotten to be closed, causing
resource leaks. Due to the event-driven computing paradigm, such component
lifecycle related bugs are common in Android apps (i.e., event handlers often
need to share system resources). We observed 14 such bugs in DROIDLEAKS.
However, the four resource leak detectors could not detect these bugs because
they analyze methods one after another, but the scope of the resource variables
in such cases are beyond a single method (). In comparison, the other general
resource leak detector Relda2 does not have this limitation. By modeling the
lifecycle of Android app components, it is capable of performing analysis on a
sequence of method calls and recovering implicit inter-callback control flows,
and thus would be able to detect resource leaks, regardless of the resource
variables’ scope.

Finding 6: Code Inspection, FindBugs, and Infer do not handle
exceptional paths properly in their analyses. As we reported earlier, 56
(19.2%) resource leak bugs in DROIDLEAKS occurred on exceptional paths. A
resource leak detector therefore needs to pay attention to such cases. How-
ever, properly handling exceptional paths is known to be a challenge for static
analyses (Torlak and Chandra 2010). On one hand, not considering exceptions
would miss real resource leak bugs like the one in VLC-Android, whose relevant
code snippet and patch are given in Listing 12 (page 35). In our experiments,
we observed that FindBugs missed nine such bugs and Infer missed five such
bugs. On the other hand, considering exceptional paths that would not be
exercised in real executions would generate many false alarms. For example,
Code Inspection suggests developers to open I/0 resources in a try block and
close them in the corresponding finally block or use the try-with-resources
statement, which is introduced in Java 7, to ensure that the used resources are
properly closed. While such suggestions represent good practices, they are not
the only way to guarantee correct resource management. In fact, we observed
that real-world developers rarely adopt these practices in our study. For in-
stance, for majority (71.9% = 210/292) of the cases in our data set, we found
that developers do not enclose resource operations with the try-catch-finally
blocks, possibly because the Java exception handling mechanism, which is ar-
guably limited if not flawed, could seriously impair their productivity (Cabral
and Marques 2007). Therefore, tools like Code Inspection and Infer generated
many uninteresting resource leak warnings when we applied them to analyze



DroIDLEAKS: A Comprehensive Database of Resource Leaks in Android Apps 35

//VLC-Android revision 8eb52cba7l

1 public class Logcat {

2 public static void writelLogcat (String filename).. {
3 Ce

4. InputStreamReader in = new InputStreamReader (..);
5. OutputStreamWriter out = new OutputStreamWriter (..);
6 BufferedReader br = new BufferedReader (input);

7 BufferedWriter bw = new BufferedWriter (output);
8. String line;

9. - while ((line = br.readLine()) != null) {
10. - bw.write(line); bw.newLine () ;
11. - }
12. + try {

13. + while ((line = br.readLine()) != null) {

14. + bw.write(line); bw.newLine () ;

15. + }

16. + } catch (Exception e) {...

17. + } finally {

18. + bw.close(); out.close();

19. + br.close(); in.close();
20. + }
21. - bw.close(); out.close();
22. - br.close(); in.close();
23. }
24. }

Listing 12: A resource leak in VLC-Android due to I/O exceptions

the patched versions of our app subjects. The high false alarm rate (52.8%) of
Code Inspection is due to this reason. 12 of the 16 false alarms generated by
Infer is also due to this reason.

Finding 7: Lack of full path sensitivity is a common limitation
of all evaluated detectors. Path-sensitive analyses treat different execution
paths separately in order to yield precise analysis results. However, the pre-
cision comes at the price of analysis overhead. Path-sensitive analyses, even
only performed intra-procedurally, are known to be expensive for large code
bases and therefore are not widely adopted. Besides, it is hard for static anal-
yses to achieve full path sensitivity due to the approximations they make
when handling complex constructs such as loops (static analyses usually un-
fold loops a finite number of times). During our experiments, we observed that
the analyses of Lint, Code Inspection, FindBugs, and Relda2-FI (i.e., Relda2’s
flow-insensitive mode) are path-insensitive and all failed to detect those bugs
that only leak system resources on certain program paths (see Listing 6(a)
on page 21 for an example). These detectors simply conclude that there is no
resource leak as long as the concerned resource is released on any execution
path. Elite, Verifier and Relda2-FS (i.e., Relda2’s flow-sensitive mode) could
detect resource leaks on certain program paths, but their analyses are still
path-insensitive. Relda2-FS performs model checking on a program’s value
flow graph, which is a concise program representation model that preserves
only resource-related information, and would report resource leaks unless the



36 Yepang Liu et al.

concerned resources are released on all graph paths after use. Although this
model checking approach increased the bug detection rate of Relda2-FS, it
also significantly increased the tool’s false alarm rate as many paths on the
statically constructed value flow graphs are infeasible in reality. Unfortunately,
Relda2-FS does not analyze path feasibility. Elite and Verifier merge data flow
facts at control flow confluence points and therefore lose the path sensitiv-
ity. This is the main reason for them to miss bugs and report false alarms.
Comparatively, Infer performs inter-procedurally path-sensitive analysis (on
average, Infer takes several minutes to analyze each of our app subjects) and
checks path feasibility. However, when the predicates of conditional branch
instructions involve return values from library API calls, Infer could still gen-
erate false alarms possibly because it does not analyze the internals of library
methods. Take the bug in Listing 8 (page 23) for example. The resource leak
was fixed by adding the cursor closing statements (Lines 5-7), but Infer would
still report a resource leak warning when analyzing the patched version. This is
because it cannot properly analyze the library method isClosed (), especially
when the methods involves native calls, and hence does not know the logic re-
lation between cur.isClosed() and cur.close() and assumes that cur also
needs to be closed when both cur != null and cur.isClosed() evaluate to
true. We reported this limitation of Infer to its developers.!®

Besides the above common limitations, the evaluated detectors also have
their unique limitations as discussed below:

— Lint does not distinguish resource objects of the same type when analyz-
ing each method. It would not be able to detect resource leaks such as
the one illustrated in Listing 8 (page 23) since it does not know that the
variable cur points to different objects at line 3 and line 9. Lint would
also fail to detect resource leaks when the resource object references are
not assigned to local variables (see Listing 7 on page 22 for an example,
where the anonymous resource objects are passed to other method calls as
arguments).

— FindBugs does not analyze class hierarchy and would miss resource leak
bugs when the resource classes are self-defined and extend the standard
resource classes. For example, the class PubKeyDatabase in Listing 11 (page
33) extends the SQLiteDatabase class and is therefore also a resource class.
However, FindBugs would not consider it as a resource class and thus would
not detect resource leaks like the one illustrated in the figure.

— Relda2 cannot capture control flows among threads and therefore would
miss bugs or report false alarms when resource acquiring and releasing
operations reside in two different threads (see Listing 5 on page 17 for
example).

— Verifier does not systematically locate program callbacks defined in each
app component and capture the implicit control flows among them. Instead,
it only handles a set of pre-defined callback methods. Due to this limitation,
it missed several resource leaks.

6https://github.com/facebook/infer/issues/679


https://github.com/facebook/infer/issues/679

DroIDLEAKS: A Comprehensive Database of Resource Leaks in Android Apps 37

Answer to RQ5: The performance of existing resource leak detectors is
generally unsatisfactory. The detectors suffer from several common limi-
tations, including improper handling of exceptional paths, not performing
inter-procedural analysis, the lack of path sensitivity in code analysis, as
well as their own unique limitations.

6 Discussions
6.1 Threats & Limitations

The validity of our study results may be subject to several threats. We discuss
them in the following.

— The first threat is the representativeness of our selected Android app sub-
jects. In our work, we randomly selected 34 popular open-source Android
apps from F-Droid. These apps are diverse and cover 13 different app cate-
gories. We did not study more open-source Android apps because the study
requires careful manual validation of code commits to decide whether they
are fixing resource leaks or not. The process is labor-intensive as it requires
code comprehension. Manually checking the 1,811 code commit candidates
after keyword search took four co-authors several months to finish. After
the checking, we obtained a collection of 292 fixed resource leak bugs that
cover a diverse set of resource classes. This is already sufficient for carrying
out our current study. In the future, we plan to further investigate more
open-source apps (e.g., smaller-scale and less popular ones, whose resource
management mistakes might be of interest to novice Android developers)
and commercial apps to include more resource leak bugs into DROIDLEAKS.

— The second threat is the potential misses of real resource leak bugs in our
keyword search process (i.e., false negatives in bug collection). To reduce
the threat, we leveraged the resource operations identified by the state-of-
the-art work (Wu et al. 2016) to formulate keywords. We also used general
keywords such as “leak”, “release”, and “close”, aiming to maximally cover
resource leak bugs that could affect our app subjects. The strategy indeed
helped us find a large number of fixed resource leak bugs in 32 out of our 34
app subjects. To understand whether the bugs in DROIDLEAKS are com-
prehensive and representative, we further performed two studies as follows.
First, we studied the bugs that were used to evaluate the existing resource
leak detectors for Android apps in the literature (Pathak et al. 2012, Vekris
et al. 2012, Guo et al. 2013, Liu et al. 2014; 2016b, Wu et al. 2016, Wu et
al. 2018). We found that the bug patterns discussed in these studies are also
included in DROIDLEAKS. For example, Wu et al. (2016) discussed resource
leaks due to complex app component lifecycles. Vekris et al. (2012) pointed
out that the high level of asynchronous computing in Android apps (e.g.,
multi-threading) also often leads to resource leaks. As we can see from Sec-
tion 4.1, DROIDLEAKS provides similar instances of such bug patterns and



38

Yepang Liu et al.

include many other types of bugs. Second, we searched the issue tracking
systems of all our studied 34 Android apps to locate documented resource
leak bugs. Specifically, we looked for closed issues whose reports and dis-
cussions contain the word “leak”.'” In total, we found 162 candidate issue
reports and 75 of them contain links to buggy code or patches, which can
help us validate whether a documented bug is indeed a resource leak or
not. We then studied these 75 issues and found 16 resource leak bugs (most
of the remaining issues are related to memory leaks). We examined the 16
bugs and found that our approach missed two of them. We missed Os-
mDroid issue #832 because it involves a custom resource class MapView,
which wraps the standard Android and Java resource classes. Since the
resource acquiring and releasing operations are not standard APIs and the
developers did not mention the fixing of resource leaks in the commit log,
our approach would not be able to find it. We also missed K-9 Mail issue
#618 because its developers simply removed the code that does not close
resources after file writing. From these observations, we can see that al-
though DROIDLEAKS does not cover all resource leaks in the 34 projects,
its currently indexed bugs are already quite comprehensive. An alterna-
tive approach to compiling a comprehensive set of real-world resource leak
bugs is to analyze all classes in API specifications and extract all resource
acquiring and releasing APIs. One can then analyze the code repository of
open-source projects to find the call sites of these resource acquiring APIs
and check whether there are potential resource leaks. Future work with a
similar goal of bug collection may also follow this alternative approach.

The third threat is that we assume the developers have fully fixed the bugs
in our dataset. Based on this assumption, if a tool reports a resource leak
when analyzing a patched version, we would classify the report as a false
alarm. However, it is possible that developers may not have completely
fixed the bugs in DROIDLEAKS (it is generally hard for developers to guar-
antee program correctness). To reduce the threat, we randomly sampled 60
of our 292 bugs and reviewed their patched versions. We observed that for
all sampled bugs, the relevant patching code are still in the latest commit
in the code base. This indicates that it is highly likely the patches indeed
fixed the resource leaks.

The last threat is the errors in our manual investigation of bugs and man-
ual analyses of experimental results. To minimize the threat, four authors
carefully cross-validated the results. We also release our bug dataset for
public access (https://zenodo.org/record/2589909).

One limitation of the current version of DROIDLEAKS is that it does not

provide the test cases that can trigger the resource leak bugs. This is mainly
because the majority of our studied open-source Android apps do not have

17We cannot collect resource leak bug reports by checking issue report labels. None of

the 34 projects have labels for resource leak bugs in their issue tracking systems. In fact,
the majority of the projects do not even have a clear labeling of bug types and only five of
them have labels for general performance bugs.


https://zenodo.org/record/2589909

DroIDLEAKS: A Comprehensive Database of Resource Leaks in Android Apps 39

associated test suites and manually constructing test cases is very expensive.
We leave this as our future work. Another limitation of our work is that we did
not study the concrete impact of our identified resource leaks. Resource leak
is known to be a major type of defects in conventional software (Torlak and
Chandra 2010) as well as mobile software (Wu et al. 2016). As a type of per-
formance bugs, resource leaks may not have immediate fail-stop consequences
such as app crashes, but they may gradually slow down an app and waste
limited computational resources, causing negative user experiences especially
when the app runs on low-end mobile devices. We observed that for 103 of
the 292 resource leak bugs in DROIDLEAKS, there are associated bug reports
or pull requests, which were merged into the code bases, showing that the
resource leaks are of concern to developers. In the future, we plan to construct
test cases to trigger different types of resource leak bugs in DROIDLEAKS and
quatitatively study the impact of the bugs. We will also study whether re-
source leak bugs are relevant to Android users via analyzing app reviews and
conducting large-scale user surveys.

6.2 Usefulness of DROIDLEAKS

DRroOIDLEAKS has many potential applications. We discuss several usage sce-
narios in the following.

— Programming quidance. DROIDLEAKS contains a large number of real-world
resource leak bugs, covering diverse types of resources. Its various bugs and
patch examples can be used for training or educational purposes, providing
programming guidance to Android developers, especially novices.

— FEvaluating bug detection and fizing techniques. The large number of di-
verse bugs in DROIDLEAKS can also be used to evaluate existing resource
leak detection and fixing techniques for Android apps to understand their
strengths and limitations and to guide the future development of simi-
lar techniques. While we have leveraged DROIDLEAKS to evaluate several
existing static analysis based resource leak detection techniques, other re-
searchers can further leverage DROIDLEAKS to assess other techniques such
as resource leak testing (e.g., Yan et al. 2013, Wu et al. 2018) and fixing
(e.g., Liu et al. 2016a, Banerjee et al. 2018).

— Enabling resource leak patching research. Automatically patching program
defects can significantly improve the productivity of software developers.
Since resource management policies are well-defined, it is possible to au-
tomatically fix potential resource leaks in programs to improve their per-
formance and reliability. Towards this end, DROIDLEAKS provides diverse
resource leak bugs and human-written patches to facilitate the research in
automated resource leak patching for Android apps.

— Supporting pattern-based bug detection. Our empirical study revealed com-
mon patterns of faults made by Android developers. Such patterns can be
leveraged to design static checkers (e.g., plug-ins to Android Lint) for real



40

Yepang Liu et al.

time detection of resource leaks in Android apps. For example, we imple-
mented a static analyzer on the Soot program analysis framework (Soot
2018) to detect the misuse of the moveToFirst () API (see Listing 6(a) on
page 21 for example). The analysis simply checks whether the database
cursor closing statement is control dependent on the if statements that
check the return value of the moveToFirst () API call. When we applied
the analyzer to the latest version of our 34 app subjects, it located 17
database cursor leaks in eight apps. Table 9 (page 41) reports the names
of these apps and their versions, in which our checker detected bugs. We
reported our findings to the developers of these apps. The last column of
Table 9 gives the IDs of our bug reports. So far, all 17 bugs reported in
eight bug reports have been confirmed by developers. 16 bugs have been
quickly fixed by developers themselves or by merging our pull requests
(the bug reports are marked with “*”). The only bug that was not fixed
by developers is the one in WordPress (see the last row in Table 9). The
reason is that the developers were going to abandon the concerned Java
file completely because it was too buggy and hence there was no need to
fix our reported bug. This is not our main contribution. We do not further
discuss it here.

6.3 Implications on Future Resource Leak Detection Techniques

With our quantitative analysis of existing resource leak detectors, we summa-
rize the characteristics that a resource leak detection technique should have in
order to achieve a high precision and recall in practice.

— First of all, its analysis should be inter-procedural. As we mentioned in

Section 4.2, for 104 of the 292 bugs in DROIDLEAKS, the resource variables
escape the local context, many of which are passed as arguments to other
method calls. We found that IDE tools Android Lint, Code Inspection and
FindBugs do not perform inter-procedural analysis and this is a major
reason of their false negatives in resource leak bug detection.

Second, it should handle exceptional paths selectively. While ignoring ex-
ceptional paths would lead to false negatives in resource leak detection
(e.g., FindBugs missed nine out of 38 bugs due to this reason), reporting
resource leaks due to all possible runtime errors would overwhelm devel-
opers with a large number of spurious reports (e.g., all 47 false warnings
generated by Code Inspection is due to this reason). An effective analysis
should process exceptional paths that are likely to be exercised in practice.
Existing work (Torlak and Chandra 2010) proposed a belief-based heuristic
to enable selective exceptional path analysis.

Third, its analysis should be lifecycle-aware. Android apps are event-driven
programs whose components follow prescribed lifecycles. In our empirical
study, we found that Android-specific resources, including SQLiteDatabase,
WakeLock, MediaPlayer, LocationListener, are often acquired and re-
leased in different callback methods. Without considering implicit control



DRroIDLEAKS: A Comprehensive Database of Resource Leaks in Android Apps 41

Table 9: Detected Leaks of Database Cursors

App name Version # found bugs Bug report ID
IRCCloud a96eda0860 2 147+
SureSpot 76b6£931b0 3 1427+
OwnCloud b7577d8d86 1 1818+
SMSDroid 20e9fb149b 1 31+
Osmand 0970ad6496 1 31351
OSMTracker d80deal6ed 2 74t
OI File Manager 032a8903e2 1 82+
WordPress 4290526¢41 6 4526, 4591+

flows among various callback methods, a resource leak detector could miss
many leaks of such resources. In our experiments, we found that all tools
from the research community (i.e., Relda2, Elite, Verifier) are lifecycle-
aware and consider control flows among callbacks. However, the tools from
industry, including Android Lint, Code Inspection, FindBugs, and Infer do
not handle such implicit control flows and missed many real resource leaks.

— Fourth, its analysis should be able to recognize custom resources. It is
often that developers of an app would extend a standard resource class to
create a custom resource (see the PubkeyDatabase example in Listing 11
on page 33). An analysis tool that cannot recognize such custom resources
would not be able to detect their leaks. For example, in our experiments,
11 of the 32 bugs FindBugs missed is due to this reason.

— Lastly, its analysis should be path-sensitive. In our empirical study, we
found that 50 out of the 292 resource leaks occur along certain normal paths
(see Section 4.2). A path-insensitive analysis would not be able to detect
such leaks. For example, our experiments revealed that the analyses of IDE
tools Android Lint, Code Inspection and FindBugs are path-insensitive and
therefore missed quite a lot of real leaks, which is understandable since
these tools are light-weight and expected to provide instant feedback to
developers. However, for tools that run off-line analyses, path-sensitivity
should be considered to avoid false negatives and false alarms.

7 Related Work
7.1 Resource Management

System resources are finite. Developers are required to release resources used
by their apps in a timely fashion when the resources are no longer needed.
However, tasks for realizing this requirement are often error-prone. Empirical
evidence shows that resource leaks are common in practice (Weimer and Nec-
ula 2004). To prevent resource leaks, researchers proposed various language-
level mechanisms and automated management techniques (Dillig et al. 2008).



42 Yepang Liu et al.

Various tools were also developed to detect resource leaks (Arnold et al. 2011,
Liu et al. 2014, Torlak and Chandra 2010, Vekris et al. 2012, Wu et al. 2016).
For example, QVM (Arnold et al. 2011) is a specialized runtime that tracks
the execution of Java programs and checks for the violations of resource man-
agement policies. Tracker (Torlak and Chandra 2010) is an industrial-strength
tool for finding resource leaks in Java programs. These techniques are applica-
ble to Android apps, which are typically Java programs, but they do not deal
with the specialties in Android apps (e.g., implicit control flows). Therefore,
in recent years, researchers also tailored resource leak detection techniques for
Android apps. Examples are no-sleep energy bug detector (Pathak et al. 2012),
Relda (Guo et al. 2013), Relda2 (Wu et al. 2016), LeakDroid (Yan et al. 2013,
Zhang et al. 2016), SENTINEL (Wu et al. 2018) and our earlier work Green-
Droid (Liu et al. 2014). Besides the efforts from research communities, there
are also industrial tools for resource leak detection for Android apps, such as
Facebook Infer, the built-in checker Lint in Android Studio. Despite the exis-
tence of so many techniques, there does not exist a common set of real-world
resource leak bugs in Android apps to facilitate the evaluation and comparison
of these techniques. Our work makes an initial attempt to fill the gap.

7.2 Memory Usage Analysis

Programs written in the Java programming language enjoy the benefits of
garbage collection, which frees the developers from the responsibility of mem-
ory management. Although developers do not need to care about explicitly re-
cycling the created objects, memory leak may still happen when the programs
maintain references to objects that prevent garbage collection or constantly
create objects that have poor utility. To help diagnose such memory usage
problems, many techniques have been developed. For example, researchers
proposed to use object staleness (Bond and McKinley 2006, Hauswirth and
Chilimbi 2004), growing instances of types (Jump and McKinley 2007, Mitchell
and Sevitsky 2003), and cost-benefit analysis (Xu et al. 2010) to identify sus-
picious and low-utility data structures that may cause memory leaks. Similar
to resource leaks, besides tools originating from research communities, there
are also industrial tools for memory usage analysis. For example, Android
Profiler'® in Android Studio and MAT' in Eclipse are both powerful and
fast tools to help Android developers analyze heap usage for finding memory
leaks and reducing memory consumption. As we discussed earlier, many bugs
in DROIDLEAKS cause memory wastes and they can also be used to evaluate
these techniques.

18nttps://developer.android.com/studio/profile/android-profiler
http://waw.eclipse.org/mat/


https://developer.android.com/studio/profile/android-profiler
http://www.eclipse.org/mat/

DroIDLEAKS: A Comprehensive Database of Resource Leaks in Android Apps 43

7.3 Bug Benchmarking

Bug databases/benchmarks enable controlled experimentation and reproducible
research. In early years, researchers constructed the widely-used benchmark
Siemens (Hutchins et al. 1994), which provides a set of small to median sized C
programs with manually seeded faults to facilitate the evaluation of data flow
and control flow based testing techniques. Similarly, to facilitate the evalua-
tion of tainting-based data flow analyses for Android, researchers constructed
DROIDBENCH (Arzt et al. 2014), whose latest version consists of 120 hand-
crafted Android apps with malicious data flows (e.g., those leaking users’ pri-
vate data). SIR (Do et al. 2005) is the first benchmark that contains real bugs
in Java, C, C++, and C# programs, but still the majority of the bugs in-
dexed by SIR were manually seeded or obtained by mutation and the program
sizes are small. In recent years, researchers started to construct benchmarks
of real bugs from large-scale software as many complex systems have been
open-sourced (Amann et al. 2016, Dallmeier and Zimmermann 2007, Jalbert
et al. 2011, Just et al. 2014, Lu et al. 2005). One typical example is the De-
fects4J bug database (Just et al. 2014). It provides 357 bugs from five large
Java programs with exposing test cases. Compared to such bug benchmark-
s/databases, our DROIDLEAKS has its unique features. First, to the best of
our knowledge, it is the largest collection of real bugs in open-source Android
apps. Second, DROIDLEAKS focuses on resource leaks and covers a wide range
of different resource classes. Third, due to its focus, DROIDLEAKS features
resource leaks that occurred due to various root causes and common patterns
of coding mistakes, which can support Android programming education and
future research.

8 Conclusion

This paper presented DROIDLEAKS, a database of 292 resource leak bugs in
real-world Android apps. We constructed DROIDLEAKS by analyzing 124,215
code revisions of 34 popular open-source app subjects. To understand the
characteristics of these bugs, we conducted an empirical study and discovered
common resource management mistakes made by developers. To show the
usefulness of our study, we evaluated eight existing resource leak detectors for
Android apps using DROIDLEAKS. The evaluation led to a detailed analysis of
the limitations and strengths of the detectors.

In the future, we expect DROIDLEAKS to further grow and contain more
diverse bug instances. We plan to construct test cases to trigger the bugs
indexed by DROIDLEAKS and quantify their impacts. We also plan to evaluate
the existing bug patching techniques, especially those specifically designed for
resource leaks (Liu et al. 2016a, Banerjee et al. 2018), using DROIDLEAKS
and quantitatively compare their strengths and weaknesses to see whether we
can observe new challenges that need to be addressed for effective resource
leak repairing. With our efforts, we hope to shed light on future research and



44 Yepang Liu et al.

facilitate the development of effective automated techniques to ensure correct
resource management in Android apps.

Acknowledgements We would like to thank the reviewers for their valuable comments
and improvement suggestions. This work is supported by the National Natural Science Foun-
dation of China (Grant Nos. 61802164 and 61690204), the Hong Kong RGC/GRF (Grant
No. 16202917), the Science and Technology Innovation Committee Foundation of Shenzhen
(Grant No. ZDSYS201703031748284) and the Program for University Key Laboratory of
Guangdong Province (Grant No. 2017KSYS008). The authors would also like to thank the
support from the Collaborative Innovation Center of Novel Software Technology and Indus-
trialization, Jiangsu, China.

References

S. Amann, S. Nadi, H. A. Nguyen, T. N. Nguyen, and M. Mezini. Mubench:
A benchmark for api-misuse detectors. In 2016 IEEE/ACM 13th Working
Conference on Mining Software Repositories (MSR), pages 464-467, May
2016.

Android ANR Errors, 2018. https://developer.android.com/training/
articles/perf-anr.html.

Android API Guides, 2018. https://developer.android.com/guide/.

Android Processes and Threads, 2018. https://developer.android.com/
guide/components/processes-and-threads.html.

Matthew Arnold, Martin Vechev, and Eran Yahav. Qvm: An efficient run-
time for detecting defects in deployed systems. ACM Trans. Softw. Eng.
Methodol., 21(1):2:1-2:35, December 2011.

Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bar-
tel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel.
Flowdroid: Precise context, flow, field, object-sensitive and lifecycle-aware
taint analysis for android apps. In Proceedings of the 35th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI
14, pages 259-269, 2014.

A. Banerjee, L. K. Chong, C. Ballabriga, and A. Roychoudhury. Energypatch:
Repairing resource leaks to improve energy-efficiency of android apps. IEEE
Transactions on Software Engineering, 44(5):470-490, May 2018.

Michael D. Bond and Kathryn S. McKinley. Bell: Bit-encoding online mem-
ory leak detection. In Proceedings of the 12th International Conference on
Architectural Support for Programming Languages and Operating Systems,
ASPLOS XII, pages 61-72, 2006.

B. Cabral and P. Marques. Exception handling: A field study in java and
.net. In Proceedings of the 21st European Conference on Object-Oriented
Programming, pages 151-175, 2007.

Valentin Dallmeier and Thomas Zimmermann. Extraction of bug localization
benchmarks from history. In Proceedings of the Twenty-second IEEE/ACM
International Conference on Automated Software Engineering, ASE 07,
pages 433-436, 2007.


https://developer.android.com/training/articles/perf-anr.html
https://developer.android.com/training/articles/perf-anr.html
https://developer.android.com/guide/
https://developer.android.com/guide/components/processes-and-threads.html
https://developer.android.com/guide/components/processes-and-threads.html

DroIDLEAKS: A Comprehensive Database of Resource Leaks in Android Apps 45

Isil Dillig, Thomas Dillig, Eran Yahav, and Satish Chandra. The closer: Au-
tomating resource management in java. In Proceedings of the 7th Interna-
tional Symposium on Memory Management, ISMM ’08, pages 1-10, 2008.

Hyunsook Do, Sebastian Elbaum, and Gregg Rothermel. Supporting con-
trolled experimentation with testing techniques: An infrastructure and its
potential impact. Empirical Softw. Engg., 10(4):405-435, October 2005.

F-Droid, 2018. A Catalogue of Open-Source Android Apps. https://github.
com/geometer/FBReaderJ.

Facebook, 2018. Infer: A tool to detect bugs in Java and C/C++4/Objective-C
code. http://fbinfer.com/.

Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song, and David Wag-
ner. Android permissions demystified. In Proceedings of the 18th ACM
Conference on Computer and Communications Security, CCS 11, pages
627-638, 2011.

Google, 2018a. Android Lint: A Code Scanning Tool for Android Apps. https:
//developer.android.com/studio/write/lint.html.

Google, 2018b. Android Studio. https://developer.android.com/studio/
index.html.

C. Guo, J. Zhang, J. Yan, Z. Zhang, and Y. Zhang. Characterizing and de-
tecting resource leaks in android applications. In 2018 28th IEEE/ACM
International Conference on Automated Software Engineering (ASE), pages
389-398, Nov 2013.

Matthias Hauswirth and Trishul M. Chilimbi. Low-overhead memory leak de-
tection using adaptive statistical profiling. In Proceedings of the 11th Inter-
national Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS XI, pages 156-164, 2004.

David Hovemeyer and William Pugh. Finding bugs is easy. SIGPLAN Not.,
39(12):92-106, December 2004. ISSN 0362-1340.

M. Hutchins, H. Foster, T. Goradia, and T. Ostrand. Experiments on the effec-
tiveness of dataflow- and control-flow-based test adequacy criteria. In Pro-
ceedings of 16th International Conference on Software Engineering, pages
191-200, May 1994.

Nicholas Jalbert, Cristiano Pereira, Gilles Pokam, and Koushik Sen. Rad-
bench: A concurrency bug benchmark suite. In Proceedings of the 3rd
USENIX Conference on Hot Topic in Parallelism, HotPar’ll, pages 2-2,
2011.

Java, API Specifications, 2018. https://docs.oracle.com/javase/7/docs/
api/.

JetBrains, 2018. Code Inspection in IntelliJ IDEA. https://www. jetbrains.
com/help/idea/2016.3/code-inspection.html.

Maria Jump and Kathryn S. McKinley. Cork: Dynamic memory leak detection
for garbage-collected languages. In Proceedings of the 34th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’07, pages 31-38, 2007.

René Just, Darioush Jalali, and Michael D. Ernst. Defects4j: A database of
existing faults to enable controlled testing studies for java programs. In


https://github.com/geometer/FBReaderJ
https://github.com/geometer/FBReaderJ
http://fbinfer.com/
https://developer.android.com/studio/write/lint.html
https://developer.android.com/studio/write/lint.html
https://developer.android.com/studio/index.html
https://developer.android.com/studio/index.html
https://docs.oracle.com/javase/7/docs/api/
https://docs.oracle.com/javase/7/docs/api/
https://www.jetbrains.com/help/idea/2016.3/code-inspection.html
https://www.jetbrains.com/help/idea/2016.3/code-inspection.html

46 Yepang Liu et al.

Proceedings of the 201/ International Symposium on Software Testing and
Analysis, ISSTA 2014, pages 437-440, 2014.

Yu Lin, Cosmin Radoi, and Danny Dig. Retrofitting concurrency for android
applications through refactoring. In Proceedings of the 22Nd ACM SIG-
SOFT International Symposium on Foundations of Software Engineering,
FSE 2014, pages 341-352, 2014.

Mario Linares-Vasquez, Christopher Vendome, Michele Tufano, and Denys
Poshyvanyk. How developers micro-optimize android apps. J. Syst. Softw.,
130(C):1-23, August 2017.

J. Liu, T. Wu, J. Yan, and J. Zhang. Fixing resource leaks in android apps
with light-weight static analysis and low-overhead instrumentation. In 2016
IEEE 27th International Symposium on Software Reliability Engineering
(ISSRE), pages 342-352, Oct 2016a.

Y. Liu, C. Xu, S. C. Cheung, and J. Lii. Greendroid: Automated diagnosis
of energy inefficiency for smartphone applications. IEEE Transactions on
Software Engineering, 40(9):911-940, Sept 2014.

Yepang Liu, Chang Xu, Shing-Chi Cheung, and Valerio Terragni. Understand-
ing and detecting wake lock misuses for android applications. In Proceedings
of the 2016 24th ACM SIGSOFT International Symposium on Foundations
of Software Engineering, FSE 2016, pages 396-409, 2016b.

J. Lovins. Development of a stemming algorithm. Mechanical Translation and
Computational Linguistics, 11(1 and 2):22-31, 1968.

Shan Lu, Zhenmin Li, Feng Qin, Lin Tan, Pin Zhou, and Yuanyuan Zhou.
Bugbench: Benchmarks for evaluating bug detection tools. In In Workshop
on the Evaluation of Software Defect Detection Tools, 2005.

N. Mitchell and G. Sevitsky. Leakbot: An automated and lightweight tool for
diagnosing memory leaks in large java applications. In Proceedings of the
17th European Conference on Object-Oriented Programming, pages 351-377,
2003.

Abhinav Pathak, Abhilash Jindal, Y. Charlie Hu, and Samuel P. Midkiff. What
is keeping my phone awake?: Characterizing and detecting no-sleep energy
bugs in smartphone apps. In Proceedings of the 10th International Con-
ference on Mobile Systems, Applications, and Services, MobiSys "12, pages
267-280, 2012.

PMD, 2018. A Java Source Code Analyzer. http://pmd.sourceforge.net/.

Soot, 2018. A Framework for Analyzing and Transforming Java and Android
Apps. http://sable.github.io/soot/.

Emina Torlak and Satish Chandra. Effective interprocedural resource leak
detection. In Proceedings of the 32Nd ACM/IEEE International Conference
on Software Engineering - Volume 1, ICSE 10, pages 535-544, 2010. ISBN
978-1-60558-719-6.

Panagiotis Vekris, Ranjit Jhala, Sorin Lerner, and Yuvraj Agarwal. Towards
verifying android apps for the absence of no-sleep energy bugs. In Pro-
ceedings of the 2012 USENIX Conference on Power-Aware Computing and
Systems, HotPower’12, pages 3-3, 2012.


http://pmd.sourceforge.net/
http://sable.github.io/soot/

DroIDLEAKS: A Comprehensive Database of Resource Leaks in Android Apps 47

Westley Weimer and George C. Necula. Finding and preventing run-time er-
ror handling mistakes. In Proceedings of the 19th Annual ACM SIGPLAN
Conference on Object-oriented Programming, Systems, Languages, and Ap-
plications, OOPSLA 04, pages 419-431, 2004.

Haowei Wu, Yan Wang, and Atanas Rountev. Sentinel: Generating gui tests
for android sensor leaks. In Proceedings of the 13th International Workshop
on Automation of Software Test, AST 18, pages 27-33, 2018.

T. Wu, J. Liu, Z. Xu, C. Guo, Y. Zhang, J. Yan, and J. Zhang. Light-
weight, inter-procedural and callback-aware resource leak detection for an-
droid apps. IEEE Transactions on Software Engineering, 42(11):1054-1076,
Nov 2016.

Guogqing Xu, Nick Mitchell, Matthew Arnold, Atanas Rountev, Edith Schon-
berg, and Gary Sevitsky. Finding low-utility data structures. In Proceedings
of the 31st ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’10, pages 174-186, 2010.

D. Yan, S. Yang, and A. Rountev. Systematic testing for resource leaks in
android applications. In 2018 IEEFE 24th International Symposium on Soft-
ware Reliability Engineering (ISSRE), pages 411-420, Nov 2013.

Hailong Zhang, Haowei Wu, and Atanas Rountev. Automated test generation
for detection of leaks in android applications. In Proceedings of the 11th
International Workshop on Automation of Software Test, AST 16, pages
64-70, 2016.



48 Yepang Liu et al.

Appendix A Open Source Projects Referenced in The Paper

Table 10: The URLs of the code repositories of the open-source projects

App name Code Repository

AnkiDroid https://github.com/ankidroid/Anki-Android/
AnySoftKeyboard https://github.com/AnySoftKeyboard/AnySoftKeyboard
APG https://github.com/thialfihar/apg

BankDroid https://github.com/liato/android-bankdroid

Barcode Scanner https://github.com/zxing/zxing

BitCoin Wallet https://github.com/bitcoin-wallet/bitcoin-wallet
CallMeter https://github.com/felixb/callmeter

ChatSecure https://github.com/guardianproject/ChatSecureAndroid
ConnectBot https://github.com/connectbot/connectbot/
CSipSimple https://github.com/r3gis3r/CSipSimple

CycleStreets https://github.com/cyclestreets/android

c:geo https://github.com/cgeo/cgeo

FBReader https://github.com/geometer/FBReaderJ

Google Authenticator  https://github.com/google/google-authenticator
Hacker News Reader https://github.com/manmal/hn-android

IRCCloud https://github.com/irccloud/android

K-9 Mail https://github.com/k9mail/k-9

OI File Manager https://github.com/openintents/filemanager

Open GPS Tracker https://github.com/rcgroot/open-gpstracker

Osmand https://github.com/osmandapp/0Osmand

OsmDroid https://github.com/osmdroid/osmdroid

OSMTracker https://github.com/nguillaumin/osmtracker-android
ownCloud https://github.com/owncloud/android

Quran for Android https://github.com/quran/quran_android

SipDroid https://github.com/i-p-tel/sipdroid

SMSDroid https://github.com/felixb/smsdroid

SureSpot https://github.com/surespot/android

Terminal Emulator https://github.com/jackpal/Android-Terminal-Emulator
Transdroid https://github.com/erickok/transdroid

Ushahidi https://github.com/ushahidi/Ushahidi_Android
VLC-Android https://github.com/mstorsjo/vlc-android

WebSMS https://github.com/felixb/websms/

WordPress https://github.com/wordpress-mobile/WordPress-Android

Xabber https://github.com/redsolution/xabber-android



https://github.com/ankidroid/Anki-Android/
https://github.com/AnySoftKeyboard/AnySoftKeyboard
https://github.com/thialfihar/apg
https://github.com/liato/android-bankdroid
https://github.com/zxing/zxing
https://github.com/bitcoin-wallet/bitcoin-wallet
https://github.com/felixb/callmeter
https://github.com/guardianproject/ChatSecureAndroid
https://github.com/connectbot/connectbot/
https://github.com/r3gis3r/CSipSimple
https://github.com/cyclestreets/android
https://github.com/cgeo/cgeo
https://github.com/geometer/FBReaderJ
https://github.com/google/google-authenticator
https://github.com/manmal/hn-android
https://github.com/irccloud/android
https://github.com/k9mail/k-9
https://github.com/openintents/filemanager
https://github.com/rcgroot/open-gpstracker
https://github.com/osmandapp/Osmand
https://github.com/osmdroid/osmdroid
https://github.com/nguillaumin/osmtracker-android
https://github.com/owncloud/android
https://github.com/quran/quran_android
https://github.com/i-p-tel/sipdroid
https://github.com/felixb/smsdroid
https://github.com/surespot/android
https://github.com/jackpal/Android-Terminal-Emulator
https://github.com/erickok/transdroid
https://github.com/ushahidi/Ushahidi_Android
https://github.com/mstorsjo/vlc-android
https://github.com/felixb/websms/
https://github.com/wordpress-mobile/WordPress-Android
https://github.com/redsolution/xabber-android

	Introduction
	Background
	Collecting Resource Leak Bugs
	Characteristics of Collected Resource Leak Bugs
	Performance of Existing Resource Leak Detectors
	Discussions
	Related Work
	Conclusion
	Open Source Projects Referenced in The Paper



