IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.40, NO.9, SEPTEMBER 2014 911

GreenDroid: Automated Diagnosis of Energy
Inefficiency for Smartphone Applications

Yepang Liu, Chang Xu, S.C. Cheung, and Jian Lu

Abstract—Smartphone applications’ energy efficiency is vital, but many Android applications suffer from serious energy inefficiency
problems. Locating these problems is labor-intensive and automated diagnosis is highly desirable. However, a key challenge is the lack
of a decidable criterion that facilitates automated judgment of such energy problems. Our work aims to address this challenge. We
conducted an in-depth study of 173 open-source and 229 commercial Android applications, and observed two common causes of energy
problems: missing deactivation of sensors or wake locks, and cost-ineffective use of sensory data. With these findings, we

propose an automated approach to diagnosing energy problems in Android applications. Our approach explores an application’s state
space by systematically executing the application using Java PathFinder (JPF). It monitors sensor and wake lock operations to detect
missing deactivation of sensors and wake locks. It also tracks the transformation and usage of sensory data and judges whether they are
effectively utilized by the application using our state-sensitive data utilization metric. In this way, our approach can generate detailed
reports with actionable information to assist developers in validating detected energy problems. We built our approach as a tool,
GreenDroid, on top of JPF. Technically, we addressed the challenges of generating user interaction events and scheduling event han-
dlers in extending JPF for analyzing Android applications. We evaluated GreenDroid using 13 real-world popular Android applications.
GreenDroid completed energy efficiency diagnosis for these applications in a few minutes. It successfully located real energy problems in
these applications, and additionally found new unreported energy problems that were later confirmed by developers.

Index Terms—Smartphone application, energy inefficiency, automated diagnosis, sensory data utilization, green computing

1 INTRODUCTION

HE smartphone application market is growing rapidly.

Up until July 2013, the one million Android applica-
tions on Google Play store had received more than 50 bil-
lion downloads [29]. Many of these applications leverage
smartphones’ rich features to provide desirable user expe-
riences. For example, Google Maps can navigate users
when they hike in the countryside by location sensing.
However, sensing operations are usually energy consump-
tive, and limited battery capacity always restricts such an
application’s usage. As such, energy efficiency becomes a
critical concern for smartphone users.

Existing studies show that many Android applications are
not energy efficient due to two major reasons [54]. First, the
Android framework exposes hardware operation APIs (e.g.,
APIs for controlling screen brightness) to developers.
Although these APIs provide flexibility, developers have to be
responsible for using them cautiously because hardware mis-
use could easily lead to unexpectedly large energy waste [56].
Second, Android applications are mostly developed by small
teams without dedicated quality assurance efforts. Their devel-
opers rarely exercise due diligence in assuring energy savings.

e Y. Liuand S.C. Cheung are with the Department of Computer Science and
Engineering, The Hong Kong University of Science and Technology, Clear
Water Bay, Kowloon, Hong Kong. E-mail: {andrewust, scc}@cse.ust.hk.

o C. Xu and |. Lii are with the State Key Laboratory for Novel Software
Technology and Department of Computer Science and Technology, Nanj-
ing University, 163 Xianlin Avenue, Nanjing, China.

E-mail: {changxu, lj)@nju.edu.cn.

Manuscript received 30 May 2013; revised 12 Apr. 2014; accepted 6 May
2014. Date of publication 13 May 2014; date of current version 18 Sept. 2014.
Recommended for acceptance by G.P. Picco.

For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/TSE.2014.2323982

Locating energy problems in Android applications is dif-
ficult. After studying 66 real bug reports concerning energy
problems, we found that many of these problems are inter-
mittent and only manifest themselves at certain application
states (details are given later in Section 3). Reproducing
these energy problems is labor-intensive. Developers have
to extensively test their applications on different devices
and perform detailed energy profiling. To figure out the
root causes of energy problems, they have to instrument
their programs with additional code to log execution traces
for diagnosis. Such a process is typically time-consuming.
This may explain why some notorious energy problems
have failed to be fixed in a timely fashion [15], [40], [47].

In this work, we set out to mitigate this difficulty by auto-
mating the energy problem diagnosis process. A key
research challenge for automation is the lack of a decidable
criterion, which allows mechanical judgment of energy inef-
ficiency problems. As such, we started by conducting a
large-scale empirical study to understand how energy prob-
lems have occurred in real-world smartphone applications.
We investigated 173 open-source and 229 commercial
Android applications. By examining their bug reports, com-
mit logs, bug-fixing patches, patch reviews and release logs,
we made an interesting observation: Although the root causes
of energy problems can vary with different applications, many of
them (over 60 percent) are closely related to two types of problem-
atic coding phenomena:

Missing sensor or wake lock deactivation. To use a smart-
phone sensor, an application needs to register a listener
with the Android OS. The listener should be unregistered
when the concerned sensor is no longer being used. Simi-
larly, to make a phone stay awake for computation, an
application has to acquire a wake lock from the Android

0098-5589 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

912 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.40, NO.9, SEPTEMBER 2014

OS. The acquired wake lock should also be released as soon
as the computation completes. Forgetting to unregister sen-
sor listeners or release wake locks could quickly deplete a
fully charged phone battery [5], [8].

Sensory data underutilization. Smartphone sensors probe
their environments and collect sensory data. These data are
obtained at high energy cost and therefore should be utilized
effectively by applications. Poor sensory data utilization can
also result in energy waste. For example, Osmdroid, a popu-
lar navigation application, may continually collect GPS data
simply to render an invisible map [51]. This problem occurs
occasionally at certain application states. Battery energy is
thus consumed, but collected GPS data fail to produce any
observable user benefits.

With these findings, we propose an approach to automati-
cally diagnosing such energy problems in Android applica-
tions. Our approach explores an Android application’s state
space by systematically executing the application using Java
PathFinder (JPF), a widely-used model checker for Java pro-
grams [67]. It analyzes how sensory data are utilized at each
explored state, as well as monitoring whether sensors/wake
locks are properly used and unregistered /released. We have
implemented this approach as an 18 KLOC extension to JPF.
The resulting tool is named GreenDroid. As we will show in
our later evaluation, GreenDroid is able to analyze the utili-
zation of location data for the aforementioned Osmdroid
application over its 120K states within 3 minutes, and suc-
cessfully locate our discussed energy problem. To realize
such efficient and effective analysis, we need to address two
research issues and two major technical issues as follows.

Research issues. While existing techniques can be adapted
to monitor sensor and wake lock operations to detect their
missing deactivation, how to effectively identify energy
problems arising from ineffective uses of sensory data is an
outstanding challenge, which requires addressing two
research issues. First, sensory data, once received by an
application, would be transformed into various forms and
used by different application components. Identifying pro-
gram data that depend on these sensory data typically
requires instrumentation of additional code to the original
programs. Manual instrumentation is undesirable because it
is labor-intensive and error-prone. Second, even if a program
could be carefully instrumented, there is still no well-defined
metric for judging ineffective utilization of sensory data
automatically. To address these research issues, we propose
to monitor an application’s execution and perform dynamic
data flow analysis at a bytecode instruction level. This allows
sensory data usage to be continuously tracked without any
need for instrumenting the concerned programs. We also
propose a state-sensitive metric to enable automated analysis
of sensory data utilization and identify those application
states whose sensory data have been underutilized.

Technical issues. JPF was originally designed for analyzing
conventional Java programs with explicit control flows [67]. It
executes the bytecode of a target Java program in its virtual
machine. However, Android applications are event-driven
and depend greatly on user interactions. Their program code
comprises many loosely coupled event handlers, among
which no explicit control flow is specified. At runtime, these
event handlers are called by the Android framework, which
builds on hundreds of native library classes. As such, applying

JPF to analyze Android applications requires: (1) generating
valid user interaction events, and (2) correctly scheduling
event handlers. To address the first technical issue, we pro-
pose to analyze an Android application’s GUI layout configu-
ration files, and systematically enumerate all possible user
interaction event sequences with a bounded length at runtime.
We show that such a bounded length does not impair the
effectiveness of our analysis, but instead helps quickly explore
different application states and identify energy problems. To
address the second technical issue, we present an application
execution model (AEM) derived from Android specifications.
This model captures application-generic temporal rules that
specify calling relationships between event handlers. With
this model, we are able to ensure an Android application to be
exercised with correct control flows, rather than being ran-
domly scheduled on its event handlers. As we will show in
our later evaluation, the latter brings almost no benefit to the
identification of energy problems in Android applications.

In summary, we make the following contributions in this

paper:

e We empirically study real energy problems from 402
Android applications. This study identifies two
major types of coding phenomena that commonly
cause energy problems. We make our empirical
study data public for research purposes [31].

e We propose a state-based approach for diagnosing
energy problems arising from sensory data underuti-
lization in Android applications. The approach sys-
tematically explores an application’s state space for
such diagnosis purpose.

e We present our ideas for extending JPF to analyze
general Android applications. The analysis is based
on a derived application execution model, which can
also support other Android application analysis tasks.

e We implement our approach as a tool, GreenDroid,
and evaluate it using 13 real-world popular Android
applications. GreenDroid effectively detected 12 real
energy problems that had been reported, and further
found two new energy problems that were later con-
firmed by developers. We were also invited by
developers to make a patch for one of the two new
problems and the patch was accepted. These evalua-
tion results confirm GreenDroid’s effectiveness and
practical usefulness.

In a preliminary version of this work [42], we demon-
strated the usefulness of sensory data utilization analysis in
helping developers locate energy problems in Android
applications. In this paper, we significantly extend its earlier
version in five aspects: (1) adding a comprehensive empiri-
cal study of real energy problems collected from 402
Android applications (Section 3); (2) formalizing the meth-
odology of systematically exploring an Android applica-
tion’s state space for analyzing sensory data utilization
(Section 4.2); (3) enhancing our sensory data utilization
analysis with an outcome-based strategy, thus eliminating
human effort previously required for setting algorithm
parameters (Sections 4.4.3 and 6.1); (4) enhancing our evalu-
ation with more real-world application subjects, research
questions and result analyses (Section 5); (5) extending dis-
cussions of related research (Section 6).

LIU ET AL.: GREENDROID: AUTOMATED DIAGNOSIS OF ENERGY INEFFICIENCY FOR SMARTPHONE APPLICATIONS 913

Activity launched

Activity in
foreground
Activity leaves foreground

Activity in background (invisible)

onRestart()

User navigates to

the activity
-

User returns
App process to the activity

killed

User navigates
to the activity

Apps with higher
priority need memory

onStop()

onDestroy()

Activity is finishing or being destroyed

Fig. 1. An activity’s lifecycle diagram.

The rest of this paper is organized as follows. Section 2
introduces the basics of Android applications. Section 3
presents our empirical study of real energy problems found
in Android applications. Section 4 elaborates on our energy
efficiency diagnosis approach. Section 5 introduces our tool
implementation and evaluates it with real application sub-
jects. Section 6 discusses related work, and finally Section 7
concludes this paper.

2 BACKGROUND

We select the Android platform for our study because it is
currently one of the most widely adopted smartphone plat-
forms and it is open for research [3]. Applications running
on Android are primarily written in Java programming lan-
guage. An Android application is first compiled to Java vir-
tual machine compatible .class files that contain Java
bytecode instructions. These .class files are then converted
to Dalvik virtual machine executable .dex files that contain
Dalvik bytecode instructions. Finally, the .dex files are
encapsulated into an Android application package file (i.e.,
an .apk file) for distribution and installation. For ease of pre-
sentation, we in the following may simply refer to “Android
application” by “application” when there is no ambiguity.
An Android application typically comprises four kinds of
components as follows [3]:

Activities. Activities are the only components that allow
graphical user interfaces (GUIs). An application may use
multiple activities to provide cohesive user experiences.
The GUI layout of each activity component is specified in
the activity’s layout configuration file.

Services. Services are components that run at background
for conducting long-running tasks like sensor data reading.
Activities can start and interact with services.

Broadcast receivers. Broadcast receivers define how an
application responds to system-wide broadcasted messages.
It can be statically registered in an application’s configura-
tion file (i.e., the AndroidManifest.xml file associated with
each application), or dynamically registered at runtime by
calling certain Android library APIs.

Content providers. Content providers manage shared
application data, and provide an interface for other compo-
nents or applications to query or modify these data.

Each application component is required to follow a pre-
scribed lifecycle that defines how this component is cre-
ated, used, and destroyed. Fig. 1 shows an activity’s
lifecycle [2]. It starts with a call to onCreate() handler, and
ends with a call to onDestroy() handler. An activity’s fore-
ground lifetime starts after a call to onResume() handler,
and lasts until onPause() handler is called, when another
activity comes to foreground. An activity can interact with
its users only when it is at foreground. When it goes to
background and becomes invisible, its onStop() handler
would be called. When the users navigate back to a paused
or stopped activity, that activity’s onResume() or onRestart()
handler would be called, and the activity would come to
foreground again. In exceptional cases, a paused or stopped
activity may be killed for releasing memory to other applica-
tions with higher priorities.

3 EMPIRICAL STUDY

In this section, we report our findings from an archival study
of real energy problems in Android applications. For ease of
presentation, we may use “energy problems” and “energy
bugs” interchangeably in subsequent discussions. Our study
aims to answer the following three research questions:

e RQ1 (Problem magnitude): Are energy problems in
Android applications serious? Do the problems have
a severe impact on smartphone users?

e RQ?2 (Diagnosis and fixing efforts): Are energy prob-
lems relatively more difficult to diagnose and fix
than non-energy problems? What information do
developers need in the energy problem diagnosis
and fixing process?

e RQ3 (Common causes and patterns): What are common
causes of energy problems? What patterns can we
distill from them to enable automated diagnosis of
these problems?

Subject selection. To study these research questions, we
first selected a set of commercial Android applications that
suffered from energy problems. We randomly collected 608
candidates from Google Play store [28] using a web crawl-
ing tool [14]. These applications have release logs containing
at least one of the following keywords: battery, energy, effi-
ciency, consumption, power, and drain. We then performed a
manual examination to ensure that these applications
indeed had energy problems in the past and developers
have fixed these problems in these applications’ latest ver-
sions (note that we did not have access to the earlier ver-
sions containing energy problems). This left us with 229
commercial applications. By studying available information
such as category, downloads and user comments, we can
answer our research question RQ1. However, these com-
mercial applications alone are not adequate enough for us
to study the remaining two research questions. This is
because to answer RQ2-3, we need to know all details about
how developers fix energy problems (e.g., code revisions,
the linkage between these revisions and their corresponding
bug reports). As such, we also need to study real energy
problems with source code available, ie., from open-
source subjects. To find interesting open-source subjects, we
first randomly selected 250 candidates from three primary

914

TABLE 1
Project Statistics of Our Studied Android Applications

12}
0
o
f
°
& |
oo
s (& o o
B
TIL & «
i
)
>
e
@)
® o o
A S
N |— —
70 I I
2 2 ¢
2 S S T
2 s o o
=
p—
g s =
o goo
T S O
X |- = =
C:«!z
S|= |- Ll
R
= v B® B
[~
oy
<«
Moo
dmmm
Elz 2
= = =
&
oN
=l &
v | -~
-~
|y o
g8 E
o
© g
L
w0
&
7]
2| & . B
=@ 2
sl |d =2 @
sy [N ~ ©
=58 |l o (@]
c| B — QO
> ©
s | =]
i o
S <
.- '_O
Ei =
S |
I PR g
Q"IMH <
Qe N~
<|= |0 © L
Qo (U
=
<
o
=]
=) N
Jlz 2
o X~
)
Rl S
<) i
Qo

Application type

34 open-source applications with

reported energy problems

139 open-source applications
without reported energy problems

229 commercial applications with

energy problems

11K = 1,000 & 1M = 1,000,000; *: According to Google’s classification, there are a total of 32 different categories of Android applications [28].

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.40, NO.9, SEPTEMBER 2014

TABLE 2
Top Five Categories of Inefficient Commercial Subjects

Category Number of inefficient
commercial applications
Personalization 59 (25.8%)
Tools 34 (14.8%)
Brain & Puzzle 15 (6.6%)
Arcade & Action 13 (5.7%)
Travel & Local 11 (4.8%)

open-source software hosting platforms: Google Code [26],
GitHub [27] and SourceForge [63]. Since we are interested
in applications with a certain level of development matu-
rity, we refined our selection by retaining those applications
that: (1) have at least 1,000 downloads (popularity), (2) have
a public bug tracking system (traceability), and (3) have
multiple versions (maintainability). These three constraints
left us with 173 open-source subjects. We then manually
inspected their code revisions, bug reports, and debugging
logs. We found 34 of these 173 subjects have reported or
fixed energy problems (details are given in Section 3.1).

Table 1 lists project statistics for all 402 (173 + 229) sub-
jects studied. We observe that these subjects are all popularly
downloaded, and cover different application categories. We
then performed an in-depth examination of these subjects to
answer our research questions. The whole study involved
one undergraduate student and four postgraduate students
with a manual effort of about 35 person-weeks. We report
our findings below.

3.1 Problem Magnitude

Our selected 173 open-source Android applications contain
hundreds of bug reports and code revisions. From them, we
identified a total of 66 bug reports on energy problems,
which cover 34 applications. Among these 66 bug reports,
41 have been confirmed by developers. Most (32/41) con-
firmed bugs are considered to be serious bugs with a sever-
ity level ranging from medium to critical. Besides that, we
found 30 of these confirmed bugs have been fixed by corre-
sponding code revisions, and developers have verified that
these code revisions have indeed solved corresponding
energy problems.

On the other hand, regarding the 229 commercial
Android applications that suffered from energy problems,
we studied their user reviews and obtained three findings.
First, we found from the reviews that hundreds of users
complained that these applications drained their smart-
phone batteries too quickly and caused great inconvenience
for them. Second, as shown in Table 1, these energy prob-
lems cover 27 different application categories, which are
quite broad as compared to the total number of 32 catego-
ries. This shows that energy problems are common to differ-
ent types of applications. Table 2 lists the top five categories
for illustration. Third, these 229 commercial applications
have received more than 176 million downloads in total.
This number is significant, and shows that their energy
problems have potentially affected a vast number of users.

Based on these findings, we derive our answer to
research question RQ1: Energy problems are serious. They

LIU ET AL.: GREENDROID: AUTOMATED DIAGNOSIS OF ENERGY INEFFICIENCY FOR SMARTPHONE APPLICATIONS 915

exist in many types of Android applications and affect
many users.

3.2 Diagnosis and Fixing Efforts

To understand how difficult the diagnosis and fixing of
energy problems can be, we studied 25 out of the 30 fixed
energy bugs in open-source applications. Five fixed bugs
were ignored in our study because we failed to recover
the links between their bug reports and corresponding
code revisions." We report our findings in Table 3. For
each fixed energy bug, Table 3 reports: (1) bug ID, (2)
severity level, (3) revision in which the bug was fixed, (4)
program size of the inefficient revision, (5) duration in
which the bug report is open, (6) number of revisions for
fixing the bug, and (7) number of classes and methods
that were modified for fixing the bug. We also studied
the 11 (=41 — 30) confirmed but not fixed energy prob-
lems in open-source applications since four of the eight
concerned applications are still actively maintained. We
studied how long their bug reports stayed open as well
as the duration of their related discussions. From these
studies, we made the following three observations.

First, 24 out of the 25 energy problems listed in Table 3
are serious problems whose severity ranges from medium
to critical. Developers take, on average, 54 workdays to
diagnose and fix them. For comparison, we checked the
remaining 1,967 non-energy bugs of similar severity (.e.,
medium to critical) reported on these applications before
March 2013. We found that these non-energy bugs were
fixed, on average, within 43 workdays. Fig. 2 gives a
detailed box plot of open duration for the energy and non-
energy bugs we studied. For example, the median open
duration for non-energy bugs is five days while the median
open duration for energy bugs is 11 days. Such comparison
results suggest that energy problems are likely to take a lon-
ger time to fix. We further conducted a Mann-Whitney U-
test [44] of the following two hypotheses:

e Null hypothesis H,. Fixing energy problems does not
take a significantly longer time than fixing non-
energy problems.

o Alternative hypothesis Hj. Fixing energy problems
takes a significantly longer time than fixing non-
energy problems.

Our test results show that the p-value is 0.0327 (< 0.05),
indicating that the null hypothesis Hj, can be rejected with a
confidence level of over 0.95. Therefore, we can conclude
that energy problems take a relatively longer time to fix.

Second, for the 11 confirmed but not fixed energy prob-
lems, we found that developers closed five of them because
they failed to reproduce corresponding problems and they
did not receive user complaints after some seemingly irrele-
vant code revisions. For three of the remaining six problems,
we found that developers are still working on fixing them
without success [15], [40], [47]. Their three associated bug
reports have been remained open for more than two years.
For example, CSipSimple is a popular application for video

1. Our manual examination of commit logs around bug fixing dates
also failed to find bug-fixing code revisions.

calls over the Internet. Developers have discussed its energy
problem (issue 81) tens of times, trying to find the root cause,
but failed to make any satisfactory progress so far. Due to
this, some disappointed users uninstalled CSipSimple, as
indicated from their comments on the bug report [15].

Third, as shown in Table 3, in 21 out of 25 cases, develop-
ers fixed the reported energy problems in one or two revi-
sions. These fixes require non-trivial effort. For example, 16
out of these 25 fixes require modifying more than five meth-
ods. On average, developers fixed these 25 problems by
modifying 2.6 classes and 7.8 methods.

We also looked into discussions on fixed energy bugs.
We found that many of these bugs are intermittent. Devel-
opers generally consider these intermittent bugs as complex
issues. In order to reproduce them, developers have to
know details about how users interact with their applica-
tions before these problems occur. Developers often have to
analyze debugging information logged at runtime in order
to identify the root causes of these problems. For example,
to facilitate energy waste diagnosis, K9Mail developers
gave special instructions on how users could provide useful
debugging logs [39]. This may become additional overhead
for smartphone users when they report energy problems.

Based on these findings, we derive our answer to
research question RQ2: It is relatively more difficult to diag-
nose and fix energy problems, as compared to non-energy
problems; user interaction contexts and debugging logs can
help problem diagnosis, but they require additional user-
reporting efforts, which may not be desirable.

3.3 Common Patterns of Energy Problems

Energy inefficiency is a non-functional issue whose causes
can be complex and application-specific. For example, CSip-
Simple issue 1674 [17] happened because the application
monitored too many broadcasted messages, and its issue
744 [16] was caused by unnecessary talking with a verbose
server. Nevertheless, by studying the bug-fixing code and
bug report comments of the earlier mentioned 25 fixed
energy problems, we observe that 16 of them (64.0 percent)
are due to misuse of sensors or wake locks. These problems
are marked with “*” in Table 3.

To confirm that misuse of sensors or wake locks can
indeed lead to energy problems in Android applications,
we analyzed the API usage of all 402 applications. On the
Android platform, applications need to call certain APIs to
invoke system functionalities. For example, an application
needs to call the PowerManager.WakeLock.acquire() API
to acquire a wake lock from Android OS so as to keep a
device awake for computation. As such, API usage analysis
can disclose which Android features are being used by an
application. To analyze API usage of our 173 open-source
applications, we compiled their source code to obtain Java
bytecode. For commercial applications, we handled them
differently. We first downloaded their .apk files from Goo-
gle Play store using an open-source tool Real APKLeecher
[60].> We then transformed their Dalvik bytecode (con-
tained in the .apk files) to Java bytecode using dex2jar [19],

2. The original Real APKLeecher is GUlI-based. We modified it to
support command line usage for study automation. The modified ver-
sion can be obtained at: http://sccpu2.cse.ust.hk/greendroid.

SEPTEMBER 2014

NO. 9,

VOL. 40,

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING,

916

*(SU01S102.4 PO SONULIL02) PauivuIvl Ajaajov [113S a4 IPIYVYST) PUv yu1§a19qug “Aayovi [SJD-UadQ ‘1090 [puyy ‘uo1jpoo] 2210, 215005 jdaoxa suoyvonddy 11y :9

19 asn 0§ paydIms 31 433fv Aiojisodal NAS [vu18140 s31 Ss200v 0F pajivf am asnwoaq v/qE0fvfpf uoisiaal 1o pasvq si IWINEY Jo az1s AT :G
*s80] 11100 Surhipnis Aq punof aiv s8nq Surprodsa.iod ayy puv *, umouyun,, suvaul /N, 10quiAs a4 0000001 = WI < 000’ = XI €

QUL U0 PajsOY d4p IR A SUOWIWOD) 0F 093:0 to.4f suorjparjddyy :g *apoD) 318005 uo pasoy aiv aydwaigdig)) oy Yy proiq o suoyvoyddy :1

6 4 L V/N 98101 jerasee V/N V/N M08 ~ 0L oIPTURYS)
I L L V/N 968 ST1IOVPPLY V/N V/N MG ~ 1 [MJEM-OVMO
I L L V/N 8141 10J9°29I6 V/N V/N G ~ 1 o TUISOIqed
6 4 I 91 v1s'ee TLEPOD [eonty 601 NS ~ N1 098
L L L 9 996'%S 98€1 [eonLD £91 AL ~ 31008 odunsdis)
S 14 L 4 1GET1 8¢l WNIPIA +£C INT ~ 1009 proIpxooqyq
8 L S 6 V416 PIyprajeeee Mmog 8¢l 21005 ~ 001 GPrIISID-udO
6 € I [4 LvV'y e6peeg/a9ice [eonty 0z 009 ~ X001 GMRIISID-uedO
[4 L L V/N €L $99ChSy V/N +V/N NG~ INT TeIN6
4 € 4 9 €eLTL L/l WNIpaA $691/¢¥91 NG~ INT TeIN6
L L L 0c €TLTL gecl WnIpaj L€01 NG~ INT [TeIN6X
8 9 € 4 €TLTL L1€ WNIpaA ¥98 NS ~ N1 TeIN6
6 4 I 101 £TLTUL €€6 WINIpaj 1749 NG ~ AL TeIN6
[14 9 L 0¥¢ 8068 JER96I1ITeY WNIpaA 6 08 ~ 0L gIPMIPpuy
9 L L € 7899 87ecal01I8P9 WnIpaj Wi 0§ ~ 01 proiq yseyoan
Y4 L L 6 SIL1L 0'8°0 UOISIOA WNIPpaA 61 08 ~ 0L prorpsueiy,
4! 9 I ge L08Y €Ce [esntn .99/08 0S ~ 01 wrrreurZ
S L L Ir 9¢9'8 q1e WNIpajA 9L 08 ~ 0L prorpuwso
14 L L 1544 ageel 162 WnIpaj €9 05 ~ 01 prorpusQ
14 4 L 0¢ 0ce’Le 2¢8096¢92q91 WNIpaA 98 08 ~ 0L PI[EM UI0DII]
LE 14 01 0ce €9y 0c WINTPajA iy 0S5 ~ 01 ,UONEI0] IOA 3[3009)
I L L L 6791 941 [eonty 9L 08 ~ 01 "AeN Hodsuer], drqn eyog
L € 4 61 4! 941 WNIpaj 8¢ 0§ ~ 01 "aeN Modsuer] drqny eyos
S L L L ve'e 69 WNIpajA «£€ S ~ L 1016007 APARY
81 ¥ € L 901°81 L0t WINTPaA LT A0L ~ IS (Jdvproig
spoyjaux sassed X[y 0} (sfeq) uonjenp| (OOT) 2z18 ‘OU UOISIAIX
paSueypd jo # paSueyd jo # sSuoIsiAdIjo# uadoanss] |UOISIASI JUIIDIGFIU] paxiy [9A3] L3113A9G ‘0Uu JNSS|
sj10332 Surxy pue sisouderq UOTJeULIOJUT INSS] speojumoq swreu uogedriddy

suoneolddy ploipuy 82inog-uadQ ul sbng ABisu3 Joy suoy3 Buixi4 pue sisoubeiq

€371avL

LIU ET AL.: GREENDROID: AUTOMATED DIAGNOSIS OF ENERGY INEFFICIENCY FOR SMARTPHONE APPLICATIONS 917

— 727
(=3 1
% T |
1
! — 330
S 4 ! |
Q H :
—_ |
2 8 - : !
< | |
) - |
= @ i ,
£ 39 35
-
£ o |
=
<
§ = 1
g 6
o v 5 |
= I
8 |
o A i
i
— - 1 —_ 1
T T
Non-energy bugs Energy bugs
(mean = 43.7) (mean = 54.3)

Fig. 2. Open duration of energy and non-energy bugs.

a popular Dalvik bytecode retargeting tool [49]. Finally, we
scanned the Java bytecode of each application to analyze
their API usage. From the analysis, we obtained two major
findings. First, 46.7 percent (14/30) open-source applica-
tions that use sensors and 68.0 percent (17/25) open-source
applications that acquire wake locks were confirmed to
have energy problems. Second, 51.1 percent (117/229)
energy inefficient commercial applications use sensors or
wake lock. These findings suggest that misuse of sensors
or wake locks could be closely associated with energy
problems in Android applications.

Based on these findings, we further studied the discus-
sions on fixed energy problems and their bug-fixing
patches. We then observed two types of coding phenomena
concerning sensor or wake lock misuse that can lead to seri-
ous energy waste in Android applications:

Pattern 1: Missing sensor or wake lock deactivation. To use
a sensor, an application needs to register a listener with
Android OS, and specify a sensing rate [5]. A listener
defines how an application reacts to sensor value or status
changes. When a sensor is no longer needed, its listener
should be unregistered in time. As stated in Android doc-
umentation, forgetting to unregister sensor listeners can
lead to unnecessary and wasted sensing operations [5].
Similarly, to keep a smartphone awake for computation,
an application needs to acquire a wake lock from Android
OS and specify a wake level. For example, a full wake lock
can keep a phone’s CPU awake and its screen on at full
brightness. The acquired wake lock should be released as
soon as the computation completes. Forgetting to release
wake locks in time can quickly drain a phone’s battery [8].
For example, Fig. 3 gives a developer’s comment on an
energy problem in AndTweet, a Twitter client [9]. AndT-
weet starts a background service AndTweetService right
upon receiving a broadcast message indicating that
Android OS has finished booting. When AndTweetService
starts, it acquires a partial wake lock, which is not released
until AndTweetService is destroyed. However, due to a
design defect, AndTweetService keeps running at back-
ground, unless it encounters an external storage exception
(e.g., SD card being un-mounted) or is killed explicitly by
users, while such cases are rare. As a result, AndTweet

AndTweet Issue 29: “Issue 29 is due to the design m
AndTweetService: It starts right after boot and acquires a partial wake
lock. According to Android documentation, the acquired wake lock
ensures that the CPU is always running. The screen might not be on.
This is why few users had noticed the issue before.”

Geohash Droid Issue 24:
GPS updates to one every thirty seconds if nothing besides the
notification bar is waiting for updates.”

“GeohashService should slow down its

Fig. 3. Developer comments on energy problems.

can waste a surprisingly large amount of battery energy
due to this missing wake lock deactivation problem.’

Pattern 2: Sensory data underutilization. Sensory data are
acquired at the cost of battery energy. These data should be
effectively used by applications to produce perceptible ben-
efits to smartphone users. However, when an application’s
program logic becomes complex, sensory data may be
“underutilized” in certain executions. In such executions,
the energy cost for acquiring sensory data may outweigh
the actual usages of these data. We call this phenomenon
“sensory data underutilization”. We observed that sensory
data underutilization often suggests design or implementa-
tion defects that can cause energy waste. For example,
Fig. 4a gives the concerned code snippet of a location data
underutilization problem in an entertainment application
Geohash Droid. This application is designed for users who
like adventures. It randomly selects a location for users and
navigates them there using GPS sensors. As the code in
Fig. 4a shows, Geohash Droid maintains a long running
GeohashService at background for location sensing. Geo-
hashService registers a location listener with Android OS
when it starts (lines 7-16), and unregisters the listener when
it finishes (lines 22-25). Once it receives location updates, it
refreshes the smartphone’s notification bar (line 11), which
provides users with quick access to their current locations.
After that, it notifies remote listeners (e.g., the navigation
map) to use updated location data (lines 12, 27-36). Thus,
location data are used to produce perceptible benefits to
users when remote listeners are actively listening to such
location updates. However, there are chances when no
remote listeners are alive (e.g., the navigation map will not
be alive when it loses user focus). When this happens, Geo-
hash Droid would keep receiving the phone’s GPS coordi-
nates, simply for updating its notification bar [25]. Such
updates do not reflect effective use of newly captured GPS
coordinates, while the battery’s energy is continuously con-
sumed. Geohash Droid developers received a lot of user
complaints for such battery drain. After intensive discus-
sions, developers identified the cause of this problem and
chose to reduce the GPS sensing rate when there is no active
remote listener for such location updates. Fig. 3 shows their
comment after fixing this energy problem.

Another interesting example is the Osmdroid problem
mentioned in Section 1. Fig. 4b gives a simplified version

3. For more details, readers can refer to the following classes in
package com.xorcode.andtweet of application AndTweet-0.2.4: AndT-
weetService, AndTweetServiceManager, TimelineActivity and Tweet-
ListActivity [9].

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.40, NO.9, SEPTEMBER 2014

21. //more code from GeohashService

22. public void onDestroy() {

23. //GPS listener unregistration

24. 1m.removeUpdates(gpsListener);

25. }

26. //notify each alive remote listener for loc change
27. public void notifyRemoteListeners(Location loc){
28. final int N = mListeners.size();

29. for(int 1 = @; 1 < N; i++) {

30. RemoteListener listener = mListeners.get(i);
31. if(listener.isAlive()){

32. //remote listeners consume location data
33. listener.locationUpdate(loc);

34. }

35. }

36. }

37. }

(a) Example from the Geohash Droid application (Issue 24)

918

1. public class GeohashService extends Service {

2. private ArraylList<RemoteListener> mListeners;

3. private LocationManager 1m;

4. private LocationListener gpsListener;

5. public void onStart(Intent intent, int StartId){
6. mListeners = new ArraylList<RemotelListener>();
7. //get a reference to system location manager

8. 1m = getSystemService(LOCATION_SERVICE);

9. gpsListener = new LocationListener() {
10. public void onlLocationChanged(Location loc) {
11. updateNotificationBar(loc);
12. notifyRemoteListeners(loc);
13. }
14. }s
15. //GPS listener registration
16. 1m.requestLocationUpdates(GPS, @, @, gpsListener);
17. }

1. public class MapActivity extends Activity {

2. private Intent gpsIntent;

3. private BroadcastReceiver myReceiver;

4. public void onCreate(){

5. gpsIntent = new Intent(GPSService.class);

6. startService(gpsIntent); //start GPSService

7. myReceiver = new BroadcastReceiver() {

8. public void onReceive(Intent intent) {

9. LocData loc = intent.getExtra();
10. updateMap(loc);
11. if(trackingModeOn) persistToDatabase(loc);
12. }
13.
14. //register receiver for handling location change messages
15. IntentFilter filter = new IntentFilter(“loc_change”);
16. registerReceiver(myReceiver, filter);
17. }
18. public void onDestroy() {
19. //stop GPSService and unregister broadcast receiver
20. stopService(gpsIntent);
21. unregisterReceiver(myReceiver);
22. }
23. }

31. public class GPSService extends Service {

32. private LocationManager 1m;

33. private LocationListener gpsListener;

34, public void onCreate(){

35. //get a reference to system location manager
36. 1m = getSystemService(LOCATION_SERVICE);

37. gpsListener = new LocationListener() {

38. public void onLocationChanged(Location loc) {
39. LocData formattedLoc = processLocation(loc);
40. //create and send a location change message
41. Intent intent = new Intent(“loc_change”);
42. intent.putExtra(“data”, formattedLoc);

43, sendBroadcast(intent);

44. }

45. };

46. //GPS listener registration

47. Im.requestLocationUpdates(GPS, @, @, gpsListener);
48. }

49. public void onDestroy() {

50. //GPS listener unregistration

51. 1m.removeUpdates(gpsListener);

52. }

53. }

(b) Example from the Osmdroid application (Issue 53)

Fig. 4. Motivating examples for sensory data underutilization energy problems.

of the concerned code. The application has three compo-
nents: (1) MapActivity for displaying a map to its users,
(2) GPSService for location sensing and data processing
in background, and (3) a broadcast receiver for handling
location change messages (lines 7-13). When MapActivity
is launched, it starts GPSService (lines 5-6), and registers
its broadcast receiver (lines 15-16). GPSService then regis-
ters a location listener with the Android OS when it starts
(lines 36-47). When the application’s users change their
locations (e.g., during a walk), GPSService would receive
and process new location data (line 39), and broadcast a
message with the processed data (lines 41-43). The broad-
cast receiver would then use the new location data to
refresh a map (line 10). If the users have enabled location
tracking, these location data would also be stored to a
database (line 11). If the Android OS plans to destroy
MapActivity (lines 18-22), GPSService would be stopped
(line 20), and both the location listener and broadcast
receiver would be unregistered (lines 21, 51). These all
work seemingly smoothly. However, if Osmdroid’s users
switch from MapActivity to any other activity, MapActiv-
ity would be put to background (not destroyed), but
GPSService would still keep running for location sensing.
If the location tracking functionality is not enabled, all
collected location data would be used to refresh an invisi-
ble map. Then, a huge amount of energy would be
wasted [51]. To fix this problem, developers chose to

disable the GPS sensing conditionally (e.g., according to
whether the location tracking mode is enabled or not),
when MapActivity goes to background.

From the preceding two examples of sensory data
underutilization, we make three observations. First, locat-
ing sensory data underutilization problems can provide
desirable opportunities for optimizing an application’s
energy consumption. When such problems occur, the
concerned application can deactivate related sensors or
tune down their sensing rates to avoid unnecessary
energy cost. Second, to detect such sensory data underuti-
lization problems, one should track how sensory data are
transformed into different forms of program data and
consumed in different ways. Third, sensory data under-
utilization problems may occur only at certain application
states. For example, Geohash Droid wastes energy only
when there is no active remote listener waiting for loca-
tion updates. In Osmdroid, if its user has enabled the
location tracking functionality before MapActivity goes to
background, even if it is consuming non-trivial energy
due to continuous GPS sensing, we cannot simply con-
sider this as energy waste. This is because the collected
location data could be stored for future uses, producing
perceptible user benefits afterwards. These three observa-
tions motivate us to consider a state-based approach to
analyzing sensory data utilization for Android applica-
tions. Such analysis can help developers judge whether

LIU ET AL.: GREENDROID: AUTOMATED DIAGNOSIS OF ENERGY INEFFICIENCY FOR SMARTPHONE APPLICATIONS 919

Application .
Under Analysis

1
=N ' Runtime Sensory Data i Analysis
L‘ :> ! Controller Utilization Analyzer : Report
*.class ! 1
— ! 1

! 1
[|(|:> ! [Java PathFinder] 1« Application state

\). Energy inefficiency
*xml N e =

Fig. 5. Approach overview.

their applications are using sensory data in a cost-effec-
tive way and provide optimization opportunities for
energy efficiency if necessary.

3.4 Threats to Validity

The validity of our empirical study may be subject to some
threats. One is the representativeness of our selected
Android applications. To minimize this threat and avoid
subject selection bias, we selected 173 open-source and 229
commercial Android applications spanning 27 different cat-
egories. These applications have been popularly down-
loaded and can be good representatives of real-world
Android applications. Another potential threat is the man-
ual inspection of our selected subjects. We understand that
this manual process may be error-prone. To reduce this
threat, we have all our data and findings independently
inspected by at least two researchers. We cross-validated
their inspection results for consistency.

4 ENERGY EFFICIENCY DIAGNOSIS

In this section, we elaborate on our energy efficiency diag-
nosis approach.

4.1 Overview

Our diagnosis is based on dynamic information flow anal-
ysis [35]. Fig. 5 shows its high-level abstraction. It takes as
inputs the Java bytecode and configuration files of an
Android application. The Java bytecode defines the
application’s program logic, and can be obtained by com-
piling the application’s source code or transforming its
Dalvik bytecode [49]. The configuration files specify the
application’s components, GUI layouts, and so on. The
general idea of our diagnosis approach is to execute an
Android application in JPF’s Java virtual machine, and
systematically explore its application states. During the
execution, our approach monitors all sensor registration/
un-registration and wake lock acquisition/releasing oper-
ations. It feeds mock sensory data to the application when
related sensor listeners are properly registered. It then
tracks the propagation of these sensory data as the applica-
tion executes, and analyzes how they are utilized at differ-
ent application states. At the end of the execution, our
approach compares sensory data utilization across
explored states, and reports those states where sensory
data are underutilized. It also checks which sensor listen-
ers are forgotten to be unregistered, and which wake locks
are forgotten to be released, and reports these anomalies.
The above high-level abstraction looks straightfor-
ward, but contains some challenging questions: How can
one execute an Android application and systematically
explore its states? How can one identify those executions

that involve sensory data? How can one measure and
compare sensory data utilization at application states
explored by these executions? We answer these ques-
tions in the following.

4.2 Application Execution and State Exploration

Android applications are mostly designed to interact with
smartphone users. Their executions are often triggered by
user interaction events. Typically, an Android application
starts with its main activity, and ends after all its compo-
nents are destroyed. During its execution, the application
keeps handling received user interaction events and system
events (e.g., broadcasted events) by calling their handlers
according to Android specifications. Each call to an event
handler may change the application’s state by modifying
its components’ local or global program data. As such, in
order to execute an application and explore its state space
in JPF, we need to: (1) generate user interaction events, and
(2) guide JPF to schedule corresponding event handlers.

Before going into the technical details, we first for-
mally define our problem domain and clarify our con-
cept of bounded state space exploration. We use P to
denote the Android application under diagnosis, and £
to denote the set of possible user interaction events for
this application.

Definition 1 (User interaction event sequence). A user
interaction event sequence seq = [ei, es,...,ey,], where each
e; € E is a user interaction event. Operation len(Seq) returns
the length of the sequence seq, and operation head(Seg, k)
returns a subsequence with the first k user interaction events
in seq. We denote the set of all possible user interaction event
sequences as SEQ).

The SEQ set is unbounded as users can interact with an
application in infinite ways.

Definition 2 (Application execution). An execution t of
application P is triggered by a sequence of user interaction
events seq. We denote such an execution as t = exec(P,
seq). Then the set of all possible executions T for the appli-
cation P is:

T = {exec(P,s€q) | seq € SEQ}.

Definition 3 (State and state space).4 During its execution,
application P’s state changes from sy, which is P’s initial
state, to s/ after it handles a sequence of user interaction events
seq, where len(seq) > 1. We represent the new state sl as
(s0, 5€q). Then we can define the state space explored for appli-
cation P during its execution t = exec(P,5eq) as:

Sy = {s0, head(seq, k)|1 < k < len(3eq)}.

As SEQ is unbounded, there exist an infinite number of
different executions for an application, that is, set 7" is also
unbounded. Therefore, we have to restrict total execution
times and state space exploration in our diagnosis. We then

4. We discuss state changes at an event handling level as users have
control on that. We do not consider finer-grained state changes or state
equivalence in this work.

920 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.40, NO.9, SEPTEMBER 2014

Initial state
after starting app

MainActivity

Edit account | --|-® Button A
Exit app --I- ® Button B

AccountEditActivity

Username:
Password:

e @ Button C ,

— 1 The nodes represent different application states.
-Save -Cancel - ® Button D 1
- ! Edge labels represent button click events.

Fig. 6. lllustration of event sequence generation.

define our bounded state space exploration, in which we
control the length of user interaction event sequences.

Definition 4 (Bounded state space exploration): Given a
bound value b (>1) on the length of user interaction event
sequences, our diagnosis examines the following executions for
an Android application P:

T, = {exec(P,5eq) | seq € SEQ & len(seq) < b}.

For these executions, our diagnosis explores the follow-
ing space of states:

Sb: U St~

teTy

After defining the bounded state space exploration con-
cept, we proceed to introduce our diagnosis approach. To
effectively explore an Android application’s state space, we
need to generate event sequences of user interactions and
schedule corresponding event handlers. These two technical
issues are addressed below.

Event sequence generation. Our runtime controller, as
illustrated in Fig. 5, simulates user interactions by generat-
ing corresponding event sequences. Conceptually, the gen-
eration process contains two parts: static and dynamic. In
the static part, i.e., before executing an application, we first
analyze the application’s configuration files to learn the
GUI layouts of its activity components (recall that only
activities have GUISs). Specifically, we map each GUI wid-
get (e.g., a button) of an activity component to a set of pos-
sible user actions (e.g., button clicks). This constructs a
user event set for each activity. In the dynamic part, i.e.,
when executing an application, our runtime controller
monitors the application’s execution history and current
state. When the application waits for user interactions (e.
g., after an activity’s onResume() handler is called), our
controller would generate required events and feed them
to the foreground activity for handling. This is done in an
exhaustive way by enumerating all possible events associ-
ated with each activity component. Our controller contin-
ues doing so until the length of a generated event
sequence reaches the required upper bound or the applica-
tion exits. In this way, we generate all possible event
sequences bounded by a length limit b, and explore its cor-
responding bounded state space S;. For ease of under-
standing, we provide an example to illustrate the event
sequence generation process.

The example application in Fig. 6 contains two activities:
MainActivity and AccountEditActivity. When this applica-
tion starts, MainActivity would appear first. Its users can
click the “Edit account” button to edit their account infor-
mation in another AccountEditActivity’s window (MainAc-
tivity would then be put to background). After editing,
users can save the changes by clicking the “Save” button or
discard the changes by clicking the “Cancel” button. This
also brings users back to the previous MainActivity’s win-
dow (AccountEditActivity would then be destroyed). To
exit the application, the users can click the “Exit app” button
in the MainActivity’s window. For ease of presentation,
suppose that: (1) we consider only button click events (our
tool implementation can handle other types of events, e.g.,
filling textboxes and selecting from dropdown lists), (2) the
event sequence length bound is set to four, and (3) each gen-
erated event is correctly handled (e.g., after clicking “Exit
app”, the application indeed exits).

Based on these assumptions, we consider generating
event sequences for this example application. Our control-
ler first constructs user event sets for the two activities. For
instance, the user event set for MainActivity is {click “Edit
account” button, click “Exit app” button}. At runtime,
when MainActivity waits for user interactions, our control-
ler can enumerate and generate all events in Main-
Activity’s user event set in turn. If it generates an “Edit
account” button click event, AccountEditActivity would
come to foreground. When AccountEditActivity is ready
for user interactions, our controller similarly enumerates
and generates all events in AccountEditActivity’s user
event set in turn. This event generation process continues
until the length of a generated event sequence reaches four
or the application exits (e.g., when the “Exit app” button is
clicked). The tree on the right of Fig. 6 illustrates this event
sequence generation process. The nodes on the tree repre-
sent different application states and the labels on edges
that connect the nodes represent button click events. Each
path from the root node to a leaf node corresponds to one
user interaction event sequence. For example, the path
with dashed edges represents an event sequence of length
three (the first application starting event is not counted):
starting the application, clicking “Edit account” button,
clicking “Cancel” button, and finally clicking “Exit app”
button. Other sequences can be explained similarly.

Event handler scheduling. With event sequences generated
to represent user interactions, we now consider how to
schedule event handlers properly. As mentioned earlier,
Android applications consist of a set of loosely-coupled
event handlers among which no explicit control flow is
specified. Existing analysis techniques for Android applica-
tions commonly assume that developers should specify call-
ing relationships between these event handlers [56].
However, this is not practical. Real-world Android applica-
tions typically contain hundreds of event handlers (e.g., the
application DroidAR used in our evaluation has 149 event
handlers). Manually specifying calling relationships
between these event handlers is labor-intensive and error-
prone. Therefore, in this work we do not make such an
assumption. Instead, we propose to derive an application
execution model (AEM) from Android specifications, and
leverage it to guide the runtime scheduling of event

LIU ET AL.: GREENDROID: AUTOMATED DIAGNOSIS OF ENERGY INEFFICIENCY FOR SMARTPHONE APPLICATIONS 921

TABLE 4
Example Temporal Rules

Rule 1: When should an activity’s lifecycle handler
act.onStart() be called?

Rule 2: When should a GUI widget’s click event
handler view.onClick() be called?

Rule 3: When should a dynamic message handler
rcv.onReceive() be called?

Rule 4: When should a static message handler
Receiver.onReceive() be called?

[X~! act. onCreate()], [~ ACT_FINISH_EVENT] =X act.onStart()
[(mact.onPause() S act.onResume() —view.reg(null) S view.reg(listener))],
[VIEW _CLICK _EVENT) =X listener. onClick()

[rev. unreg() S rev. reg()], [MSG_EVENT] = X rcv.onReceive()

[True], [MSG_EVENT] =X Receiver.onReceive ()

handlers. The extracted AEM model plays the role of enforc-
ing calling relationships between event handlers. Specifi-
cally, the AEM model is a collection of temporal rules that
are prescribed by the Android framework and followed by
all Android applications (i.e., such rules are application-
generic). We define the model as follows:

AEM = {R;| R; is a temporal rule of form [¥], [¢] = A}

In each rule R;, symbols ¥ and A represent two temporal
formulae expressed in linear-time temporal logic. They
make assertions about the past and future, respectively.
Symbol ¢ represents a propositional logic formula making
assertions about the present. Specifically, ¥ describes what
has happened in history during an application execution, ¢
evaluates the current situation (e.g., what system or user
event is received), and A claims what is expected. Therefore,
the whole rule expresses the meaning: If both yr and ¢ hold, A
is expected.

We give some examples of temporal rules in Table 4. For
the entire collection of 29 rules,’ readers may refer to our
technical report [41]. In these example rules, propositional
connectives like A, =, and — follow their traditional inter-
pretations, i.e., conjunction, implication, and negation. For
temporal connectives, we follow Etessami et al.’s notation
[23], which is explained in the following. Unary temporal
connective X means “next”, and its past time analogue X -1
means “previously”. Binary temporal connective S means
“since”. Specifically, a temporal formula “F; S F»,” means
that F, held at some time in the past, and since then Fj
always holds.

We give explanation for the rules in Table 4. The first rule
states that an activity’s onStart() handler is to be called after
its onCreate() handler completes as long as this activity is
not forced to finish. The second rule states that a GUI
widget’s click event handler is to be called if: (1) the widget
(e.g., a button) is clicked, (2) its enclosing activity is at fore-
ground (i.e., the activity’s onPause() handler has not been
called since the last call to its onResume() handler), and (3)
its click event listener is properly registered. The third rule
disables the call to a message event handler before its regis-
tration and after its unregistration. The last rule states that a
static message event handler is to be called upon any broad-
casted message.

5. We do not claim the completeness of the AEM model. We will
show in our later evaluation that the current version of our AEM model
already suffices for verifying many real-world Android applications.

Our AEM model, i.e., the collection of 29 temporal rules,
is converted to a decision procedure which determines the
event handlers to be called in the next step according to an
application’s execution history and its newly received
events (events are handled in turn). This event handler
scheduling is always deterministic, except when there are
multiple receivers registered (either dynamically or stati-
cally) for broadcast messages from the same source.® If this
is the case, the onReceive() handlers of those registered
receivers are to be called according to the receiver registra-
tion orders. By this means, we can exercise an Android
application in JPF’s Java virtual machine, and systematically
explore its state space.

4.3 Missing Sensor or Wake Lock Deactivation

We next discuss how to detect energy problems when
exploring an application’s state space. As mentioned ear-
lier, missing sensor or wake lock deactivation is one com-
mon cause of energy problems. This shares some similarity
with traditional resource leak problems, where a program
fails to release its acquired system resources (e.g., memory
blocks, file handles, etc.) [66]. Resource leak problems can
cause system performance degradation (e.g., slower
response), and similarly missing deactivation of sensors or
wake locks can also waste valuable battery energy. Besides,
according to Android process management policy [7], sen-
sors and wake locks are not automatically deactivated
even when the application components that activated them
are destroyed (e.g., onDestroy() handler is called). We will
give an example and details in Section 5.2.1. Based on the
preceding state exploration efforts, we can now adapt
existing resource leak detection techniques [10], [68] to
detect missing sensor or wake lock deactivation. In particu-
lar, our diagnosis monitors the execution of an Android
application and keeps checking the violation of the follow-
ing two policies:

e Sensor management policy: A sensor listener I, once
registered, should be unregistered eventually before
the application component that registered [is
destroyed.

o Wake lock management policy: A wake lock wl, once
acquired, should be released eventually before the
application component that acquired wl is destroyed.

6. Although we did not observe such cases in our experiments, reg-
istering multiple receivers for broadcast messages from the same source
is grammatically acceptable in Android applications.

922 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.40, NO.9, SEPTEMBER 2014

Note that such checking is feasible only after we have
addressed the event sequence generation and event handler
scheduling problems for Android applications.

4.4 Sensory Data Utilization Analysis

During an Android application’s execution, its collected
sensory data are transformed into different forms and con-
sumed by different application components. We need to
track these data usages for energy efficiency analysis. We
do it at the bytecode instruction level by dynamic tainting.
Our technique contains three phases: (1) tainting each col-
lected sensory datum with a unique mark; (2) propagating
taint marks as the application executes; (3) analyzing sen-
sory data utilization at different application states. We elab-
orate on the three phases in the following.

4.4.1 Preparing and Tainting Sensory Data

In the first phase, we generate mock sensory data from an
existing sensory data pool, which is controlled with differ-
ent precision levels. They are then fed to the application
under analysis after each event handler call. The object ref-
erence to each sensory datum is initialized with a unique
taint mark before the datum is fed to the application. The
taint mark will be propagated with the datum together for
later analysis.

4.4.2 Propagating Taint Marks

At runtime, an Android application’s collected sensory data
are transformed into different forms by assignment, arith-
metic, relational, and logical operations. For example, the
Osmdroid application in Fig. 4b has its loc object (line 38)
transformed to another formattedLoc object (line 39), which
further affects the intent object (line 42). Later, by message
communication, this intent object is propagated to a broad-
cast receiver and converted back to the loc object (line 9),
which may or may not affect database content, depending
on the variable trackingModeOn’s value (line 11). Such data
flows need to be tracked to propagate taint marks so as to
identify which program data depend on the collected sen-
sory data. Based on this information, one is then able to ana-
lyze sensory data utilization.

Our technique intercepts the execution of a subset of Java
bytecode instructions at runtime and propagates taint
marks in JPF’s Java virtual machine according to our taint-
ing policy.” A key advantage of such an instruction-level
taint propagation is that it does not require application-spe-
cific program instrumentation, which is often time-consum-
ing and error-prone. Table 5 gives our tainting policy,
which comprises 12 taint propagation rules. These rules
handle taint propagations along data dependencies. They
are expressed in the following form:

T(A) = T(B)UT(C).

This means that data B’s and C’s taint marks are merged
to become data A’s taint mark. Note that B and C can be

7. On real devices, an Android application runs in a register-based
Dalvik virtual machine, while JPF’s Java virtual machine is stack-based.
This difference does not affect our analysis.

optional. Each taint propagation rule in Table 5 is designed
for a set of bytecode instructions with similar semantics
(explained in the lower part of Table 5). For example, Rule 6
is for all binary calculation bytecode instructions (totally 37
instructions) such as fadd and iand. The instruction fadd
adds two floating numbers popped from the operand stack
in the current method call’s frame, and pushes the addition
result back into this operand stack. Similarly, the instruction
iand performs a bitwise “and” operation on two integers
popped from the operand stack in the current method call’s
frame, and pushes the operation result back into the stack.
For all such binary calculation bytecode instructions, our
taint propagation works as follows (Rule 6): the result (at
the top of the operand stack after the calculation, repre-
sented by stack[0] in Table 5) would be tainted with the
same marks if any operand (at the top of the operand stack
before the calculation, represented by stack’[0] and stack’[1]
in Table 5) is tainted before calculation. Other taint propaga-
tion rules can be explained similarly.

We illustrate the taint propagation process by a con-
crete example. Fig. 7 lists the code snippet from an appli-
cation that uses accelerometer data to compute and
display a phone’s current acceleration status (lines 21-27).
The application also monitors whether the phone is being
shuffled (line 3), and if yes, it would change its back-
ground to a different color and notify its user (lines 4-11).
In this example, the initial taint mark is associated with
an object reference event. The event object contains the
sensory data from a smartphone’s accelerometer. By
object field access, the local array values of the isShuffled
method get its assignment from the event object (line 21).
Since values is data dependent on the tainted object event,
the taint mark is propagated to values according to Rule 8
(for handling object field reading instructions) and Rule 5
(for handling array element writing instructions). Then,
by array element readings and local variable assignments,
this taint mark is propagated to local variables x, y, and z
(lines 22-24) according to Rule 3 (for handling array ele-
ment reading instructions) and Rule 4 (for handling local
variable assignment instructions). Next, a local variable
accelerationSquareRoot is calculated (line 26). It is tainted
according to Rule 6 (for handling binary calculation
instructions) and Rule 4 since it is data dependent on the
tainted local variables x, y and z. Finally, method
isShuffled’s return value is tainted according to a special
rule that handles control dependencies. The rule taints a
method’s return value if any of its arguments is tainted
(to be further explained shortly). Later this return value is
further assigned to local variable switchColor in method
onSensorChanged (line 3), and switchColor is also tainted
with the same mark (Rule 4). This completes the whole
taint propagation process.

In our tainting process, we mainly consider data depen-
dencies. Regarding control dependencies, we adopt a strat-
egy similar to those studied in related work [12], [62]. That
is, we taint a method’s return value if any of its arguments
is tainted (including the method’s implicit “this” argument
if applicable). This strategy/rule is based on the assump-
tion that a method’s output (i.e., return value) should
depend on its input in well-written programs. This is the
only rule concerning control dependencies in our taint

LIU ET AL.: GREENDROID: AUTOMATED DIAGNOSIS OF ENERGY INEFFICIENCY FOR SMARTPHONE APPLICATIONS
TABLE 5
Taint Propagation Policy
Index | Bytecode instruction type # instructions | Instruction semantics Taint propagation rule

1 Const-op C 15 stack[0] € C T(stack[0])= @

2 | Load-op index 25 stack[0] € localVar,q,, T(stack[0]) = T(localVar,,q,.)

3 LoadArray-op arrayRef, index 8 stack[0] € arrayRef [index) T(stack[0]) = T(arrayRef) U T(arrayRef [index])
4 Store-op index 25 localVar,,q,, < stack’[0] T(localVar,,q.) = T(stack T0])

5 StoreArray-op arrayRef, index 8 arrayRef [index) € stack’[0] T(arrayRef [index]) = T(stack’[0])

6 Binary-op 37 stack[0] € stack[1] @ stack’[0] T(stack[0]) = T(stack’[0]) U T(stack’[1])

7 Unary-op 20 stack[0] € O stack’[0] T(stack[0]) = T(stack’[0])

8" | GetField-op index 1 stack[0] € stack’[0].instanceField T(stack[0]) = T(stack [0].instanceField) U T(stack’[0])
9 GetStatic-op index 1 stack[0] € ClassName.staticField T(stack[0]) = T(ClassName.staticField)

10 | PutField-op index 1 stack’[1].instanceField € stack’[0] T(stack’[1).instanceField) = T(stack T0])

11 | PutStatic-op index 1 ClassName.staticField € stack’[0] T(ClassName.staticField) = T(stack [0])
12" | Return-op(non-void) 5 callerStack[0] € calleeStack[0] T(callerStack[0]) = T(calleeStack [0])

923

Detailed instruction semantics (The semantics of the instructions whose index are underlined serve as examples)

|—

Push a constant value C onto the operand stack (stack[0] represents the value at the stack top after an operation).

2,3 | Load the value of the #index local variable onto the operand stack.

4,5 | Pop and store the value at stack top to the #index local variable (stack 0] represents the value at the stack top before an operation).

6,7 | Perform the binary operation & on the two values popped from the operand stack (i.e., stack 0] and stack [1]), and push the result back onto stack.
8,9 | Geta field value of an object on the heap and push the value onto the operand stack. The object reference is popped from the stack (i.e., stack’[0]).The

object field’s name and type can be found by referring to the #index slot of the constant pool.

10, | Pop and store the value at the stack top (i.e., stack’[0]) to an object field on the heap. The object reference is popped from the stack (i.e., stack[1]). The
11 | object field’s name and type can be found by referring to the #index slot of the constant pool.

12 | Pop the value at the callee’s operand stack top (i.e., calleeStack’[0]), and push the value onto the caller’s operand stack.

Notes: (1) For Rule 8, we followed TaintDroid’s choice to propagate object reference’s taint to retrieved object field values to avoid undertainting in
certain cases [22]. For example, we only taint the reference of sensory data objects (instead of tainting all object fields since the object can have complex
structures) when taint propagation starts. Rule 8 can correctly help propagate taint marks when the sensory data object fields are read (see Fig. 7 for
illustration). (2) Rule 12 does not conflict with the rule for handling control dependencies (see Section 4.4.2). They can be applied together.

1 public void onSensorChanged(SensorEvent event){

2 if(event.sensor.getType() == Sensor.ACCELEROMETER){
3. boolean switchColor = isShuffled(event);

4. if(switchColor){

5. showMessage(“Device shuffled”);

6 if(getBackgroundColor() == RED){

7 setBackgroundColor (GREEN);

8

. } else{
9. setBackgroundColor(RED);
10. }
11. }
12. }
13. }

Fig 7. Example code to demonstrate taint propagation.

propagation process. We do it this way because tracking
finer-grained control dependencies may incur significant
performance overhead and even imprecision to analysis
results [22], [37]. Our taint propagation terminates when
the application under analysis finishes its handling of sen-
sor event.® This occurs in two situations. If the sensor event
handler (e.g., onSensorChanged() in our example) does not

8. One can also track the usage of sensory data until an application
exits or new sensory data arrive, but we did not observe any noticeable
difference in our analysis results in experiments.

20. public boolean isShuffled(SensorEvent event){

21. float[] values = event.values;

22. float x = values[@];

23. float y = values[1];

24. float z = values[2];

25. float g = SensorManager.GRAVITY_EARTH;

26. float accelerationSquareRoot = (x*x+y*y+z*2z)/ (g*g);
27. updateAccTextView(accelerationSquareRoot);
28. if(accelerationSquareRoot >= 2){

29. return true;

30.

31. return false;

32. %}

start any worker thread to further handle the received sen-
sor event, the propagation stops at the exit of this handler.
Otherwise, the propagation has to continue until the sen-
sor event handler returns and all worker threads termi-
nate. Our taint propagation can thus identify the program
data that depend on collected sensory data and trace their
usages when an application executes. One thing that
deserves explanation is that there might be cases where an
application starts worker threads in a special way, e.g.,
these threads are delayed in their running, periodically
started by a timer or kept long-running for handling sensor

924 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.40, NO.9, SEPTEMBER 2014

events. Although we did not observe similar cases in our
study, there is no restriction of using such multi-threading
features in Android applications. When such cases occur,
our taint propagation would theoretically have to continue
until all worker threads end. However, in practice, this
may compromise the tool’s usability since it can perform
taint propagation for very long time and fail to report anal-
ysis results in a timely fashion. Therefore, for practicality,
one may wish to set a timeout value for restricting such
long taint propagation. This is an implementation issue
and we do not elaborate further.

4.4.3 Analyzing Sensory Data Utilization

With program data tainted with marks associated with sen-
sory data, we can analyze how sensory data are used in an
Android application and whether the uses are effective
with respect to energy cost.

Consider an Android application’s execution ¢;, in which
the application visits a set of states S;, by handling received
events (user events, system even’cs,9 or sensory events), and
finally terminates with all its components destroyed. As
mentioned earlier, when we fix an upper bound b for the
length of user interaction event sequences, the space
of explored states .5 for this application would be bounded
(i.e., the total number of states in this space is finite). As
such, we are able to analyze these states to understand how
sensory data are used, and compare their usages across dif-
ferent states. For comparison purposes, we propose an anal-
ysis metric called Data Utilization Coefficient (DUC for short).
It is defined by Equation (1):

usage(s, d)
DUC(s,d) = . 1
(s,) Max ,resbjdreD(usage(s',d')) S

S

The utilization coefficient of sensory data d at state s is
defined as the ratio between d’s usage at state s and the
maximal usage of any sensory data from our data pool D at
any state in S;. A lower DUC value indicates a lower utiliza-
tion of sensory data. The usage of sensory data d at state s is
further defined by the following equation:

usage(s,d) =
i€ API_Call(s,d)

eTest(i,d,s) x nolnst(i). (2)

In this equation, API_Call(s,d) is the set of API call
instructions executed since sensory data d are fed to the
application at state s and until the data handling is finished.
Function eTest(i,d, s) is an effectiveness test to see whether
the following two conditions both hold: (1) the API called
by ¢ uses program data dependent on sensory data d, and
(2) the API's execution at state s produces perceptible bene-
fits to users. When both conditions hold, the effectiveness
test function returns 1. Otherwise, it returns 0. Function
nolnst(i) returns the number of bytecode instructions exe-
cuted by this API call. The rationale behind our usage met-
ric is that it reflects how many times and to what extent

9. In GreenDroid, system events are generated by monitoring API
invocations. For example, a broadcast message event will be generated
when GreenDroid observes the invocation of a message broadcast API.

sensory data are used by an application at certain states to
benefit its users. This metric is designed based on our earlier
study of 30 open-source Android applications that use sen-
sors. These applications have called various Android or
third-party APIs (e.g., Google Maps APIs) to use sensory
data to support phone users with various functionalities.

Now we explain how the effectiveness test function
eTest(i,d, s) is implemented. For its first condition, we check
whether the concerned API is called with arguments (includ-
ing its implicit “this” argument if applicable) having the same
taint mark as sensory data d. For its second condition, we take
an outcome-based strategy. The basic idea is that the API
called by instruction ¢ at state s passes the effectiveness test if
and only if its execution produces observable outcomes/ben-
efits to users (e.g., updating visible GUIs or writing to file sys-
tems). Specifically, our strategy works as follows:

o If the APl updates GUI elements, it passes the test as
long as these GUI elements are visible at application
state s, and fails otherwise.

e If the API: (1) stores any data to file systems, data-
bases or network, (2) updates a phone’s status (e.g.,
adjusting its screen brightness), or (3) passes any
message for inter- or intra-application communica-
tion (e.g., broadcasting system-wide events), the API
passes the test regardless of the application state.
Here, we conservatively assume that the stored data
or passed messages will eventually produce percep-
tible benefits to users.

e For all other cases, the API fails the test.

As such, our analysis can identify those application
states where sensory data are underutilized based on calcu-
lated sensory data usage and cross-state comparison. We
give one example for illustration. Consider the three states
in the Osmdroid example in Fig. 4b. They are also listed in
Table 6. Take the third state (sg, [e1, ez, e3]) for example. It
means that: Osmdroid’s user starts the application by
launching MapActivity (e;), enables its location tracking
functionality (es), and switches the application to another
activity (e3). We analyze sensory data utilization for these
three states. For ease of presentation, we explain at a source
code level (actual analysis is conducted at a bytecode
instruction level), and assume that: (1) each method is a
pre-defined API, and (2) there are n bytecode instructions
executed for each called API. Consider the second state,
which is reached when the user switches to another activity
from MapActivity directly. For this state, the location track-
ing functionality is not yet enabled. We observe that all
external GPS data and internal program data depending
on these GPS data are processed and used in turn by a set
of APIs, namely, processLocation, putExtra, sendBroadcast,
getExtra and updateMap. According to our usage metric,
only the sendBroadcast API passes the effectiveness test. The
other four APIs fail the test because none of them can pro-
duce perceptible benefits to users (note that the map is still
invisible now). According to Equation (2), the GPS data
usage at this state is n. We can also calculate that GPS data
would have a maximal usage of 3n at the first state, where
updateMap is used to render a visible map, sendBroadcast
spreads the GPS data to the entire system, and persistToDa-
tabase method stores the GPS data to database. Therefore,

LIU ET AL.: GREENDROID: AUTOMATED DIAGNOSIS OF ENERGY INEFFICIENCY FOR SMARTPHONE APPLICATIONS 925

TABLE 6
GPS Data Utilization Coefficients at Three States

Application state Method calls that consume GPS data GPS data usage GPS data utilization
coefficient
<sg, le1, e2]> processLocation, putExtra, sendBroadcast”, getExtra, updateMap”®, 3n 3n [3n =1.00
persistToDatabase”
<so, ley, e3]> processLocation, putExtra, sendBroadcast”, getExtra, update Map® n n/3n=033
<8p, leg, es, e3]> processLocation, putExtra, sendBroadcast”, getExtm,updateMapT, 2n 2n/3n=0.66

persistToDatabase *

O e : users start Osmdroid and the map activity launches; e, : users switch on the location tracking mode; es : users switch from map activity to another activity.

O Method calls that can pass the effectiveness test are marked with the symbo

the symbol "1".
O Please note that only method calls marked with the symbol

mE

the GPS data utilization coefficient for the second state is
0.33 (= n / 3n). The coefficients for the other two states
can be calculated similarly, as shown in Table 6. These
results suggest that GPS data are clearly underutilized at
the second state, as compared to the other two states.

Our GreenDroid implementation ranks sensory data
utilization coefficients for different application states such
that energy problem reports can be prioritized and devel-
opers can then focus on the most serious energy problems.
These reports contain two major pieces of information to
ease energy problem diagnosis and fixing. First, Green-
Droid reports how sensory data are consumed by different
APIs at different application states, and highlights those
APIs that ineffectively use sensory data. Second, Green-
Droid provides concrete event handler calling traces (cor-
responding to user interaction event sequences). For ease
of understanding, we give an example report in Fig. 8. It
shows that GPS data are not well-utilized by Osmdroid at
the second application state described in Table 6. In this
example, GreenDroid reports that: (1) GPS data are used
to render an invisible map (i.e., updateMap API invocation),
and (2) an event handler calling trace to reach the prob-
lematic application state. Such reported information are
actionable to developers. By examining reported event
handler calling traces, developers will be able to construct
concrete test cases (e.g., user interaction events) to repro-
duce the corresponding sensory data underutilization sce-
nario. For instance, the event handler calling trace in our
example report corresponds to the following two user
interaction events: (1) launching the MapActivity, and (2)
switching away from MapActivty (see Section 2 for the
calling order of activity lifecycle event handlers). Besides,

Sensory Data Underutilization

[Sensory data usage]: sendBroadcast, updateMap®

[Sensory data utilization coefficient]: 0.33

[Event handler calling trace]:

MapActivity.onCreate (line 4), MapActivity.onStart, MapActivity.onResume,
GPSService.onCreate (line 34), MapActivity.onPause, MapActivity.onStop,
gpsListener.onLocationChanged (line 38), myReceiver.onReceive (line 8)
Notes: (1) “*” highlights APIs that ineffectively utilize sensory data. (2) For
ease of understanding, we use class, variable and handler names to represent
event handlers, while in real reports the event handlers are represented using

object IDs and fully qualified Java method signatures. (3) Our tool will also
output source file names and source line numbers if they are available.

Fig. 8. Example energy problem report.

] .

; method calls used to update invisible GUI elements are marked with

use GPS data and produce perceptible benefits to Osmdroid users.

by examining reported sensory data usages, especially
ineffective data usages (e.g., updateMap in this example),
developers can understand why an application consumes
more energy than necessary. Such energy problem reports
provide much richer information than pure complaints
that can be commonly found in smartphone application
forums [54]. Developers can thus pinpoint those problem-
atic application states where energy is consumed unneces-
sarily due to ineffective use of sensory data. They can then
take various actions for problem fixing, e.g., tuning down
sensing rates or temporally disabling sensing as discussed
in our earlier examples.

Finally, for detected missing sensor or wake lock deacti-
vations, GreenDroid will also report similar information for
energy problem diagnosis. Specifically, it will report: (1)
those sensor listeners or wake locks that are forgotten to be
properly unregistered or released before an application
exits, and (2) event handler calling traces for reaching those
problematic application states.

5 EXPERIMENTAL EVALUATION

We implemented our energy diagnosis approach as a pro-
totype tool named GreenDroid on top of JPF [31]. Green-
Droid consists of 18,367 lines of Java code, including
7,251 lines of code for energy diagnosis, and other 11,116
lines of code for modeling Android APIs. We explain
some details about GreenDroid’s implementation. First,
modeling Android APIs is necessary for our diagnosis
because Android applications depend on a proprietary
set of library classes that are not available outside real
devices or emulators [45]. These library classes are mostly
built on native code. Due to JPF’s closed-world assump-
tion [67], we have to model these library classes and their
exposed APIs. Ignoring this modeling requirement would
result in imprecision in the diagnosis results. For exam-
ple, if GreenDroid does not properly model the Activity
class’s startActivity API, it will not be able to analyze
activity switches, which are very common in Android
applications. However, Android exposes more than 8,000
public APIs to developers [24]. Fully modeling them is
extremely labor-intensive and almost impossible for indi-
vidual researchers like us. As such, in our current imple-
mentation, we took a pragmatic approach by manually
modeling a subset of APIs that are commonly called in
Android applications. Modeling these APlIs is already suf-
ficient for carrying out our evaluation with real

926

application subjects. To be specific, we have carefully
modeled 76 APIs using JPF’s native peer and listener
mechanisms [31], [41]. These APIs either frequently get
invoked in our experimental application subjects or have
to be modeled as otherwise JPF will crash on their invo-
cation (e.g., when they involve native calls). Modeling
these APIs took us nearly three months. For remaining
APIs, we provided stubs with simple logics. In these
stubs, we basically ignored their corresponding APIs’
side effect if any, and made them return a value selected
from a reasonably bounded domain when necessary. Sec-
ond, besides tracking standard JPF program state infor-
mation (e.g.,, call stack of each thread, heap and
scheduling information) [53], GreenDroid also tracks the
following four types of information for analysis: (1) a
stack of active activities, their lifecycle status, and visibil-
ity of their containing GUI elements, (2) a list of running
services and their lifecycle status, (3) a list of registered
broadcast receivers, and (4) a list of registered sensor lis-
teners and wake locks. More tool implementation details
can be found in our technical report [41].

In this section, we evaluate GreenDroid by controlled experi-
ments. We aim to answer the following four research questions:

o RQ4 (Effectiveness and efficiency): Can GreenDroid
effectively diagnose and detect energy problems in
real-world Android applications? What is its diag-
nosis overhead?

o RQ5 (Necessity and usefulness of AEM model): Can
GreenDroid correctly schedule event handlers for
Android applications with our AEM model? Can
GreenDroid still conduct an effective diagnosis if it
randomly schedules event handlers (i.e., with our
AEM model disabled)?

e RQ6 (Impact of event sequence length limit): How does
the length limit of generated user interaction event
sequences affect the thoroughness of our energy
diagnosis in terms of code coverage?

o RQ7 (Comparison with existing resource leak detection
work): How is GreenDroid compared with existing
resource leak detection work in terms of finding real
missing sensor or wake lock deactivation problems?

5.1 Experimental Setup

We selected 13 open-source Android applications as our
experimental subjects. Table 7 lists their basic information,
which includes: (1) version number, (2) size of the selected
version, (3) repository from which source code was
obtained, (4) application category, and (5) number of down-
loads. The first 11 applications were confirmed to have
energy problems of our two identified patterns (Section
3.3). We then use them to validate the effectiveness of our
approach. We also selected two other subjects (Omnidroid
and GPSLogger) from the open-source applications col-
lected in our empirical study. Neither of these two applica-
tions have confirmed energy problem reports. However,
from their project development descriptions, we judged
that they heavily use GPS sensors in a very energy-consum-
ing way and are susceptible to energy inefficiency prob-
lems. Thus we also selected them for our study to see
whether our approach can identify energy optimization

TABLE 7
Experimental Subject Information and Detected Energy Problem

Detected energy problem (severity level)

Lines of code Source code Category Downloads

Version

Application name

availability
Google Code

Missing sensor deactivation (Medium?)
Missing sensor deactivation (Medium)

5K~ 10K
1K~ 5K

Tools
Travel & Local

Google Code
Communication

18,106
3,241
10,186

R-204"
R-68
R-9d0aa75

DroidAR
Recycle Locator

Missing sensor deactivation (N/A)
Missing wake lock deactivation (Medium)
Missing wake lock deactivation (Medium)

10K ~ 50K

10K ~ 50K
1M ~ 5M
1K ~ 5K

1K ~ 5K

GitHub
Google Code
Google Code

Ushahidi
AndTweet

V-0.2.42

Social

Productivity
Library & Demo

8,908
14,351

R-137
R-12879a3
R-d984b89

Ebookdroid

Missing wake lock deactivation (N/A)
Missing wake lock deactivation (N/A)
Sensory data underutilization (Critical)

GitHub
GitHub

1,718

BableSink
CWAC-Wakeful

Education

896

Missing sensor deactivation (Critical)
Sensory data underutilization (Medium)
Sensory data underutilization (Critical)
Sensory data underutilization (Medium)
Sensory data underutilization (Critical)

MM MMM
cooooM
0016 16 O 1O
222
MM MM NN
SO0 OO —
Lo o B e B e B]
n
g
S S =
SSS8E52
- = 0O N o
EEQ8EE
[o=
S oy 29
Q. a—8
n N VN =T
== L O
c 8 ®YE S
[V VA
F‘H[—‘gm
m
QLU VLV D
T T T T T T
O OO0 00O
ULV
LIYLLLe
&0 bh &0 bh oo bh
s NeNeleNe)
5566545620
[CAGRGAGAVAV)]
o So o
oN N
IELRE T
I
[+9]
=
<+ O N Quen
—— ;a0
SSRGS
mmmmqm
>
>
<
Z
i <
8. kel
e .
[75) o = e
= g.éae
s TEETE
EE a5
.9 ENE==
—_ ONO
g ©Tgo
< @)
3
=
)
[9p)

Sensory data underutilization (Medium)

659 Google Code Travel & Local 1K~ 5K

R-15

GPSLogger

12.g

3

ymbol "R" stands for "revision" and symbol "V'" stands for "version";
: We obtained the problem severities from corresponding applications” bug tracking systems. "N/A" means that developers did not explicitly label problem severities.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.40, NO.9, SEPTEMBER 2014

LIU ET AL.: GREENDROID: AUTOMATED DIAGNOSIS OF ENERGY INEFFICIENCY FOR SMARTPHONE APPLICATIONS 927

opportunities for them. We observe from Table 7 that our
selected applications have been popularly downloaded
(over 1 million downloads in total), and covered a variety of
application categories (10 different categories). We obtained
these applications’ source code and compiled them on
Android 2.3.3 for our experiments. We chose Android 2.3.3
because it is one of the most widely adopted Android plat-
forms and is compatible with most applications on the mar-
ket [6]. We conducted our experiments on a dual-core
machine with Intel Core i5 CPU @2.60 GHz and 8 GB RAM,
running Windows 7 Professional SP1. In the following we
elaborate on our experiments with respect to the four
research questions in turn.

5.2 RQ4: Effectiveness and Efficiency

To answer research question RQ4 about GreenDroid’s effec-
tiveness and efficiency, we ran GreenDroid to diagnose each
application listed in Table 7 and recorded its diagnosis over-
head. In this set of experiments, we controlled GreenDroid to
generate sequences of at most six user interaction events for
each application execution (not including the first events for
“launching entry activity” when our analysis starts and the
last events for “finishing active activities and services” when
our analysis ends). This is for cost-effectiveness and it already
enabled GreenDroid to explore quite a large number of appli-
cation states to expose energy problems as we will show later.
We examined top ranked diagnosis reports, especially those
with highlighted ineffective API calls, to see whether they can
locate real energy problems in these applications.

We observed that GreenDroid successfully located 14 real
energy problems in these applications, as listed in Table 7.
Four of them are caused by missing sensor deactivation, four
by missing wake lock deactivation, and the remaining six by
sensory data underutilization. As mentioned earlier, the first
12 energy problems listed in Table 7 have been confirmed by
developers prior to our experiments. In addition, GreenDroid
successfully found two potential energy problems in Omni-
droid and GPSLogger. These two problems were previously
unknown. We submitted our bug reports to corresponding
developers, and they were both confirmed. GPSLogger devel-
opers even invited us to join their team to help improve
GPSLogger’s energy efficiency. Besides, as shown in Table 7,
the severity levels of our detected 14 problems range from
“medium” to “critical”. This indicates that such problems can
cause serious energy waste. Indeed, we found many negative
comments complaining about battery drain issues from the
bug tracking systems and Google Play store user review
pages of the concerned applications (e.g., Geohash Droid,
AndTweet and Zmanim). We discuss some of these energy
problems in detail below.

5.2.1 Missing Sensor or Wake Lock Deactivation

Android API documentation recommends developers to
unregister sensor listeners and release wake locks when
they are no longer needed [5], [8]. However, we found that
missing sensor or wake lock deactivation is common in
Android applications. GreenDroid detected eight applica-
tions suffering such energy problems from our 13 subjects.
These problems happened because developers either forgot
to unregister sensor listeners or release wake locks, or

/**buggy version of the CheckInMap class**/

1. public class CheckinMap extends MapActivity {

2 public void onCreate(){

3 MyGPSListener gpsListener = new MyGPSListener();

4 LocationManager 1lm = getSystemService(LOCATION_SERVICE);
5 //GPS listener registration

6. Im.requestLocationUpdates(GPS, ©, @, gpsListener);

7 }

8 public void onDestroy() {

9 //unregister GPS listener

10 getSystemService (LOCATION_SERVICE)
11. .removeUpdates (new MyGPSListener());
12. }

13. //location listener class

14. public class MyGPSListener implements LocationListener {
15. public void onLocationChanged(Location loc) {

16. //utilize location data

17. }

18. }

19. }

/**correct version of the CheckInMap class**/
20. public class CheckinMap extends MapActivity {
21. private MyGPSListener gpslListener;

22. private LocationManager 1m;

22. public void onCreate(){

23. gpsListener = new MyGPSListener();

24. Im = getSystemService(LOCATION_SERVICE);
25. //GPS listener registration

26. 1m.requestLocationUpdates(GPS, ©, @, gpsListener);
27. }

28. public void onDestroy() {

29. //unregister GPS listener

30. 1m.removeUpdates (gpsListener);

31, }

32. }

Fig. 9. The energy problem in Ushahidi application.

performed these operations incorrectly. For example, the
code snippets in Fig. 9 demonstrate how Ushahidi develop-
ers wrongly unregistered a GPS listener. We observe in the
buggy version that, developers registered a GPS listener
gpsListener in the onCreate() handler of the CheckInMap
activity (lines 3-6), and then tried to unregister the listener
in the onDestroy() handler of CheckInMap (lines 10-11).
However, instead of passing previous registered gpsListener
to the sensor listener unregistration API removeUpdate(),
developers wrongly created a new GPS listener instance
and passed its reference to removeUpdate(). The conse-
quence is that the previously registered sensor listener
gpsListener was not properly unregistered.

For performance considerations, the Android OS keeps
an application process alive as long as possible, until the
system runs low on resources (e.g., memory). According
to this policy, even a dummy process that hosts no appli-
cation component is not guaranteed to be terminated in a
timely fashion [7]. Therefore, in the buggy version, the
gpsListener instance would remain in memory for a long
time even if the activity it belongs to has been destroyed.
The activity instance could also remain in memory after
its onDestroy() handler is called. As a result, valuable bat-
tery energy can be wasted by unnecessary GPS sensing.
Ushahidi’s developers later realized this problem from
bug reports and fixed it. Fig. 9 also gives the correct ver-
sion for comparison.

5.22 Sensory Data Underutilization

GreenDroid also detected six applications suffering sensory
data underutilization problems out of our 13 subjects.
Among these detected problems, three (Table 7) are critical

928

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.40, NO.9, SEPTEMBER 2014

(a) Osmdroid (R-750) Analysis Result

0.1839 02759 04138 05747 0.7011 0.8621 0.9540 1.0000
Location Data Utilization Coefficient (DUC)

(b) Osmdroid (R-751) Analysis Result

=3 =3
2 34 25273 z S, 25,268
% 2 | (52.81%) g 2 | (55.97%)
?i;' = buc v o
a 3 g S
[&= S
<) 11,948 <
52 (24.97%) 7,982 = 2?{32(3/) 7,971
5 2 (16.68%) 5 21 (@1.62% (17.66%)
2 S| 2632 S = 2,143
E 1 (554%) g (4.75%)
= 5 .
Z =1 Z =1
0.0556 0.2239 0.8507 1.0000 0.5223 0.6119 0.8507 1.0000
Location Data Utilization Coefficient (DUC) Location Data Utilization Coefficient (DUC)
(¢) Zmanim (R-322) Analysis Result (d) Zmanim (R-323) Analysis Result
S 3 7,309
@« 2 6848 1114 @ S 6,980 (39.26%)
2 < (29.34%) (30.48%) ez (37.49%) -26%
5 =3 5 =
wn o wn o
. S =
2 © 2 ©
2* S 3,507 2: S
- 2 (15.03%) 2,699 - 2
S < 1627 (11.56%) S < 2,287
5 6o 5 2| 136 (12.28%)
= 3 853 2 S1 (7.32%) 647
£ o (3.65%) £ o (3.47%)
E] E]
z ° z °]
0.08063 0.1474 03616 04502 0.8478 0.9412 1.0000 0.7663 0.7694 0.8478 0.9412 1.0000
Location Data Utilization Coefficient (DUC) Location Data Utilization Coefficient (DUC)
(e) Omnidroid (R-863) Analysis Result (f) GPSLogger (R-15) Analysis Result
] § $ g 4224
. . :
7] 2951 2,789 2,658 @ T
s o , , 2,770 !
g S{M20 2300 1721% (1639%) (700%) (2 8 o 2,856
=2 (1430%) i (16.27%) 2 g (28.94%)
< < &
b L3
c S Z 2 (113'33:)3/) 915
7 30%
2 - 22 562 9.27%)
£ = (5.69%)
El =
z ° z °
0.0904 02072 04054 06036 08018 1.0000 0.0000 0.1333 0.8000 0.9333 1.0000
Location Data Utilization Coefficient (DUC) Location Data Utilization Coefficient (DUC)
(g) Geohash Droid (V-0.8.1-pre2) Analysis Result (h) Geohash Droid (R-80e5441d3e) Analysis Result
]]
= < s 38,130
= 2 puc 2 8 (64.05%) puc
@»n = @n = i)
2 29,718 2
& (45.72%) E
f S 15,696 16,301 ﬁ S
= (24.15%) (25.08%) =3
£ 7 g = S (1%?275/)
= = 3,403 (14.07%) 17%
E 912 £ 5.72%
= (1.40%) = ¢)
z < z <
0.1122 0.4673 0.8318 0.9065 1.0000 0.5172 0.7586 0.9310 1.0000
Location Data Utilization Coefficient (DUC) Location Data Utilization Coefficient (DUC)
(i) Sofia Public Transport Nav. (R-114) Analysis Result (j) Sofia Public Transport Nav. (R-156) Analysis Result
=3 5,970
g = 44.76%
£ 3859 (29:81%) 8 ¢ puUC
R et 3,509 @
o Seasiw B 8 S 3,475
g3 (22.57%) =2 (26.05%)
f 1,994 f = 2,133
: =4 (12.82%) : g (15.99%)
g 2 336 341 651 g 2" (792611/)
. L1006 (4.19%) 191 315 21%) 49
E (2.16%) (2.19%)) g0z § (1.43%) (2.36%) (1.87%)
z < zZ °

06104 07532 08312 09221 09481 09740 1.0000
Location Data Utilization Coefficient (DUC)

Notes: (1) In the above figures, the location utilization coefficient is accurate to four decimal places. (2) Two states with indistinguishable utilization
coefficients (i.e., cannot be distinguished by four decimal places) are shown in the same bar. (3) Utilization coefficients with very few occurrences (i.e.,
less than 5%o) are not shown in the figures for ease of presentation, so the percentages in each figure may not add up to 100%. (4) The total number of
states for each application does not equal the number of explored states reported later because the location sensing is not enabled in some explored states.

Fig. 10. Sensory data utilization analysis results for six applications.

LIU ET AL.: GREENDROID: AUTOMATED DIAGNOSIS OF ENERGY INEFFICIENCY FOR SMARTPHONE APPLICATIONS 929

ones that can cause massive energy waste. We discuss these
six problems in detail below.

Osmdroid. Osmdroid is a navigation application similar
to Google Maps. After diagnosis, GreenDroid reported that
Osmdroid’s location data utilization coefficient is no more
than 0.2239 for 30.51 percent explored states, but close to 1
for other states, as shown in Fig. 10a. This strongly suggests
that Osmdroid poorly utilizes location data at certain states.
We examined the reports generated by GreenDroid and
quickly found that if users switch from MapActivity to
other activities without enabling location tracking, location
data would be used to render an invisible map (recall that
GreenDroid can highlight ineffective API calls). This greatly
wastes valuable battery energy as reported by users [51].
To fix this problem, developers later disabled GPS sensing
if users leave MapActivity without the location tracking
functionality enabled. Fig. 10b gives the new version’s loca-
tion data utilization analysis result. We can observe that
location data are now much better utilized with a utiliza-
tion coefficient above 0.5223.

Zmanim. Zmanim is a location-aware application for
reminding Jewish people about prayer time during the day
(zmanim). The application generates zmanim according to
users’ locations and corresponding time zones. Interestingly,
developers already realized that location sensing could be
energy-consuming, and they made the application stop loca-
tion sensing once its required locations are obtained. How-
ever, as Fig. 10c shows, GreenDroid still reported that for
37.37 percent explored states, Zmanim’s location data utili-
zation coefficient is no more than 0.4502, but close to 1 for
other states. This energy problem is similar to what we found
in Osmdroid. If users switch from the location sensing activ-
ity to other activities before the required locations are suc-
cessfully obtained, battery energy would keep being wasted
to update invisible GUI elements. In scenarios where GPS
signals are rather weak, users frequently complained that
Zmanim caused huge battery drain [72]. We give an example
of such complaints below. Similar to Osmdroid, Zmanim
developers also later disabled location sensing in such prob-
lematic cases, and we give the new version’s location data
utilization analysis result in Fig. 10d for comparison (much
improved utilization).

Zmanim Issue 56: “I should see GPS icon only until a location is
obtained. After that, GPS should be turned off. However, even if
turning off GPS once a fix is obtained, this issue remains as a bug,
since a user could hit home button before the fix is obtained,
therefore leaving GPS on. These bugs quickly kill my battery.”

Ompnidroid. Omnidroid helps automate system function-
alities based on user contexts. For example, Omnidroid can
help users automatically send a reply message such as
“busy in a meeting” when they receive a phone call during
an important meeting. When Omnidroid runs, it maintains
a background service to periodically check location
updates. If any location update satisfies a pre-specified con-
dition, its corresponding action would be executed as a
response. Our diagnosis results in Fig. 10e show that 18.2
percent explored states have a location data utilization coef-
ficient of no more than 0.0904. We found that at these states,

users have not specified any condition or chosen any action.
In other words, location data are collected for no use except
being stored to a database for logging purposes (this
explains why the location data utilization coefficient is not
0). Then why does this background service keep collecting
location data? It could cause huge energy waste. We
reported this problem (previously unknown) to Omnidroid
developers, and suggested enabling location sensing only
when there are conditions/rules concerning user locations.
We then received a prompt confirmation and developers
marked our reported problem as “critical” [50]:

Omnidroid Issue 179: “Completely true, and your suggestion is a
great idea and you're correct Omnidroid does suck up way more
energy than necessary as a result. I'd be happy to accept a patch in
this regard”.

GPSLogger. GPSLogger collects users” GPS coordinates
to help them tag photos or visualize their traces. Fig. 10f
presents our diagnosis results for its GPS data utilization.
We found that for 42.80 percent explored states, GPS data
have not even been utilized. The utilization coefficient is
0. For the next 28.94 percent states, the coefficient is also
low at 0.1333, while for other states, it is close to 1. We
examined the diagnosis reports and found another new
energy problem that has not yet been reported. Similar to
Omnidroid, GPSLogger also maintains a background ser-
vice to collect GPS data. It continually evaluates whether
collected GPS data satisfy certain precision requirements.
If yes, the data are processed and stored to a database,
and GPSLogger would then update its GUI to notify
users. Otherwise, the data are discarded. However, when
GPS signals are weak, GPS sensors may keep collecting
noisy data. These data mostly do not satisfy precision
requirements and are actually discarded. This produces
no benefits to users, and explains why GPS data have a
very low utilization coefficient at some states. This prob-
lem can be common when users enter an area where the
GPS reception is bad. We submitted a bug report to sug-
gest temporarily slowing down or disabling location sens-
ing when the application continuously finds its collected
GPS data of low quality. Our bug report was confirmed
by GPSLogger developers. They also invited us to help
improve GPSLogger’s energy efficiency [30]. We will fur-
ther discuss our patch later in Section 5.6.

Geohash Droid. Geohash Droid is an entertainment appli-
cation for adventure enthusiasts. It randomly picks up a
location for adventure, and navigates its users to that loca-
tion using GPS data. We diagnosed Geohash Droid and
found that its utilization coefficient is no more than 0.4673
for 27.80 percent explored states, as shown in Fig. 10g. We
studied diagnosis reports and found that at these states,
GPS data were used only to show the users’ current loca-
tions in an icon on the phone’s notification bar (a phone’s
notification bar is a GUI element container that is outside
an application’s normal GUI and is always visible). How-
ever, in other states, GPS data were also used to update the
navigation map as well as computing detailed travel infor-
mation (e.g., distance to destination). This comparison
shows that GPS data were not well utilized in those 27.80
percent explored states, and this could cause energy waste.

930 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.40, NO.9, SEPTEMBER 2014

After realizing this, Geohash Droid’s developers made a
patch to slow down the application’s GPS sensing rate to
every 30 seconds to save energy when GPS data are only
used for updating the notification bar [25]. Fig. 3 shows
their comment after patching, and both their own testing
and user feedbacks confirmed that there is indeed a signifi-
cant improvement in Geohash Droid’s energy efficiency
[25]. Besides, in later revisions to Geohash Droid, develop-
ers redesigned the application by completely removing this
notification icon. They chose to automatically switch off
GPS updates when the navigation map and detailed infor-
mation screen become invisible (see revision 80e5441d3e
for details). We analyzed this new version and present the
result in Fig. 10h for comparison. The result shows that in
94.29 percent explored states, the GPS data are now effec-
tively utilized.

Sofia Public Transport Nav. Sofia Public Transport Nav.
uses its collected GPS data to locate the nearest bus stops
for its users, and provides arrival time estimation for con-
cerned buses by querying a remote server. GreenDroid
diagnosed its GPS data utilization, and reported that GPS
data were poorly utilized for 24.81 percent explored states,
and for the next 52.38 percent states, the utilization coeffi-
cient was also below 0.4138, as shown in Fig. 10i. We
examined diagnosis reports and confirmed this energy
problem. In Sofia Public Transport Nav., GPS data are
mainly used to update a map that shows nearby bus stops.
However, for many states, the dialog box showing bus
arrival time is at foreground,'® hiding the map that shows
nearby bus stops. Then because users may keep refreshing
the dialog box to check bus arrival time, GPS data during
this period will be used mainly to update the map hidden
by the dialog. This is a waste of energy. The application
developers later found this problem, and disabled its GPS
update for states where the bus arrival time estimation
dialog is at foreground. Interestingly, although developers
closed the corresponding bug report [64] soon after creat-
ing this patch, they mistakenly introduced another missing
sensor deactivation problem. In later development and
communications with users, they realized this new prob-
lem and eventually fixed it [65]. This story suggests that:
(1) developers lack easy-to-use and effective tools to help
detect energy problems in their applications, and (2) fixing
sensory data underutilization problems is non-trivial and
may instead introduce new energy problems. For compari-
son, we also analyzed the application after developers
eventually fixed all energy problems including this new
one. As the result in Fig. 10j shows, there are now no appli-
cation states whose GPS data utilization coefficient is sig-
nificantly lower than others.

From the above discussions, we can see how auto-
mated sensory data utilization analysis can help diagnose
energy problems for Android applications. When devel-
opers find that sensory data are clearly underutilized at
certain states of their applications, they can consider

10. GreenDroid models pop-up windows like dialog boxes by this
strategy: (1) If a pop-up window is being displayed, GreenDroid con-
siders all GUI elements underneath invisible; (2) If a pop-up window is
dismissed, GreenDroid considers the GUI elements underneath visible
again.

whether their applications can reach these problematic
states frequently and stay there for long time (e.g., an
activity can be left to background until users explicitly
switch back to it). If yes, developers may have to tune
down the concerned sensors’ sensing rates or even dis-
able them, as otherwise energy cost can be very high, but
produced benefits can be marginal instead. Besides, we
also find that in large-scale application subjects like
Omnidroid and Zmanim, their sensory data usage is very
complex, involving hundreds of method/API calls. In
such subjects, manually examining how sensory data are
utilized can be extremely labor-intensive and error-prone.
This justifies the great need for an automated diagnosis
tool like our GreenDroid to help locate potential energy
problems caused by sensory data underutilization. To
reduce developers’ efforts in reading diagnosis reports,
GreenDroid prioritizes these reports according to their
sensory data utilization coefficients, and highlights inef-
fective API calls (e.g., those for updating invisible GUISs).
This can help developers quickly figure out the causes of
some subtle energy wastes.

5.2.3 Analysis Overhead

Table 8 presents GreenDroid’s diagnosis overhead. For each
of our 13 subjects, it reports: (1) the number of application
states GreenDroid explored, (2) the average number of
event handlers GreenDroid executed during each applica-
tion execution, including those handlers for system
events,'' (3) diagnosis time, and (4) the amount of memory
GreenDroid consumed. For each subject, we conducted
experiments three times to obtain these results. The number
of application states explored and event handlers executed
in different runs remained the same. The diagnosis time
and memory consumption slightly varied in different runs
and Table 8 reports the averaged results.

We observe that GreenDroid could quickly explore
thousands of application states and perform energy ineffi-
ciency diagnosis. For example, for the two largest subjects
Omnidroid (over 12K LOC) and DroidAR (over 18K
LOC), GreenDroid explored over 50K states during its
diagnosis and executed over 60 event handlers in each
application execution (recall that GreenDroid executes
each subject many times). It finished diagnosis within five
minutes. The memory cost was less than 400 MB. Such
overhead can be well supported by modern PCs, and
compares favorably with state-of-the-art testing or debug-
ging techniques, which typically take hours to explore up
to 100K states [61]. This suggests that GreenDroid is a
practical tool for diagnosing energy problems in real-
world Android applications.

5.3 RQ5: Necessity and Usefulness of AEM Model

To answer research question RQ5 about the usefulness of
our proposed AEM model, we conducted two comparison
experiments. First, we ran GreenDroid to diagnose our
experimental subjects with the AEM model disabled,

11. System events could result in several consecutive handler calls.
For example, an activity-destroying event may trigger the concerned
activity’s onPause(), onStop(), and onDestroy() handlers in turn.

LIU ET AL.: GREENDROID: AUTOMATED DIAGNOSIS OF ENERGY INEFFICIENCY FOR SMARTPHONE APPLICATIONS

931

TABLE 8
Diagnosis Overhead and Random Execution Result

Application name

Diagnosis information and overhead

Explored states Avg. number of

Diagnosis time Memory Random event

handlers executed (seconds) consumption handler scheduling
during each applica- (MB) results (runtime
tion execution exceptions)
DroidAR 91,170 60 284 233 67/100
Recycle Locator 114,709 44 46 162 4/100
Ushahidi 55,269 75 32 175 58/100
AndTweet 98,410 33 47 192 82/100
Ebookdroid 57,330 42 22 149 86/100
BableSink 42,987 63 15 154 17/100
CWAC-Wakeful 30,705 46 11 118 11/100
Sofia Public Transport 57,316 50 17 204 62/100
Nav.
Osmdroid 120,189 43 159 575 79/100
Zmanim 54,270 34 114 237 31/100
Geohash Droid 144,710 60 185 229 71/100
Omnidroid 52,805 78 242 396 22/100
GPSLogger 58,824 28 41 153 9/100

assuming that event handlers can be randomly scheduled.
We examined whether GreenDroid could still locate energy
problems in such a setting. Second, to study whether the exe-
cutions of our experimental subjects in GreenDroid (with
AEM model enabled) resemble real executions, we instru-
mented all 149 event handlers defined in our largest subject
DroidAR, and conducted the following experiment. We ran-
domly selected 50 execution traces of Droid AR generated by
GreenDroid. These executions on average involve 54 event
handler calls (not necessarily distinct). We extracted from
them corresponding user interaction event sequences. We
then ran DroidAR in the Android emulator [4], which is
included in the Android Software Development Kit, and
manually provided the same user interactions (i.e., the same
event sequences). We logged real event handler calling
traces, and compared them with those from GreenDroid.
We discuss these experimental results below.

First experiment. We observe that without AEM model
(i.e., scheduling event handlers randomly), GreenDroid
(actually JPF) already encountered great challenges in exe-
cuting Android applications, not to mention diagnosing
any of their energy problems. The last column of Table 8
lists these execution results. Among 100 application execu-
tions, we observed many runtime exceptions. For example,
79 out of 100 executions of Osmdroid failed because of
runtime exceptions, and these exceptions also crashed JPF.
We manually studied these exceptions, and found that
most of them arose from ignoring data flow dependencies
between event handlers. For instance, it is quite often that
developers initialize a GUI widget instance in an activity’s
onCreate() handler, and later use this instance in other
handlers. In random handler scheduling, if other handlers
are wrongly scheduled before onCreate(), a null pointer
exception may be thrown. Such exceptions cannot be easily
addressed, and can cause termination of our energy diag-
nosis. For two small-sized subjects Recycle-locator and
GPSLogger, fewer exceptions (4 and 9) were observed
since their data flow dependencies between event handlers
are relatively simple. Still, these exceptions seriously

prevented GreenDroid from diagnosing our experimental
subjects. Besides, even for cases where no exception
occurred, we found that the diagnosis reports contain
many meaningless handler calling traces that offer little
information to help developers pinpoint energy problems.
This suggests that our AEM model is indeed necessary for
an effective diagnosis of energy problems in Android
applications. In addition, since our AEM model is essen-
tially an abstraction of event handler scheduling policies
for the Android platform, it can easily be adapted and
used in other analysis techniques for Android applications.

Second experiment. We observe that in 39 out of 50 exe-
cutions, GreenDroid generated exactly the same handler
calling traces as real executions. In the remaining 11
cases, GreenDroid failed to schedule event handlers in
the same way as real executions did due to two major rea-
sons. First, we did not consider dynamic GUI updates
when implementing GreenDroid. This could make Green-
Droid generate some user interaction events that are
impossible in an Android emulator (and also in real devi-
ces), because they are invalid due to runtime GUI updates
(four cases). Second, GreenDroid did not model concur-
rency adequately in its current implementation because
JPF did not fully model Java concurrency programming
constructs (e.g., java.util.concurrent.Executor was not
modeled). This caused GreenDroid to fail to handle some
system events (e.g., broadcast events) that were triggered
in some worker threads (seven cases). Although these
two problems did not cause noticeable consequences on
the effectiveness of our diagnosis, we will still consider
addressing them in future releases of our GreenDroid.
This requires non-trivial engineering effort.

5.4 RQ6: Impact of Event Sequence Length Limit

Our research question RQ6 studies how the thoroughness of
our energy diagnosis can be affected by the length limits on
generated user interaction event sequences. To answer this
question, we applied GreenDroid to analyze each of our

932 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.40, NO.9, SEPTEMBER 2014

TABLE 9
Statement Coverage with Respect to Different Event Sequence Length Limit Settings

Application # activity

Statement coverage (%)

Limit =0 Limit =1 Limit =2 Limit =3 Limit =4 Limit=05 Limit=6 Limit=7 Limit=38

name components

DroidAR 6 0.54! 2.28 11.99
Recycle Locator 3 1.23 16.11 23.76
Ushahidi 17 1.47 4.06 10.97
AndTweet 6 1.74 10.25 12.07
Ebookdroid 8 0.20 2.02 2.79
BableSink 1 2.68 24.39 30.33
CWAC-Wakeful 1 1.12 10.27 32.37
Sofia Public 3 3.47 9.70 24.67

Transport Nav.
Osmdroid 8 1.01 11.36 18.09
Zmanim 3 1.72 11.81 27.71
Geohash Droid 9 2.96 10.31 19.87
Omnidroid 16 0.45 8.64 17.91
GPSLogger 1 4.86 14.11 44.31

11.99 12.54 12.54 12.54 12.54° 12.54
28.17 32.18 36.96 36.96 36.96 36.96
15.17 19.87 25.35 25.39 25.39 25.39
15.94 15.94 15.94 15.94 15.94 15.94
12.72 25.81 25.81 25.81 25.81 25.81
30.38 30.38 30.38 30.38 30.38 30.38
42.30 42.30 42.30 42.30 42.30 42.30
37.91 38.12 38.12 38.12 38.12 38.12
18.93 24.68 30.15 30.15 30.15 30.15
27.96 28.04 28.08 28.08 28.08 28.08
22.94 25.58 25.62 25.62 25.62 25.62
18.25 20.88 20.88 20.88 20.88 20.88
46.13 46.13 46.13 46.13 46.13 46.13

I: Statement coverage is not 0 because in our implementation we do not count “launch the entry activity (when analysis starts)” and “finish all active activities
and services (when analysis ends) ” when generating user interaction event sequences.
2: Underlined runs took more than one hour to finish. Memory consumption (maximum heap size set to 4 GB) did not increase much when we relaxed the length

limits.

application subjects multiple times and studied how the
code coverage would change accordingly. Specifically,
GreenDroid analyzed each application nine times. For these
nine runs, we gradually increased the length limit from 0 to
8 and measured the percentage of source code lines that
were executed (i.e., statement coverage). We chose state-
ment coverage as the metric for measuring the thorough-
ness of our diagnosis for two reasons. First, to the best of
our knowledge, we are not aware of any existing metrics
that are designed for assessing the thoroughness of energy
diagnosis. Second, statement coverage has been widely
used for measuring code coverage for general purposes
because it strikes a good balance between utility and collec-
tion overheads [11], [52]. Table 9 reports our study results
and from them we obtain two major findings as discussed
in the following.

Coverage saturation. We observe that for all application
subjects, the statement coverage increases quickly at the
beginning with the growth in the length of generated event
sequences. The coverage gradually saturates at certain
points and stops increasing when the length limit further
grows. Take Osmdroid as an example. Its statement cover-
age increases from 1.01 to 24.68 percent when the length
limit grows from 0 to 4. When the length limit reaches 5, the
statement coverage saturates at 30.15 percent, with no fur-
ther increase even if the length limit grows to a larger value.
Other applications are similar. To understand why, we
inspected all these applications. We found that many of
these applications contain only a small number of activity
components (with GUI). As listed in the second column of
Table 9, eight of our 13 applications contain no more than
six activity components. Although the applications Usha-
hidi and Omnidroid contain relatively larger number of
activity components, we found that many of these activity
components are actually designed for displaying informa-
tion. Besides, for user friendliness, developers have made
their applications” GUIs intuitive. This means that users do
not have to perform very long sequences of interactions

from an application’s entry GUI to reach other GUIs for
using their designed functionalities. This explains why the
statement coverage measurement can quickly saturate for
our studied applications.

Difficulties in achieving high coverage. We also observe that
even if our event sequence generation enumerates all possi-
ble combinations of user interaction events, GreenDroid can
still achieve only low statement coverage for some applica-
tions. For example, for DroidAR, AndTweet and Omni-
droid, GreenDroid covers less than 25 percent statements.
We thus inspected these three applications and found three
major difficulties in achieving higher code coverage. These
findings can benefit related research such as automated
Android application testing [11], [34]. We discuss these
findings in the following;:

e Sophisticated external stimulus. Achieving high code
coverage may require sophisticated external stimu-
lus for certain Android applications. For example,
Omnidroid registers a broadcast receiver with
Android OS to monitor 26 different system broadcast
events (e.g., “missing phone call” and “phone con-
nected to a physical dock” broadcast events). A large
proportion of its code is used for handling such
broadcasted system events, while our GreenDroid
currently cannot actively generate such events. This
suggests that in order to cover such code, systematic
simulation of external stimulus would be necessary.

o Complex inputs and non-standard user interactions.
Achieving high code coverage may require complex
inputs and non-standard user interactions for certain
Android applications. Take DroidAR, an augmented
reality application on Android, for example. It
presents its user a live view of real-world objects
that are augmented with various sensory inputs, and
allows the user to interact with these objects digi-
tally. In many cases, DroidAR requires video input
from phone cameras for recognizing and rendering

LIU ET AL.: GREENDROID: AUTOMATED DIAGNOSIS OF ENERGY INEFFICIENCY FOR SMARTPHONE APPLICATIONS 933

augmented objects accordingly. It contains two
types of GUI elements: (1) standard GUI elements
defined in Android libraries (e.g., buttons), and (2)
augmented objects rendered by native graphics
libraries. Both types of GUI elements can be
dynamically updated. Therefore, covering a high
proportion of DroidAR code would require its
user not only to interact with standard GUI ele-
ments (e.g., clicking buttons), but also to interact
with the non-standard GUI elements (e.g., rotating
augmented objects). However, our GreenDroid
currently cannot support video inputs or user
interactions with non-standard GUI elements. This
explains why GreenDroid achieves low code cov-
erage when diagnosing DroidAR.

e Special running environment. Achieving high code cov-
erage may require special running environments for
certain Android applications. For example, AndT-
weet is a light-weight Twitter chat client. Covering
most of its code requires: (1) a valid Twitter account,
(2) network connectivity, and (3) meaningful data
(e.g., tweets and followers) associated with this
account. Failing to satisfy any of these requirements
would make the application run meaninglessly, lead-
ing to low code coverage. Our GreenDroid currently
does not know how to satisfy such application-spe-
cific requirements and this deserves further research.

From the above discussions, we can make two observa-
tions. First, similar to related studies [1], it is practical to
limit the length of generated event sequences in program
analysis due to the combinatorial explosion problem. In our
case, setting the length limit to six is a cost-effective choice.
This is because a larger length limit does not further
improve code coverage, but instead results in much longer
diagnosis time (as in a magnitude of hours), as reported by
our experiments. In practice, such settings should be made
on a case by case basis as different applications may have
different characteristics. Therefore, tools like our Green-
Droid should allow its users to customize their required
depth of diagnosis and provide a time budget [45]. Second,
we observed that for some application subjects, GreenDroid
located their energy problems even with low statement cov-
erage. This can be explained. As discussed earlier (Sections 1
and 3), energy problems typically only occur at certain
application states reached by handling corresponding user
interactions. For example, the energy problem in Zmanim
can be exposed by the following four steps: (1) switching on
GPS, (2) configuring Zmanim to use current location, (3)
starting Zmanim’s main activity, and (4) hitting the “Home”
button when GPS is acquiring a location. Therefore, generat-
ing user interactions in a certain order is a prerequisite for
exposing such problems. GreenDroid essentially enumera-
tes all possible combinations of different types of user inter-
action events (e.g., button click events and checkbox
selection events) and provides appropriate event values
when generating these events. This explains why it can sys-
tematically explore an application’s state space to locate
potential energy problems. This also suggests that although
statement coverage can be used for measuring the code cov-
erage achieved by a certain energy diagnosis approach, it

may not be a good metric candidate for assessing the effec-
tiveness of such energy diagnosis.

5.5 RQ7: Comparison with Existing Resource Leak
Detection Work

Our work shares some similarity with existing resource leak
detection work [10], [32], [66], [68] since sensor listeners and
wake locks are considered as valuable resources in Android
OS and applications. Our last research question RQ7 studies
how our GreenDroid compares to such work in terms of
detecting real missing sensor or wake lock deactivation prob-
lems. To answer this question, we chose Relda for compari-
son [32]. Relda is the latest resource leak detection work
dedicated for Android applications [32]. It is a fully auto-
mated static analysis tool for Android applications and sup-
ports detecting leak of 65 types of system resources, which
also include sensor listeners and wake locks as studied in
our work. Therefore, it would be interesting to know
whether Relda can also effectively help detect missing sensor
or wake lock deactivation problems in our studied Android
application subjects. With the help of Relda’s authors, we
conducted experiments using their original tool (not our
implementation, which can otherwise lead to bias in the com-
parison). We applied Relda to analyze all 13 application sub-
jects listed in Table 7. It reported 36 resource leak warnings,
out of which 15 are related to sensors and wake locks, while
the remaining 21 are related to other seven types of resources
(e.g., phone cameras), which are outside the scope of this
paper. We further invited Relda’s authors to manually vali-
date these raw data and remove duplicate and false warn-
ings as they did in their publication [32] (we did not do it by
ourselves in order to avoid bias). Finally, they confirmed that
Relda detected two real resource leak problems in Droid AR
and one in Ebookdroid out of our 13 application subjects. By
analyzing the experimental results, we obtained several find-
ings as discussed below.

First, the two problems Relda detected in DroidAR hap-
pened because developers forgot to unregister a sensor lis-
tener and to disable a phone vibrator after usage,
respectively. The other problem Relda detected in Ebook-
droid happened because developers forgot to recycle a
velocity tracker (it tracks the velocity of touch events for
detecting gestures like flinging) back to the Android OS
after using it. From these results, we can see that Relda can
indeed detect more types of resource leaks than GreenDroid
since it has a much wider focus. However, two of the three
detected real problems are not related to sensors or wake
locks. Within the scope of this paper, Relda actually
detected only one real problem of our interest (i.e., the miss-
ing sensor deactivation problem in DroidAR). As a compari-
son, our GreenDroid detected eight missing sensor or wake
lock deactivation problems in these 13 application subjects
as we discussed earlier. All these eight problems (including
the one detected by Relda) are real problems as confirmed
by developers.

Second, we carefully studied Relda to understand why it
cannot effectively detect the other seven real missing sensor
or wake lock deactivation problems that can be detected by
GreenDroid in our studied Android applications. Based on
our study results and our communications with Relda’s

934 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.40, NO.9, SEPTEMBER 2014

authors, we identified four major reasons: (1) Relda does not
conduct intra-procedural flow analysis. To avoid false posi-
tives, which can be a major concern for static analysis, Relda
does not report any resource leak problem as long as a con-
cerned resource can possibly be released at any program
path. Due to this conservative nature, Relda did not effec-
tively detect missing wake lock deactivation problems in
BabbleSink and AndTweet. For example, the wake lock
acquired by AndTweet might be released in certain pro-
gram paths, but such paths could only be executed in excep-
tional cases that are not feasible during normal running (see
Section 3.3 for more details). As such, AndTweet can con-
stantly drain a phone’s batter energy during its normal
usage, but this problem cannot be reported by Relda. (2)
Relda does not conduct point-to analysis. Thus it cannot
figure out what object(s) a reference is pointing to, and this
is a common limitation of static analysis techniques without
point-to analysis. Due to this reason, Relda did not effec-
tively detect the missing sensor deactivation problem in
Ushahidi, where its developers mistakenly passed a newly
created GPS sensor listener to the unregistration API (line
11 in Fig. 9), instead of passing the listener that has been reg-
istered earlier (line 6 in Fig. 9). (3) Relda does not properly
model or consider event handler scheduling as we studied
in this work. Thus it cannot handle message passing and
receiving well. Due to this reason, it did not detect the miss-
ing wake lock deactivation problem in CWAC-Wakeful.
The reason is that CWAC-Wakeful acquires a wake lock
from the Android OS only when it receives a message that
asks it to perform some long running task at background.
(4) Relda did not detect missing sensor or wake lock deacti-
vation problems in Recycle Locator, Sofia Public Transport
Nav. and Ebookdroid due to its incomplete resource opera-
tion table. These applications use sensors or wake locks by
calling compound APIs that wrap basic sensor listener reg-
istration/unregistration APIs or basic wake lock acquisi-
tion/releasing APIs. For example, Sofia Public Transport
Nav. calls Google Maps APIs to use a phone’s GPS sensor,
but Google Maps APIs have wrapped GPS sensor listener
registration/unregistration APIs such that the latter cannot
be examined by Relda. Our GreenDroid does not have these
discussed issues. It systematically executes an Android
application. Its dynamic analysis is naturally flow-sensitive
and does not need point-to analysis. Besides, it relies on our
AEM model to ensure reasonable scheduling of event han-
dlers so that it can handle messaging passing and receiving
properly. Moreover, GreenDroid only focuses on two types
of resources, i.e., sensor listeners and wake locks, so that we
could prepare a more complete operation table for them
with affordable effort. This explains why Relda missed
some missing sensor or wake lock deactivation problems
but GreenDroid could still detect them.

Third, although Relda can detect energy problems
caused by missing sensor or wake lock deactivation as a
form of resource leak, it cannot help diagnose energy
problems caused by sensory data underutilization. These
problems are more complicated as discussed throughout
this paper. Our GreenDroid supports automated analysis
of sensory data utilization and can help developers diag-
nose energy problems caused by cost-ineffective use of
sensory data.

From the above discussions, we can observe that both
Relda and GreenDroid have their own scopes and strengths.
Relda can detect a wider range of resource leak problems
and some of them may lead to serious energy waste. On the
other hand, GreenDroid’s scope is more focused (sensor
and wake lock related energy problems) and its energy
problem detection capability is satisfactory. In terms of
detecting energy problems caused by missing sensor or
wake lock deactivation, GreenDroid performs better than
Relda. We did not compare GreenDroid to other resource
leak detection work due to various reasons including tool
availability and applicability (some work are for conven-
tional Java programs, e.g., Torlak et al.’s work [66]). The
above comparisons and discussions confirm that Green-
Droid is useful and effective for diagnosing energy prob-
lems in Android applications, and its idea may also
complement and contribute to existing resource leak detec-
tion work on the Android platform.

5.6 Discussions

Patching GPSLogger. As mentioned earlier, we were invited
by GPSLogger developers to make a patch to improve
GPSLogger’s energy efficiency. To be realistic, we built this
patch by following an accepted patch for fixing Geohash
Droid’s energy problem [25]. Our patch slightly modifies
GPSLogger’s GPS sensing part, aiming not to affect its func-
tionalities. Specifically, the patched GPSLogger would slow
down its GPS sensing rate to every 30 seconds when it finds
that its collected GPS data remain at low quality (e.g., after
five consecutive imprecise readings), and set the sensing
rate immediately back to the original value when it finds
that its GPS data have become precise again (e.g., after two
consecutive precise readings). We submitted this patch to
GPSLogger developers and it was recently accepted. We
also helped release it online for trial downloads for inter-
ested users.'? So far, this patch has received more than 400
downloads. This indicates that developers indeed acknowl-
edge and accept our efforts in helping defend their Android
applications from energy inefficiency.

Tool implementation. Our energy diagnosis approach is
independent of its underlying program analysis frame-
work. Currently, we implemented it on top of JPF because
JPF is a highly extensible Java program verification frame-
work with internal support for dynamic tainting. However,
analyzing Android applications using JPF is still challeng-
ing as discussed throughout this paper. We have to care-
fully address the problems of event sequence generation
and event handler scheduling, as well as Android library
modeling. In particular, modeling Android libraries is
known to be a tedious and error-prone task [45]. This is
why our current implementation only modeled a partial,
but critical, set of library classes and concerned APIs.
Extending our tool to support more Android APlIs is possi-
ble, but would require more engineering effort, and our
GreenDroid is evolving along this direction. Besides, in
GreenDroid’s current implementation, all temporal rules in
our AEM model have been translated into code for ease of
use. We are considering building a more general execution

12. https:/ /code.google.com/p/gpslogger/downloads /list.

LIU ET AL.: GREENDROID: AUTOMATED DIAGNOSIS OF ENERGY INEFFICIENCY FOR SMARTPHONE APPLICATIONS 935

engine that can take these rules as inputs to schedule
Android event handlers reasonably. This would make our
GreenDroid more extensible to new rules. To realize this,
we need: (1) a new domain language to specify these rules,
and (2) a mechanism that automatically interprets and
enforces these rules at runtime. Moreover, we are also con-
sidering integrating our diagnosis approach into Android
framework by modifying the Dalvik virtual machine much
the same as Enck et al. did [22]. This can bring two bene-
fits. First, it enables real-time energy inefficiency diagnosis.
Second, modeling Android libraries is no longer necessary,
such that the imprecision caused by inadequate library
modeling can also be alleviated or avoided. Lastly, Green-
Droid can be designed to be interactive, providing its users
visualizations of sensory data usage details. This would
help developers quickly figure out the root causes for a
wide range of domain-specific energy problems.

Tainting quality. Our sensory data utilization analysis
relies on dynamic tainting for tracking propagation of sen-
sory data. It is well known that designing precise dynamic
tainting is challenging [62]. Researchers have found that
ignoring control dependencies in taint propagation can
cause undertainting (i.e., failing to taint some data derived
from taint sources), but considering control dependencies
can also cause overtainting (i.e., tainting some data that are
not derived from taint sources) [37]. It is therefore sug-
gested that the tainting policy should be designed accord-
ing to its application scenarios [62]. In our case, we need to
track propagation of sensory data and identify program
data that are derived from such sensory data. For this pur-
pose, we adapted TaintDroid’s tainting policy [22] and
added a special rule for handling control dependencies
(ignoring control dependencies is one of TaintDroid’s limi-
tations). While this rule may potentially result in overtaint-
ing in theory, we did not observe any evident impact on
our sensory data utilization analysis results. We made
some analysis of our studied application subjects. We
found that unlike user privacy data (e.g., phone number)
handled by TaintDroid, sensory data in our studied appli-
cations are typically updated frequently. These data can be
quickly replaced with new data. Their consumption is thus
short-term, implying that they are unlikely to affect a large
volume of program data in Android applications. This
explains why our control dependency handling does not
introduce evident overtainting problems.

Limitations. Our current GreenDroid implementation has
some limitations. First, GreenDroid cannot generate com-
plex inputs (e.g., video inputs or user gestures). Thus, there
can be application states not reachable by GreenDroid. If
any energy problem is associated with these states, Green-
Droid would not be able to detect them. Second, Green-
Droid’s event sequence generation belongs to the category
of model-based approaches [34], [45], [69]. One common
problem with these approaches is that they rely on a stati-
cally extracted model and lack runtime information. For
example, GreenDroid relies on a GUI model extracted by
statically analyzing an application’s layout configurations.
It cannot cope with dynamic GUI updates (e.g., news read-
ing applications can dynamically load a new list of items).
Therefore, we found in our evaluation that GreenDroid
sometimes generated infeasible user interaction event

sequences (e.g., a sequence containing a click event on a
GUI element that has been removed). For our largest subject
DroidAR, GreenDroid generated around 8 percent infeasi-
ble event sequences due to its inability to handle dynamic
GUI updates. Third, GreenDroid cannot systematically sim-
ulate different sensory data as this requires a comprehen-
sive characteristic study of real-world sensory data.
Currently, we randomly picked up mock sensory data from
a pre-prepared data pool controlled by different precision
levels. It could be possible that the selection of sensory data
has an impact on a program’s control flow (e.g., an execu-
tion path that requires specific data values cannot be
explored). Although we did not observe the above three
issues affecting GreenDroid’s effectiveness in diagnosing
our application subjects, we are investigating them and
plan to come up with more complete solutions in future.
For example, the second limitation may be addressed by
integrating GreenDroid’s energy inefficiency diagnosis into
the Android framework. Then its event sequence generation
no longer needs pre-extracted GUI models for Android
applications under diagnosis. Instead, one can analyze an
application’s GUI layout at runtime and adapt automated
testing tools like Robotium [61] for generating user interac-
tion events. This limitation may also be addressed by add-
ing event sequence feasibility validation to GreenDroid
(e.g., using Jensen et al.’s work [34]). Then GreenDroid can
first validate the feasibility of its generated event sequences
before presenting them to developers for reproducing its
detected energy problems. We leave these potential
improvements to our future work.

Alternative analysis approach. Our current sensory data
utilization analysis is only one possible approach. It ana-
lyzes how many times and to what extent sensory data are
utilized by an application at certain states. We believe that
there can also be other good designs for effective analysis
of sensory data utilization. We discuss one possible alterna-
tive here. For example, instead of accumulating sensory
data consumptions (i.e., analyzing how many times sensory
data are utilized; see Equation (2)) in the analysis, we can
also consider that as long as sensory data are effectively uti-
lized once, the battery energy for collecting the data is well
spent. Besides, when designing the “data usage” metric, we
can also choose not to distinguish different APIs that utilize
sensory data. Specifically, we can choose not to scale the
usage metric value by the number of bytecode instructions
executed during the invocation of an API that utilizes sen-
sory data (i.e.,, not analyzing to what extent the sensory
data are utilized). Such a design may also help locate
energy problems. For instance, although we cannot distin-
guish how many times sensory data are utilized in different
application states, we can still identify application states
that totally do not utilize sensory data. In our experiments,
we found that such “complete energy waste” cases indeed
exist (i.e., GPSLogger’s energy problem). However, for
most of our studied energy problems, the concerned appli-
cations do not totally discard collected sensory data. For
example, Geohash Droid always uses location data to
update a phone’s notification bar (see Fig. 4a), but still its
developers consider that if other remote listeners are not
actively monitoring location updates, then only updating
phone notification bar is a waste of valuable battery energy.

936 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.40, NO.9, SEPTEMBER 2014

In such cases, the alternative design might not be able to
locate such energy problems. As a comparison, our
approach can not only help locate application states that
totally do not utilize sensory data, but also help locate those
that do not utilize sensory data in a fully effective manner.
Therefore, it can generally provide finer-grained informa-
tion for energy diagnosis and optimization. Of course, our
design allows GreenDroid to report more energy problems
than the alternative design. This is why we also propose a
prioritization strategy to help developers focus on the
potentially most serious energy problems, i.e., those have
the lowest data utilization coefficients.

6 RELATED WORK

Our GreenDroid work relates to several research topics,
which include energy efficiency analysis, energy consump-
tion estimation, resource leak detection, and information
flow tracking. Some of them particularly focus on smart-
phone applications. In this section, we discuss representa-
tive pieces of work in recent years.

6.1

Smartphone applications’ energy efficiency is vital. In past
several years, researchers have worked on this topic mostly
from two perspectives. First, various design strategies have
been proposed to reduce energy consumption for smart-
phone applications. For example, MAUI [18] helped offload
“energy-consuming” tasks to resource-rich infrastructures
such as remote servers. EnTracked [38] and RAPS [57]
adopted different heuristics to guide an application to use
GPS sensors in a smart way. Little Rock [58] suggested a ded-
icated low power processor for energy-consuming sensing
operations. SALSA [59] helped select optimal data links for
saving energy in large data transmissions. Second, different
techniques have been proposed to diagnose energy problems
in smartphone applications. Kim et al. proposed to use
power signatures based on system hardware states to detect
energy-greedy malware [36]. Pathak et al. conducted the first
study of energy bugs in smartphone applications, and pro-
posed to use reaching-definition dataflow analysis algo-
rithms to detect no-sleep energy bugs, which can arise from
mishandling of power control APIs in Android applications
(e.g., wake lock acquisition/releasing APIs) [54], [56]. Zhang
et al. proposed a taint-tracking technique for the Android
platform to detect energy wastes caused by unnecessary net-
work communications [70]. To help end users troubleshoot
energy problems on their smartphones, Ma et al. built a tool
to monitor smartphones’ resource usage behavior as well as
system or user events (e.g., configuration changes in certain
applications) [43]. Their tool can help identify triggering
events that cause abnormally high energy consumption, and
suggest corresponding repair solutions (e.g., reverting con-
figuration changes) to users.

Our work shares a similar goal with these pieces of
work, in particular, recent work in the second category dis-
cussed above [43], [56], [70]. Nevertheless, our work differs
from them on several aspects. Regarding Pathak et al.’s
work [56], our work has two distinct differences. First, we
found that detecting no-sleep bugs like missing wake lock
deactivation is not difficult. One can always adapt existing

Energy Efficiency Analysis

resource leak detection (as we did in this paper) or classic
reaching-definition data flow analysis (as they did in their
work) techniques for this purpose. However, our empirical
study revealed more subtle energy problems caused by
sensory data underutilization. As discussed earlier, effec-
tively detecting sensory data underutilization problems is
non-trivial. It requires a systematic exploration of an
application’s state space and a precise analysis of sensory
data utilization. Second, to conduct data flow analysis,
Pathak et al. assumed that control flows between event
handlers were already available from application develop-
ers. This is not a practical assumption for Android applica-
tions. Asking developers to manually derive program
control flow information is unrealistic, especially when
applications contain hundreds of event handlers (e.g., our
experimental subjects DroidAR and Omnidroid). As such,
we chose to formulate handler scheduling policies
extracted from Android specifications as an AEM model so
that it can be reusable across different applications for cor-
rectly scheduling event handlers during program analysis.
Our experimental results have confirmed that this model is
necessary and useful for effectively diagnosing energy
problems in Android applications.

Zhang et al’s work also makes a similar observation to
ours, i.e., using network data to update invisible GUIs can
be an energy waste [70]. However, our work differs from
theirs in three ways. First, we focus on energy problems
caused by cost-ineffective uses of sensory data instead of
network data, as our empirical study reveals that ineffective
use of sensory data has often caused massive energy waste.
Second, besides analyzing how sensory data are utilized by
Android applications, we also studied ways of systemati-
cally generating event sequences to exercise an application,
while their work may require extra testing effort for effec-
tive analysis (they did not study how to automate an
application’s execution for analysis). Third, we proposed a
state-based analysis of sensory data utilization. It effectively
distinguishes different usage scenarios of sensory data,
while Zhang et al.’s work only supports distinguishing two
types of scenarios, i.e., network data used to update visible
or invisible GUISs, respectively. As a result, our work can
provide richer information to help diagnose energy prob-
lems with a wider scope.

Our work also has a different objective from Ma et al.’s
work [43]. Their work does not analyze an application’s pro-
gram code. Instead, it monitors a device’s energy consump-
tion as well as system or user events to help identify those
events that have likely caused abnormally high energy con-
sumption. By reverting the effect of these events (e.g., unin-
stalling a suspicious application), users can potentially
suffer less battery drain. On the other hand, our work
directly diagnoses causes of energy problems in an
application’s program code and helps fix them by providing
concrete problem-triggering conditions.

Our preliminary version of this work (i.e., our earlier con-
ference paper [42]) has shown that sensory data utilization
analysis can help locate energy problems caused by cost-
ineffective use of sensory data. In this paper, we enhanced
our sensory data utilization analysis algorithm by address-
ing two issues in our earlier analysis discussed in the confer-
ence paper. First, our earlier analysis considers intermediate

LIU ET AL.: GREENDROID: AUTOMATED DIAGNOSIS OF ENERGY INEFFICIENCY FOR SMARTPHONE APPLICATIONS 937

computational instructions as legitimate utilization of sen-
sory data, but these instructions’ execution may not produce
perceptible benefits for users. For example, consider the fol-
lowing two scenarios, which could occur in reality (although
we did not see such examples in our experiments). In the first
scenario, an application receives raw GPS data. It conducts
non-trivial intermediate computation to process these data,
but the processed data are not used afterwards. In the second
scenario, GPS data are slightly processed before they are uti-
lized to render visible GUI elements for user interaction.
From this example, we can see that the battery power is
clearly wasted in the first scenario. However, our earlier
analysis would consider that sensory data have been more
effectively utilized in the first scenario than the second due
to the non-trivial intermediate computation involved.
Another issue is that our earlier analysis requires assigning a
weighting function for each instruction that uses sensory
data. The determination of such weighting functions may
not be obvious for Android developers and can vary across
different applications. Therefore, to address these two issues,
we enhanced our analysis algorithm in this paper by consid-
ering only those instructions that consume sensory data and
produce observable benefits to users as legitimate utilization
of sensory data. The new analysis algorithm can successfully
identify the first scenario in the above example as a problem-
atic scenario. Besides, since the algorithm makes a binary
decision when judging whether sensory data are effectively
used by an application, our analysis no longer depends on
weighting functions whose weighting factors may require
manual customization effort.

6.2 Energy Consumption Estimation

One major reason why so many smartphone applications
are not energy efficient is that developers lack viable
tools to estimate energy consumption for their applica-
tions. Extensive research has been conducted to address
this topic. PowerTutor [71] uses system-level power-con-
sumption models to estimate the energy consumed by
major system components (e.g., display) during the exe-
cution of Android applications. Such models are a func-
tion of selected system features (e.g., CPU utilization)
and obtained by direct measurements during the control-
ling of the device’s power state. Sesame [21] shares the
same goal as PowerTutor, but can perform energy esti-
mation for much smaller time intervals (e.g., as small as
10 ms). eProf [55] is another estimation tool. Instead of
estimating energy consumption at a system level like
PowerTutor and Sesame, eProf estimates energy consump-
tion at an application level by tracing system calls made by
applications when they run on smartphones. WattsOn [46]
further extends eProf’s idea by enabling developers to esti-
mate their applications’ energy consumption on their
workstations, rather than real smartphones. The most
recent work is eLens [33]. It combines program analysis
and per-instruction energy modeling to enable much finer-
grained energy consumption estimation. However, eLens
assumes that smartphone manufacturers should provide
platform-dependent energy models for each instruction.
This is not a common practice as both the hardware
and software of a smartphone platform can evolve quickly.

Requiring manufacturers to provide a new set of instruc-
tion-level energy models for each platform update is
impractical. Regarding this, eLens provides a hardware-
based technical solution to help obtain such energy mod-
els. Still, power measurement hardware may not generally
be accessible for real-world developers.

Typical scenarios for the techniques discussed above are
to identify hotspots (software components that consume the
most energy) in smartphone applications, such that devel-
opers can perform energy consumption optimization. How-
ever, simply knowing the energy cost of a certain software
component is not adequate for an effective optimization
task. The missing key information is whether this energy
consumption is necessary or not. Consider an application
component that continually uses collected GPS data to ren-
der a map for navigation. This component can consume a
lot of energy and thus be identified as a hotspot. However,
although the energy cost can be high, this component is evi-
table in that it produces great benefits for its users by smart
navigation. As such, developers may not have to optimize
it. Based on this observation, our GreenDroid work helps
diagnose whether certain energy consumed by sensing
operations can produce corresponding benefits (i.e., high
sensory data utilization). This can help developers make
wise decisions when they face the choice of whether or not
to optimize energy consumption for certain application
components. For example, if they find that at some states,
sensing operations are performed frequently, but thus col-
lected sensory data are not effectively utilized, then they
can consider optimizing such sensing mechanisms to save
energy as Geohash Droid developers did [25].

6.3 Resource Leak Detection

System resources are finite and usually valuable. Devel-
opers are required to release acquired resources in a
timely fashion for their applications when these resources
are no longer needed. However, tasks for realizing this
requirement are often error-prone due to a variety of
human mistakes. Empirical evidence shows that resource
leaks commonly occur in practice [68]. To prevent
resource leaks, researchers proposed language-level
mechanisms and automated management techniques [20].
Various tools were also developed to detect resource
leaks [10], [66]. For example, QVM [10] is a specialized
runtime environment for detecting defects in Java pro-
grams. It monitors application executions and checks for
violations of resource safety policies. TRACKER [66] is an
industrial-strength tool for finding resource leaks in Java
programs. It conducts inter-procedural static analysis to
ensure no resource safety policy is violated on any execu-
tion path. Besides, Guo et al. recently collected a nearly
complete table of system resources in the Android frame-
work that require explicit release operations after usage
[32]. Similar to our work, they also adapted the general
idea of resource safety policy checking discussed in QVM
[10] and Tracker [66] for problem detection. The major
differences between our work and these pieces of work
are two-fold. First, we proposed to systematically explore
an Android application’s state space for energy problem
detection. This requires addressing technical challenges in

938 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.40, NO.9, SEPTEMBER 2014

generating user interaction event sequences and scheduling
event handlers. Second, we also focused on studying more
complex energy problems, i.e., sensory data underutiliza-
tion. As discussed throughout this paper, detecting these
energy problems requires precise tracking of sensory data
propagation and careful analysis of sensory data usage.
Regarding this, we have proposed analysis algorithms and
automated problem detection in this work, and they have
not been covered by these pieces of existing work.

6.4

Dynamic information flow tracking (DFT for short)
observes interesting data as they propagate in a program
execution [35]. DFT has many useful applications. For
example, TaintCheck [48] uses DFT to protect commodity
software from memory corruption attacks such as buffer
overflows. It taints input data from untrustworthy sour-
ces and ensures that they are never used in a dangerous
way. TaintDroid [22] prevents Android applications from
leaking users’ private data. It tracks such data from pri-
vacy-sensitive sources, and warns users when these data
leave the system. LeakpoINT [13] leverages DFT to pin-
point memory leaks in C and C++ programs. It taints
dynamically allocated memory blocks and monitors them
in case their release might be forgotten. Our GreenDroid
work demonstrates another application of DFT. We
showed that DFT can help track propagation of sensory
data, such that their utilization analysis against energy
consumption can be conducted to detect potential energy
problems in smartphone applications.

Information Flow Tracking

7 CONCLUDING REMARKS

In this paper, we presented an empirical study of real
energy problems in 402 Android applications, and identi-
fied two types of coding phenomena that commonly
cause energy waste: missing sensor or wake lock deacti-
vation, and sensory data underutilization. Based on these
findings, we proposed an approach for automated energy
problem diagnosis in Android applications. Our approach
systematically explores an application’s state space, auto-
matically analyzes its sensory data utilization, and moni-
tors the usage of sensors and wake locks. It helps
developers locate energy problems in their applications
and generates actionable reports, which can greatly ease
the task of reproducing energy problems as well as fixing
them for energy optimization. We implemented our
approach into a tool GreenDroid on top of JPF, and evalu-
ated it using 13 real-world popular Android applications.
Our experimental results confirmed the effectiveness and
practical usefulness of GreenDroid.

In future, we plan to study more Android applications
and identify other common causes of energy problems. For
example, we found from our study that a non-negligible
proportion (about 16 percent) of energy problems was
caused by network issues (e.g., energy-inefficient data trans-
mission). We are going to study these issues to further
extend our approach. By doing so, we expect that our
research will help advance energy efficiency practices for a
wider range of smartphone applications, and thus poten-
tially benefit millions of smartphone users.

ACKNOWLEDGMENTS

This research was partially funded by Research Grants
Council (General Research Fund 611813) of Hong Kong,
National High-Tech Research & Development Program (863
program 2013AA01A213), and National Natural Science
Foundation (61100038, 91318301, 61321491, 61361120097) of
China. Chang Xu was also partially supported by Program
for New Century Excellent Talents in University, China
(NCET-10-0486). Preliminary ideas of this work was dis-
cussed in a conference paper (PerCom 2013) [42]. The
authors greatly thank TSE editors and anonymous
reviewers for their valuable comments for improving the
conference version and this extended version. Besides, they
would also like to sincerely thank Relda’s authors [32] for
their generous help during our experiments. Chang Xu is
the corresponding author of this paper.

REFERENCES

[1] S. Anand, M. Naik, M. J. Harrold, and H. Yang, “Automated con-
colic testing of smartphone apps,” in Proc. ACM SIGSOFT 20th
Int. Symp. Found. Softw. Eng., 2012, pp. 59:1-59:11.

[2] Android activity lifecycles. (2013). [Online]. Available: http://
developer.android.com/guide/components/activities.html

[3] Android developers webstie. (2013). [Online]. Available: http://
developer.android.com/index.html

[4] Android emulator. (2013). [Online]. Available: http://developer.
android.com/tools/help/emulator.html

[5] Android Sensor Management. (2013). [Online]. Available: http://
developer.android.com/reference/android /hardware/
SensorManager.html

[6] Android Platform Versions. (2013). [Online]. Available: http://
developer.android.com/about/dashboards/index.html

[7]1 Android Process Lifecycle. (2013). [Online]. Available: http://
developer.android.com/reference/android /app/Activity.
html#ProcessLifecycle

[8] Android power management. (2013). [Online]. Available: http://
developer.android.com/reference/android /os/PowerManager.
html

[91 AndTweet issue 29. (2013). [Online]. Available: https://code.
google.com/p/andtweet/issues/detail?id=29

[10] M. Arnold, M. Vechev, and E. Yahav, “QVM: An efficient runtime
for detecting defects in deployed systems,” ACM Trans. Softw.
Eng. Methodol., vol. 21, pp. 2:1-2:35, 2011.

[11] T. Azim and I. Neamtiu, “Targeted and depth-first exploration for
systematic testing of android apps,” in Proc. ACM SIGPLAN Int.
Conf. Object-Oriented Program. Syst. Lang. Appl., 2013, pp. 641-660.

[12] J. Clause, W. Li, and A. Orso, “Dytan: A generic dynamic taint
analysis framework,” in Proc. Int. Symp. Softw. Testing Anal., 2007,
pp. 196-206.

[13] J.Clause and A. Orso, “Leakpoint: Pinpointing the causes of mem-
ory leaks,” in Proc. Int. Conf. Softw. Eng., 2010, pp. 515-524.

[14] Crawler4j. (2013). [Online]. Available: https://code.google.com/
p/crawlerdj/

[15] CSipSimple issue 81. (2013). [Online]. Available: https://code.
google.com/p/csipsimple/issues/detail?id=81

[16] CSipSimple issue 744. (2013). [Online]. Available: https://code.
google.com/p/csipsimple/issues/detail?id=744

[17] CSipSimple issue 1674. (2013). [Online]. Available: https://code.
google.com/p/csipsimple/issues/detail?id=1674

[18] E. Cuervo, A. Balasubramanian, D. Cho, A. Wolman, S. Saroiu, R.
Chandra, and P. Bahl, “MAUI: Making smartphones last longer
with code offload,” in Proc. Int. Conf. Mobile Syst., Appl. Serv., 2010,
pPp- 49-62.

[19] dex2jar. (2013). [Online]. Available: https://code.google.com/p/
dex2jar/

[20] I Dillig, T. Dillig, E. Yahav, and S. Chandra, “The CLOSER: Auto-
mating resource management in Java,” in Proc. Int. Symp. Memory
Manage., 2008, pp. 1-10.

[21] M. Dong and L. Zhong, “Sesame: Self-constructive high-rate sys-
tem energy modeling for battery-powered mobile systems,” in
Proc. Int. Conf. Mobile Syst. Appl. Serv., 2011, pp. 335-348.

LIU ET AL.: GREENDROID: AUTOMATED DIAGNOSIS OF ENERGY INEFFICIENCY FOR SMARTPHONE APPLICATIONS

[22]

[23]

[24]

[25]
[26]

[27]
[28]

[29]
[30]
[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[391

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[471

[48]

W. Enck, P. Gilbert, B. G. Chun, L. P. Cox, J. Jung, P. McDa-
niel, and A. N. Sheth, “TaintDroid: An information-flow track-
ing system for realtime privacy monitoring on smartphones,”
in Proc. USENIX Conf. Operating Syst. Des. Impl., 2010,
pp- 393-407.

K. Etessami, and T. Wilke, “An Until hierarchy for temporal log-
ic,” in Proc. IEEE Symp. Logic Comput. Sci., 1996, pp. 108-117.

A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android
permissions demystified,” in Proc. ACM Conf. Comput. Commun.
Security, 2011, pp. 627-638.

Geohashdroid issue 24. (2013). [Online]. Available: https://code.
google.com/p/geohashdroid /issues/detail?id=24
Google code website. (2013). [Online]. Available:
google.com/

Github website. (2013). [Online]. Available: https://github.com/
Google play store website. (2013). [Online]. Available: https://
play.google.com/store

Google play wiki page. (2013). [Online]. Available: http://en.
wikipedia.org/wiki/Google Play

GPSLogger issue 7. (2013). [Online]. Available:
google.com/p/gpslogger/issues/detail?id=7
GreenDroid project. (2013). [Online]. Available: http://sccpu?.
cse.ust.hk/greendroid/

C. Guo, J. Zhang, J. Yan, Z. Zhang, and Y. Zhang, “Characterizing
and detecting resource leaks in Android applications,” in Proc.
ACM/IEEE Int. Conf. Autom. Softw. Eng., 2013, pp. 389-398.

S. Hao, D. Li, W. G.]. Halfond, and R. Govindan, “Estimating
mobile application energy consumption using program analysis,”
in Proc. 35th Int. Conf. Softw. Eng., pp. 92-101.

C. S. Jensen, M. R. Prasad, and A. Moller, “Automated testing
with targeted event sequence generation,” in Proc. Int. Symp.
Softw. Testing Anal., 2013, pp. 67-77.

V. P. Kemerlis, G. Portokalidis, K. Jee, and A. D. Keromytis,
“Libdft: Practical dynamic data flow tracking for commodity sys-
tems,” in Proc. ACM Conf. Virtual Exe. Env., 2012, pp. 121-132.

H. Kim, J. Smith, and K. G. Shin, “Detecting energy-greedy anom-
alies and mobile malware variants,” in Proc. Int. Conf. Mobile Sys.
App., Serv., 2008, pp. 239-252.

D. King, B. Hicks, M. Hicks, and T. Jaeger, “Implicit flows: can’t
live with "Em, can’t live without "Em,” in Proc. Int. Conf. Info. Syst.
Security, 2008, pp. 56-70.

M. B. Kjeergaard, J. Langdal, T. Godsk, and T. Toftkjer,
“Entracked: Energy-efficient robust position tracking for mobile
devices,” in Proc. Int. Conf. Mobile Syst. Appl. Serv., 2009, pp. 221-
234.

K9Mail issue 1986. (2013). [Online]. Available:
google.com/p/k9mail/issues/detail?id=1986
K9Mail issue 3348. (2013). [Online]. Available:
google.com/p/k9mail/issues/detail?id=3348

Y. Liu, C. Xu and S. C. Cheung, “Verifying Android applications
using Java pathfinder,” Dept. Comput. Sci. Eng., The Hong Kong
Univ. Sci. Technol,, New Territories, Hong Kong, Tech. Rep.
HKUST-CS-12-03, Sep. 2012.

Y. Liu, C. Xu, and S. C. Cheung, “Where has my battery gone?
Finding sensor related energy black holes in smartphone
applications,” in Proc. 11th IEEE Int’. Conf. Pervasive Comput. Com-
mun., 2013, pp. 2-10.

X. Ma, P. Huang, X. Jin, P. Wang, S. Park, D. Shen, Y. Zhou, L. K.
Saul, and G. M. Voelker, “eDoctor: Automatically diagnosing
abnormal battery drain issues on smartphones,” in Proc. 10th
ACMJUSENIX Symp. Networked Syst. Des. Implementation, Apr.
2013, pp. 57-70.

H. B. Mann and D. R. Whitney, “On a test of whether one of two
random variables is stochastically larger than the other,” Ann.
Math. Statist., vol. 18, pp. 50-60, 1947.

N. Mirzaei, S. Malek, C. S. Pasareanu, N. Esfahani, and R. Mah-
mood, “Testing Android apps through symbolic execution,” SIG-
SOFT Softw. Eng. Notes, vol. 37, pp. 1-5, 2012.

R. Mittal, A. Kansal, and R. Chandra, “Empowering developers to
estimate app energy consumption,” in Proc. 18th Int. Conf. Mobile
Comput. Netw., 2012, pp. 317-328.

MyTracks issue 520. (2013). [Online]. Available:
google.com/p/mytracks/issues/detail?id=520

J. Newsome and D. Song, “Dynamic taint analysis for auto-
matic detection, analysis, and signature generation of exploits
on commodity software,” in Proc. ISOC Netw. Distrib. Syst.
Security Symp., 2005.

http:/ /code.

https://code.

https:/ /code.

https://code.

https://code.

[49]

(501
[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]
[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

939

D. Octeau, S. Jha, and P. McDaniel, “Retargeting Android applica-
tions to Java bytecode,” in Proc. ACM SIGSOFT Int. Symp. Found.
Softw. Eng., 2012, pp. 6:1-6:11.

Omnidroid issue 179. (2013). [Online]. Available: https://code.
google.com/p/omnidroid/issues/detail?id=179

Osmdroid issue 53. (2013). [Online]. Available: http://code.
google.com/

S. Park, B. M. M. Hossain, I. Hussain, C. Csallner, M. Grechanik,
K. Taneja, C. Fu, and Q. Xie, “CarFast: Achieving higher statement
coverage faster,” in Proc. ACM SIGSOFT Int. Symp. Found. Softw.
Eng., 2012, pp. 35:1-35:11.

C. S. Psreanu, P. C. Mehlitz, D. H. Bushnell, K. Gundy-Burlet,
M. Lowry, S. Person, and M. Pape, “Combining unit-level
symbolic execution and system-level concrete execution for
testing NASA software,” in Proc. Int. Symp. Softw. Testing
Anal., 2008, pp. 15-26.

A. Pathak, Y. C. Hu, and M. Zhang, “Bootstrapping energy
debugging on smartphones: A first look at energy bugs in
mobile devices,” in Proc. ACM Workshop Hot Topics Netw.,
2011, pp. 5:1-5:6.

A. Pathak, Y. C. Hu, and M. Zhang, “Where is the energy spent
inside my app? Fine grained energy accounting on smartphones
with Eprof,” in Proc. Euro. Conf. Comput. Sys., 2012, pp. 29-42.

A. Pathak, A. Jindal, Y. C. Hu, and S. P. Midkiff, “What is keeping
my phone awake? Characterizing and detecting no-sleep energy
bugs in smartphone apps,” in Proc. 10th Int. Conf. Mobile Syst.
Appl. Serv., 2012, pp. 267-280.

J. Paek, J. Kim, and R. Govindan, “Energy-efficient rate-adaptive
GPS-based positioning for smartphones,” in Proc. Int. Conf. Mobile
Syst. Appl. Serv., 2010, pp. 299-314.

B. Priyantha, D. Lymberopoulos, and J. Liu, “LittleRock: Enabling
energy-efficient continuous sensing on mobile phones,” IEEE Per-
vasive Comput., vol. 10, no. 2, pp. 12-15, Apr.—Jun. 2011.

M. Ra, J. Paek, A. B. Sharma, R. Govindan, M. H. Krieger, and M.
J. Neely, “Energy-delay tradeoffs in smartphone applications,” in
Proc. Int. Conf. Mobile Syst. Appl. Serv., 2010, pp. 255-270.

Real APKLeecher. (2013). [Online]. Available: https://code.
google.com/p/real-apk-leecher

Robotium, a testing framework for Android applications. (2013).
[Online]. Available: http://code.google.com/p/robotium/

E. J. Schwartz, T. Avgerinos, and D. Brumley, “All you ever
wanted to know about dynamic taint analysis and forward sym-
bolic execution,” in Proc. IEEE Symp. Security Privacy, 2010,
pp- 317-331.
SourceForge website.
sourceforge.net/

Sofia public transport Nav issue 38. (2013). [Online]. Available:
https:/ /code.google.com/p/sofia-public-transport-navigator/
issues/detail?id=38

Sofia public transport Nav issue 76. (2013). [Online]. Available:
https:/ /code.google.com/p/sofia-public-transport-navigator/
issues/detail?id=76

E. Torlak and S. Chandra, “Effective interprocedural resource leak
detection,” in Proc. Int. Conf. Softw. Eng., 2010, pp. 535-544.

W. Visser, K. Havelund, G. Brat, and S. Park, “Model checking
programs,” in Proc. Int. Conf. Automated Softw. Eng., 2000, pp.
3-11.

W. Weimer and G. C. Necula, “Finding and preventing run-time
error handling mistakes,” in Proc. ACM SIGPLAN Conf. Object-Ori-
ented Program. Syst. Lang. Appl., 2004, pp. 419-431.

W. Yang, M. R. Prasad, and T. Xie, “A grey-box approach for auto-
mated GUI-model generation of mobile applications,” in Proc.
16th Int. Conf. Fundam. Approaches Softw. Eng., 2013, vol. 7793,
pp- 250-265.

L. Zhang, M. S. Gordon, R. P. Dick, Z. M. Mao, P. Dinda,
and L. Yang, “ADEL: An automatic detector of energy leaks
for smartphone applications,” in Proc. 8th IEEE/ACM/IFIP
Int. Conf. Hardware/Softw. Codes. Syst. Synthesis, 2012, pp.
363-372.

L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. Dick, Z. M. Mao, and L.
Yang, “Accurate online power estimation and automatic battery
behavior based power model generation for smartphones,” in
Proc. Int. Conf. Hardware/Softw. Codes. Syst. Synthesis, 2010,
pp- 105-114.

Zmanim issue 50/56. (2013). [Online]. Available: https://code.
google.com/p/android-zmanim/issues/detail?id=50/56

(2013). [Online]. Available: http://

940 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.40, NO.9, SEPTEMBER 2014

Yepang Liu received the BSc degree in com-
puter science and technology from Nanjing Uni-
versity (NJU) in 2010. He is currently working
toward the PhD degree with the Department of
Computer Science and Engineering at the Hong
Kong University of Science and Technology
(HKUST). His research interests include software
engineering, software testing and analysis, and
mobile computing.

Chang Xu received the doctoral degree in com-
puter science and engineering from The Hong
Kong University of Science and Technology
(HKUST). In 2010, he joined Nanjing University
(NJU), where he is an associate professor with the
State Key Laboratory for Novel Software Technol-
ogy and Department of Computer Science and
Technology. He participates actively in program
{ and organizing committees of major international
software and system engineering conferences. He
cochaired the SEES Symposium, which was held
in cooperation with the 22nd ACM SIGSOFT International Symposium
on the Foundations of Software Engineering (FSE 2014). He also
cochaired the Doctoral Symposium of the ACM/IFIP/USENIX Interna-
tional Middleware Conference (MIDDLEWARE 2013). His research
interests include software engineering, software testing and analysis,
and pervasive computing.

S.C. Cheung received the doctoral degree in
computing from the Imperial College London. In
1994, he joined The Hong Kong University of Sci-
ence and Technology (HKUST), where he is a full
professor of computer science and engineering.
He participates actively in the program and orga-
nizing committees of major international software
engineering conferences. He was the general
chair of the 22nd ACM SIGSOFT International
Symposium on the Foundations of Software Engi-
neering (FSE 2014). He is the North-Asia liaison
in the ACM SIGSOFT executive committee. He has filed four patents in
China and the United States. He is a director of the Hong Kong R & D
Center for Logistics & Supply Chain Management Enabling Technolo-
gies. His research interests include program analysis, testing and
debugging, big data software, cloud computing, internet of things, and
mining software repository.

Jian LU received the BSc and PhD degrees in
computer science from Nanjing University (NJU).
He is currently a full professor with the Department
of Computer Science and Technology and the
director of the State Key Laboratory for Novel Soft-
ware Technology at Nanjing University. He has
served as a vice chairman of the China Computer
Federation since 2011. His research interests
include software methodologies, automated soft-
ware engineering, software agents, and middle-
ware systems.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

