
Tree-Based Synthesis of Web Test Sequences
From Manual Actions

Pengkun Jiang1,2, Sinan Wang1, and Yepang Liu1,2,(�)

1Research Institute of Trustworthy Autonomous Systems, Southern University of
Science and Technology, Shenzhen, China

2Department of Computer Science and Engineering, Southern University of Science
and Technology, Shenzhen, China

{12132334,wangsn}@mail.sustech.edu.cn, liuyp1@sustech.edu.cn

Abstract. The thrive of web technologies and applications demands
effective testing methods for quality assurance. For this purpose, re-
searchers have proposed various testing techniques to automate the in-
teraction with web applications in recent years. While such techniques
help save human testers from repetitive and tedious manual testing tasks,
they often only explore limited usage scenarios due to the lack of domain
knowledge. In practice, constructing test sequences that align with ap-
plication business logic still requires substantial manual efforts. In this
work, we explore a new paradigm that leverages the synergy between
humans and machines. Our key observation is that in many web appli-
cations, interactive elements within or across web pages often exhibit
similarities in functionality and interaction style. Leveraging this ob-
servation, we propose a novel testing method, Fret , which combines
manual recording of an example test sequence with automated synthesis
of multiple new test sequences that have similar intentions through ac-
tion mutation. To detect similar elements to the example, Fret employs
a programming-by-example technique, in which similar elements are de-
scribed as the intersection within a well-defined version space. To avoid
redundant mutations, Fret builds a tree representation of the mutation
process, which helps preserve the logical dependence between actions
and monitor the progress of test generation. The experiment results on
32 top-ranking websites show that, given an example sequence, Fret can
effectively generate an average of 138 new sequences to interact with the
web application under test with a false positive rate of only 0.69% on sim-
ilar element searching, significantly outperforming the baseline method
in terms of covered elements and generated valid test sequences. Addi-
tionally, Fret has also led to the discovery of 86 real errors in 19 web
applications, which demonstrates its practical usefulness.

Keywords: Web Testing, Sequence Generation, Record and Replay.

1 Introduction

To cope with the growing number of end-users and minimize losses caused by
errors, many web applications require thorough testing before being launched
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Fig. 1: Example test sequence on Google Cloud
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Fig. 2: Test generation via fuzzy-replay

online. In practice, automatic end-to-end testing [8, 39] is often adopted, whose
testing objective is maximizing the functional coverage. However, such tech-
niques do not involve domain knowledge of the web under testing (WUT). This
limitation can easily trap the testing agents in a local optimal state, preventing
them from exploring deeper functionalities of the WUTs.

Many test automation frameworks support recording user actions on a web
browser and replaying the recorded actions. Such a record-and-replay technique
is widely used [20], especially for regression testing purposes. In existing prac-
tices of record-and-replay, a recorded user action sequence is usually saved as
a definite test script that can be played back later. Compared with automatic
testing, record-and-replay allows testers to use their domain knowledge during
recording to test some important but hard-to-reach features, so as to improve
the effectiveness of regression testing.

In order to thoroughly test a webpage, testers should manually record many
action sequences, which can be labor-intensive. Take the Google Cloud homepage
in Figure 1 as an example. Testers may record the sequence of click actions as
shown in Figure 2 (see Example Test Sequence) and replay the sequence when
needed. While this facilitates regression testing, it is not efficient. For instance,
to test whether users can still visit the “Contact Center AI” page or pages
related to “Data Cloud” after the website evolves, the testers need to record
all corresponding action sequences in advance. Due to combinatorial explosion,
testers will need to record hundreds of similar sequences to the example one
(Figure 2) to ensure complete functional coverage.
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Recognizing this limitation, our work aims to enhance the efficiency of con-
ventional record-and-replay techniques. Our key observation is that UI elements
within or across web pages may have similarities in their interaction style. For
example, in Figure 1, the UI elements in the box of the same color are similar to
each other: clicking the elements in the blue box will all lead to the appearance
of a dropdown menu such as the one in the green box; clicking the green box
elements will all lead to the appearance of a frame that contains more clickable
elements (i.e., the red box). By leveraging such element similarity, it is possi-
ble to create many new diverse sequences based on one example test sequence.
Consider the example test sequence in Figure 2. By replacing the last action
“Click ‘Product Discovery’” with a click on a similar element “Contact Center
AI”, we can obtain a new test sequence. By replacing the second action “Click
‘Artificial Intelligence’” with a click on a similar element “Data Cloud”, we can
create more test sequences to explore the pages related to “Data Cloud”. We
call this process fuzzy-replay, in which we obtain new test sequences from an
example test sequence by replacing user actions with similar ones while keeping
the interaction order. Fuzzy-replay expands an existing manually recorded test
sequence into multiple logically-consistent ones, thus significantly improving web
test efficiency with the least human effort.

In this paper, we propose a web test generation framework Fret, which
stands for Fuzzy-REply for web Testing. Fret formulates the web element se-
lector with version space algebra (VSA) [13], which has been adopted in various
programming by example (PBE) tasks [10, 28]. This formulation describes the
selection of similar elements as the intersection operation of directed graphs in a
well-defined space. To address the challenge of dynamic content loading in web
applications, Fret replays the actions with the selected similar elements (called
mutation) in an online manner. In addition, Fret maintains a tree-structure of
the mutation process during test generation, which helps preserve the logical re-
lationships between generated actions and monitor the progress of fuzzy-replay.
With little manual effort in the recording stage, Fret can quickly learn the in-
teraction logic with domain knowledge, generate new test sequences similar to
the example, and thus comprehensively test a web page.

We evaluated Fret on 32 top-ranking websites under different categories.
Based on the experimental results, Fret can generate an average of 138
new test sequences and detect 86 web errors, with a false positive rate of
only 0.69% on similar element searching, which significantly outperforms other
baseline methods. In summary, this paper makes the following contributions:

– We propose Fret, which employs PBE-based similar element selection and
tree-coloring based action sequencing to generate new test sequences from a
manually-recorded web action sequence.

– We have evaluated Fret on 32 top-ranking web applications of different kinds,
demonstrating its effectiveness in boosting functional coverage and exposing
real web errors based on the manually-recorded examples.
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{ "url": "https://cloud.google.com",
"tests": [{

"commands": [
{ "command": "open" },
{ "command": "click", "target": "xpath=//body/tab[2]/a" },
{ "command": "click", "target": "xpath=//tab[2]/div/div/ul/li[3]/a" },
{ "command": "click", "target": "xpath=//div[3]/ul[4]/li/a/div" },
{ "command": "input", "target": "xpath=//header[1]//input", "value": "AI solution"}

]
}]}

Listing 1: An snippet of Selenium IDE test script

2 Background and Challenges

Selenium IDE [33] enables human testers to record their web test sequences
and replay them as unit test cases using Selenium’s WebDriver API, thereby
achieving record-and-replay tasks. Listing 1 is a snippet of the Selenium IDE test
script for a test sequence in Figure 2. Typically, a test script (or test sequence)
consists of a series of test actions:

Seqexample := {act(1), act(2), ..., act(n)} (1)

There are two types of actions: browser actions and element actions. Browser
actions configure the state of the web driver, including opening a URL, resizing
the window, and running some JavaScript program, etc. An element action con-
sists of three key components: the action type, the targeting DOM element, and
an (optional) interaction value. They correspond to the command, target and
value attributes in Listing 1:

act(i) := ⟨action type(i), target element(i), interaction value(i)⟩ (2)

Here, the interaction value provides the necessary message for executing the
given action type. For example, for an input action, this attribute stores the
textual input value. As for a selection action, it can be the selected option in the
particular <select> menu.

A web application usually contains elements that are similar in functional-
ity and interaction pattern. Usually, an element action can also be applied to
interact with other similar elements. Such similarity in human-computer inter-
action patterns provides the opportunity to reuse manual tests to generate new
test sequences. Also, we can obtain new test actions by altering the original in-
teraction value. We call this process as mutation. As such, the similar actions
generated by mutation are called mutated actions, as shown below:

act⟨typ0, tgt0, val0⟩
mutate−−−−→


âct⟨typ0, tgt1, val0⟩,
âct⟨typ0, tgt2, val0⟩,
âct⟨typ0, tgt2, val1⟩,
...

(3)
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Fig. 3: The overview of Fret

For each element action in the example test sequence, we can obtain multiple
mutated actions. By recombining mutated actions in the order of the example
test sequence, we can generate new test sequences, which we call mutation
sequences. Ideally, the mutation sequences will retain the domain knowledge in
the example test sequence, thus achieving higher functional coverage for WUT:

Seqmutation := {âct(1), âct(2), ... âct(n)} (4)

Technically, fuzzy-replay generates new test sequences by mutating and recom-
bining the example test sequence. However, it faces two major challenges:

1. How to find similar elements? Due to the diverse implementation styles,
we cannot directly obtain the interaction types and functionalities of web
elements. Determining the similarity of web elements is hard.

2. How to recombine mutated actions? The logical relation between ac-
tions in the example test sequence requires recombining the mutated actions
in a meaningful order. Otherwise, the mutation sequences can be invalid.

In this paper, we propose Fret, the first framework that generates web GUI
test sequences with fuzzy-replay. It explicitly addresses the above challenges with
two techniques: PBE-based searching and coloring-based action sequencing. We
will illustrate them in the next section.

3 The Fret Test Generation Framework

3.1 Overview

Figure 3 shows the overview of our proposed web GUI test generation framework,
Fret. Similar to traditional record-and-replay techniques, Fret also accepts a
manually recorded test sequence as input. Then, it tries to generate new test
sequences that experience other functionalities of WUT. This is accomplished
by two core components: an Action Mutator that mutates each action in the
example test sequence to generate mutated actions, and an Action Sequencer
that combines mutated actions with respect to their original ordering in the
example. They will be illustrated in detail in the following parts.
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Fig. 4: The version space of XPath "//body/tab[2]/a" (self-loops hidden)

3.2 The Action Mutator

Programming By Example At high-level, the Action Mutator mutates an
action by replacing its target element with similar elements. Technically, this
is accomplished by selecting elements whose XPaths share common patterns
with the original one. Similar elements usually exhibit spatial locality in the
webpage (Figure 1), which enables a wildcard element selector to assign common
visual property or page layout to all of them. Such intuition makes it possible to
formulate our task as a programming by example (PBE) problem [28]: given a
single element selector (XPath in our task), construct all possible selectors that
maximize the similarity criterion on the current web state. We define the syntax
of the element selector as follows:

XPath xp −→ /lvl | xp/lvl
Level lvl −→ cond | * | **
Condition cond −→ regular expression

This syntax can be converted from the original XPaths [21] via simple text
processing. Each selector has multiple levels separated by slash symbols (/),
while each level has a condition represented by a regular expression or wildcard
symbol. Here, a single asterisk (*) matches exactly one level, while a double
asterisk symbol (**) matches zero or more levels. To simplify representation, we
transform a double slash (//) into a wildcard condition (/**), which preserves
its semantics [21]. The level condition cond is stored as a regular expression,
which is usually a constant string of the node’s tag name (see Listing 1). In
particular, we convert the indexing operator (e.g., [1]) into a regular expression
[\d+], which can match all elements at the same DOM level.

Version Space Algebra of Element Selector The XPath selector syntax
above allows a powerful tool version space algebra (VSA) to encode an even
more general representation of our desired web elements. VSA has been success-
fully applied in commercial text processing products [10, 28], demonstrating its
viability in related tasks. Our version space definition of XPath selectors follows
the widget path VSA employed by Jigsaw [17]. However, our XPath selector is
more general, as Jigsaw only supports id selector as the level condition. As an
example, Figure 4 shows the version space representation of an XPath in Listing
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Algorithm 1: PBE-based similar element selection

Input: target element ω, all elements E
Output: set of similar elements Esimilar

1 GΩ ←− version space(ω)
2 while ∃e ∈ E.¬trivial(GΩ ⊓Ge) do
3 e∗ ←− argmax

e∈E\{ω}

∑
x∈X (GΩ⊓Ge)

match score(GΩ , x)

4 E ←− E \ {e∗}
5 Esimilar ←− Esimilar

⋃
{e∗}

6 GΩ ←− GΩ ⊓ version space(e∗)

1. Given the XPath of an element from the example sequence, we first transform
it into a directed graph by creating edges:

E = {(vi, vj , **) | 1 ≤ i ≤ j < n} ∪
{(vi, vi+1, *) | 1 ≤ i < n} ∪
{(vi, vi+1, condi) | 1 ≤ i < n}

Here, condi is the condition of the i-th level of the XPath, represented by a
regular expression mentioned above. Each node vi is a slash (/) in the XPath.
There are also two special nodes, s and f , the source and sink nodes. As such,
an XPath can be accepted by this directed graph, if each of its level conditions
matches regular expressions along a path from the source node s to the sink
node f .

Given two VSA directed graphs G = (V,E) and G′ = (V ′, E′), an important
operation is their intersection G⊓G′ = (V⊓, E⊓), which selects common XPaths
accepted by both graphs. Their definitions are:

V⊓ = {⟨v, v′⟩ | v ∈ V, v′ ∈ V ′}
E⊓ = {(⟨u, u′⟩, ⟨v, v′⟩, l ⊓ l′) | (u, v, l) ∈ E, (u′, v′, l′) ∈ E′}

where the intersection of level conditions is: l ⊓ l′ = l, if l and l′ are identical;
or l ⊓ * = l; the remaining intersections result in an invalid condition. It has
been proven by Li et al. [17] that, this VSA intersection is well-defined and can
soundly capture all XPaths acceptable to both G and G′.

Similar Element Selection Algorithm 1 describes how the Action Mutator
finds similar elements. All available elements E can be obtained via trivial ele-
ment selectors on the current web page, while Action Mutator will select those
similar to the target element w among them. GΩ is the directed graph that
accepts all desired similar elements. It is initialized with the version space of
the target element ω in the example sequence (line 1), and will grow by taking
its intersection with the selected similar elements (line 6). Similar to the widget
selector synthesis of Jigsaw [17], the Action Mutator also employs an iterative
process, until the remaining elements only match a trivial selector (line 2). Here,
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“trivial” means the resultant graph is equivalent to a wildcard selector “/**/*”.
Each time, an element is selected based on the evaluation of a match score. It
adopts the idea of FlashFill’s compatibility score [10], such that matching ele-
ments should be selected earlier to avoid computational cost. For an element e,
X (GΩ ⊓Ge) denotes all XPaths selected by its intersection with GΩ . Intuitively,
these XPaths should evaluate to a higher match score with the original element
selector GΩ . Therefore, we prefer the one that achieves the maximum sum of
match scores (line 3). Here, match score counts the number of exact matching
of level conditions in an XPath.

3.3 The Action Sequencer

With the mutated actions, the next step is to combine them into new sequences.
Fret employs online action sequencing, which is executed during the interaction
with WUT. Online sequencing validates the mutated actions in real-time. As a
result, all the generated test sequences will be valid.

Mutation Tree In a manually recorded sequence, the execution order of ac-
tions describes the use case scenario from the testers. This logical dependence
encodes domain knowledge such that subsequent actions could be executed after
the preceding action, while the preceding action should be executed before its
succeeding actions. We model such logical dependence as a tree structure, which
we call a mutation tree.

In a mutation tree (Figure 5), each node saves an action from the example
test sequence, or its mutated actions discovered by the Action Mutator. The
descendants of each node compose all possible subsequent actions that can be
executed afterwards. In particular, the root node indicates the test entry and
does not save any action. The mutation tree has two characteristics: first, the
target elements between each layer of the mutation tree are similar to each other;
second, a path from the root node to any leaf node is a legal test sequence.
During test generation, the mutation tree is expanded from the current web
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state, such that all similar elements of the current action’s target element will
become the children nodes of the current node. To avoid repeating elements or
loops, each node and its incoming edge will be added to the tree by exactly
once. This constraint ensures maintaining the mutation tree property. Once all
actions from the example sequence are mutated and the mutation tree along
this path is fully expanded, the Action Sequencer will start from the root node
and continue to visit other paths, until the mutation tree can no longer grow.
Therefore, the mutation tree provides a cache for mutated actions and quantifies
the test sufficiency criterion.

Tree-coloring Based Sequencing As action sequencing progresses, the pro-
portion of unselected mutated actions decreases. To eliminate the potential of
generating duplicate sequences, Action Sequencer adopts tree-coloring based ac-
tion sequencing to expand the mutation tree. The key idea is that, each path
from the root node to a leaf node in the mutation tree can form a valid test
sequence. Since each leaf node is unique, there is only one path from the root
node to a specific leaf node. When a leaf node is selected to generate a test
sequence, it is colored to indicate that this node should not be selected again in
the future. There are two coloring strategies:

– Figure 6a: for a leaf node, it will be colored every time it is executed, to
indicate it should not be selected again.

– Figure 6b: for a non-leaf node, once its children nodes have all been colored,
selecting it again will produce duplicate test sequences. Therefore, we color
this node to avoid such cases.

When selecting the next mutated action to execute, an uncolored node in the
mutation tree shall be selected to avoid duplicate sequences. When the root
node is colored, it indicates a corresponding test sequence has been generated
for each functional point in WUT, and the test generation shall terminate. All
newly generated sequences will be output as test sequences.

Theoretically, the Action Sequencer performs a post-order depth-first search
(DFS) on the mutation tree, in which visiting the web state corresponds to the
coloring operation on the tree node. Meanwhile, a backtrack operation should
be implemented to ensure the proper execution of DFS. To achieve this goal,
the Action Sequencer will store the current web state, which will be loaded back
once all its child nodes are colored. Nevertheless, the store and reload operations
will not be recorded in the generated test sequences.
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An important objective of testing is to discover errors. Action Sequencer will
record errors captured by the web browser during the online sequencing process.
These recorded errors indicate the ability of Fret to expose real web bugs.
What’s more, they can form the test oracles [27] in the generated test cases.
However, there is one type of error that should not be regarded as a real bug,
that is, the target element is not found. We will drop such errors and consider
the corresponding test sequences invalid.

4 Evaluation

4.1 Research Questions

To evaluate the performance of Fret, we investigated three research questions:

– RQ1 (Similar Element Detection): Can the Action Mutator effectively
identify similar elements?

– RQ2 (Mutation Sequence Legality): How many valid mutation sequences
can be generated by the Action Sequencer?

– RQ3 (Mutation Sequence Redundancy): To what extent can Fret avoid
generating redundant test sequences?

– RQ4 (Tool Usefulness): Can Fret outperform the baseline methods in
generating unique valid tests and triggering real web errors?

4.2 Subject Websites

To select subject WUTs, we referred to Semrush1. The website provides traf-
fic rankings for global public websites under 32 different categories. Within its
indexed websites, we selected our subjects based on the following criteria:

– The website should not have an anti-robot system like reCAPTCHA. Fret gen-
erates test sequences and automatically replays them with Selenium. It, how-
ever, cannot automatically pass the anti-robot system.

– The website’s core functionality should not rely on specific text input. For
example, the Google homepage does not contain too many interactive el-
ements. Most of its functionalities should be accessed through inputs on
the search bar. However, currently Fret cannot purposefully mutate text
inputs.

Finally, we selected 32 top-ranking websites for our experiment.

4.3 Experimental Setup

Fret was implemented on top of Selenium and Selenium IDE [33]. It supports
the mutation of element click actions and input texts (random modification).
We recorded one example test sequence for each of the 32 WUTs. We ensure all
recorded sequences can effectively experience the WUTs’ core functionalities. All
experiments were run with a Chromium browser and corresponding Webdriver,
on a Macbook with a 2GHz i5 processor and 16GB RAM.

1 https://www.semrush.com/website/top/global/all/
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4.4 RQ1: Similar Element Detection

Metric We evaluated the performance of the Action Mutator using false pos-
itive rate (FPR). During test generation, once the Action Mutator generates
invalid actions (or dissimilar actions), the subsequent example actions will not
be able to playback. Therefore, its precision is crucial for preserving the legality
of the generated sequences. We saved the results of similar element selection and
manually determined whether they were valid similar elements. In other words,
we shall manually check whether the mutated actions can experience similar
functionalities to their original example actions.

Result We manually identified 6,275 similar elements selected by Action Muta-
tor, which correspond to 116 elements across 32 example test sequences. Among
them, 43 elements from four WUTs (Advertising, Airlines, Entertainment, and
Restaurants) were determined to be dissimilar to their corresponding original
elements, resulting in an FPR of 0.69% for the similar element searching al-
gorithm. By investigating the misjudging elements, we found that 34 of them
were due to regular expression simplification of the element indexes, while the
remaining were selected due to the same special tag names.

Comparison For comparison, we also implemented a naive similar element se-
lection algorithm, that is, only selecting the elements in the same DOM
level that acquire identical tag names and class names. This simple rule
only reveals 5,034 valid similar elements being selected (FPR=19.8%), which is a
significant performance downgrade. Moreover, this simple rule could not identify
similar elements in eight example sequences. Compared to the PBE-based simi-
lar element selection, the naive algorithm fails to capture the inter-relationship
between similar elements. Nevertheless, we still found that the simple algorithm
discovers non-overlap valid similar elements compared to the PBE-based ap-
proach. The main reason is that similar elements may have same class yet differ-
ent tag names. In the future, we will improve the precision of the Action Mutator
by cooperating with the DOM attributes in the algorithm.

4.5 RQ2: Mutation Sequence Legality

Baseline To compare with Fret’s Action Sequencer, we implemented a baseline
method, called offline action sequencer. This baseline simply takes a Cartesian
product over all mutated actions with respect to their parents’ ordering in the
example sequence. That is, for the sequence in (1), and the mutated actions for

each of its actions A(i) = {âct(i)k | 1 ≤ k ≤
∣∣E(i)

s

∣∣}, the offline action sequencer

will output all sequences produced by A(1) × A(2) · · · × A(n). It is realized by
performing Algorithm 1 during the manual recording stage, thus no Internet
connection is needed during offline action sequencing.
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Table 1: Experiment result of RQ2

WUT
example

seq. length
#seq.

(offline)
#sample seq.

(offline)
#legal seq.
(offline)

#seq.
(Fret)

Agoda 5 74,030 382 0 63

Doubleclick 4 35,420 380 0 372

Ryanair 6 2,826,252 384 0 109

Chase 3 168,480 384 0 102

Sephora 3 55,680 381 0 138

Openai 4 58,562 381 2 289

Stackoverflow 4 23,440 377 1 93

Onliner 3 3,386,812 384 0 89

Youtube 4 1,695,200 384 0 162

Archive. 4 162,150 383 0 341

Shein 4 1,617,000 384 0 197

Paypal 3 37,352 380 1 213

All Recipes 4 74,700 382 0 289

Steam 3 603,720 383 0 52

NIH 3 90,896 382 0 74

Wordpress 3 617,760 383 0 20

Robobank 4 169,664 383 0 292

Upstox 3 304,128 383 0 55

ADP 4 44,649 380 0 119

Qualtrics 3 26,895 378 1 161

Genius 3 41,040 380 0 81

Wikipedia 4 509,184 383 0 236

Google Cloud 3 31,140 379 1 84

Redfin 4 58,590 381 0 123

Uber eats 3 110,700 382 1 125

Sciencedirect 4 536,130 383 0 42

Marca 4 55,440 381 0 96

Samsung 4 57,456 381 0 59

Usps 3 32,480 379 1 105

Bahn 3 54,272 381 0 121

Av.by 4 78,064 382 0 85

Mayoclinic 5 25,984 378 0 52

Metric We evaluate the effectiveness of the Action Sequencer using legality rate
of action sequences. To be specific, if a generated test sequence produces errors
like “fail to locate the target element”, we consider it illegal. Since the number
of sequences generated by the offline action sequencer is exponentially large,
validating all of them is impossible. Therefore, we randomly sampled the results
using a 95% confidence interval and a 5% margin of error [37], and ran them to
compute the legality rate under statistical significance.

Result Table 1 shows the results. For all WUTs, the offline action sequencer
generated more than 20,000 action sequences. Among our randomly-sampled se-
quences, most of them cannot be exactly replayed. Moreover, in 25 WUTs, the
offline action sequencer did not output any legal sequences, indicating that its
legality rate is extremely low. On the other hand, Fret’s Action Sequencer pro-



Tree-Based Synthesis of Web Test Sequences From Manual Actions 13

0

50

100

150

200

250

300

350

400

450

Ago
da

Dou
blec

lic
k

Rya
nair

Chase

Sep
hora

Open
ai

Stac
ko

ve
rfl

ow

Onlin
er

You
tub

e

Arch
ive

.
Shein

Pay
pa

l

All R
eci

pes
Stea

m
NIH

W
ord

pres
s

Rob
ob

an
k

Upsto
x

ADP

Qualt
ric

s

Gen
ius

W
ikipe

dia

Goo
gle

 C
lou

d

Red
fin

Uber 
eat

s

Scie
nced

ire
ct

Marc
a

Sam
su

ng
Usps Bah

n
Av.b

y

May
ocl

inic

deduplicate sequence (Fret) deduplicate sequence (random) redundant sequence (random)

Fig. 7: Experiment result of RQ3

duced only legal action sequences, as they were generated in an online manner.
Online sequencing ensures that only interactable web elements are selected as
target elements in the mutation sequences. In conclusion, Fret’s online action
sequencing algorithm, compared to the offline version, can produce significantly
more legal test sequences.

4.6 RQ3: Mutation Sequence Redundancy

Baseline We introduce a random online action sequencer as the baseline to
compare with Fret’s Action Sequencer in their generated redundant sequences.
The random sequencer will randomly pick a mutated action from all available
ones during the online replay stage. Unlike Fret, it cannot determine whether
the replay is finished; thus, it will endlessly (and repeatedly) mutate all available
actions from the example sequence.

Metric We count identical sequences as the number of redundant sequences gen-
erated by the random sequencer to investigate redundancy in test generation.
The coloring-based sequencer can determine whether the replay is complete,
while the random sequencer cannot. Hence, for each WUT, we record the du-
ration spent by Fret’s Action Sequencer, and run the random sequencer for
the same duration for fair comparison. In RQ2, we have already shown that the
offline sequencer can only produce a few legal sequences. Therefore, in RQ3, we
will not evaluate it due to its poor performance.

Result Figure 7 shows the total number of sequences and redundant sequences
generated by the random sequencer. The random sequencer generated a certain
amount of redundant sequences for all 32 WUTs. Among them, in NIH, it gen-
erated the highest proportion of redundant sequences, which accounts for 55%.
An analysis of the WUTs with a high redundancy rate revealed that some of
their elements may result in states with no subsequent actions. Due to the lack
of memorization, the random sequencer will repeatedly select such elements and
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produce a large amount of redundancy (e.g., repeated short sequences). False
positive elements in “Archive.” caused unhandled exceptions. Handling these
web errors consumes time. Without a coloring mechanism, the random sequencer
will trigger these errors repeatedly, thus wasting more time but generating fewer
new sequences. Except for “Archive.”, the total number of randomly generated
sequences is greater than that of tree-coloring based sequencing.

Figure 7 also shows the number of generated action sequences by two strate-
gies after deduplication. Among the four out of 32 WUTs, Fret generated more
than 300 action sequences, while in Doubleclick, it generated the most unique se-
quences, with a number of 372. In 13 WUTs, Fret generated less than 100 action
sequences, and Wordpress had the fewest unique sequences. There are mainly
two reasons for its poor performance: 1) the slow loading speed of web pages
reduces the number of interactive elements; 2) the functionalities involved in the
example test sequence are limited and there are no sufficient similar elements to
produce more action sequences. It indicates that the number of action sequences
generated by Fret is greatly influenced by the subject websites and the example
test sequences provided by the human testers. Nevertheless, Fret still generated
a considerable amount of valid and unique test sequences.

A deep analysis of the number of generated action sequences by the two
strategies shows that, within 2 hours, the coloring-based online sequencer suc-
cessfully traversed the mutation tree of three WUTs (NIH, Sciencedirect, and
Mayoclinic) and generated all possible test sequences based on the example test
sequences. In the three WUTs, the number of action sequences generated by the
random online sequencer is significantly lower. This indicates that while Fret’s
tree-coloring based action sequencer generates all possible test sequences, the
random sequencer has a significant disadvantage. Among 12 WUTs, the differ-
ences in the number of generated action sequences between the two strategies did
not exceed 10, indicating there is no significant performance difference between
them. Among 30 WUTs, the coloring-based online sequencer generated more
new test sequences than the random online sequencer. Due to the redundancy
of random online sequencing, the coloring mechanism has better performance,
even though it has overhead of maintaining the mutation tree.

4.7 RQ4: Tool Usefulness

Following previous web testing work [34, 39], we also count the number of web
errors triggered by different strategies to measure their ability to detect bugs.
There were a total of 86 unique web errors found by Fret on 19 different WUTs
during our experiment, while the random sequencer only triggered 73 web errors.
Since the offline sequencer is poor at producing valid test sequences, we cannot
further count the number of web errors it can trigger.

5 Threats To Validity

There are several potential threats to the validity of our experiments. Firstly,
we conducted our experiments on 32 WUTs; however, our selection process fo-
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cused on high-traffic webs without anti-robot systems within each web category.
This means that Fret may not be directly applicable to all web applications. In
such cases, it could potentially introduce unknown errors or lead to an increased
false positive rate when identifying similar elements. Secondly, Action Mutator
extends the example element’s XPath selector to other syntactically similar el-
ements within the same web state. However, due to their inherent complexity
and diversity, it is unlikely that the generated tests can cover all elements. This
makes it challenging to achieve full functional coverage. Moreover, Fret cur-
rently can only handle limited types of web actions (clicking, mouseover, and
random text input). In order to improve the logical coherence of the generated
mutation actions, it is essential to purposefully mutate the interaction value.

6 Related Work

• Record-and-replay. Record-and-replay method has shown its practical uses
on diverse platforms, including web applications [1,33] and mobile apps on An-
droid [18,26] or iOS [29]. However, most GUI tests are prone to break [22,31], and
many techniques were proposed to improve the robustness of GUI element loca-
tors [14–16,25]. There were also techniques leveraging machine learning methods
to fix the broken recorded test cases [6, 11, 20, 35]. Fret directly utilizes the
recorded test script and generates new tests with PBE-based similar element
selection and tree-coloring based action sequencing.
• Test generation. The techniques generate web test scripts based on the DOM
structure of WUT. To measure the sufficiency of test generation, a common
approach is to utilize state flow graphs (SFGs) of WUTs. An SFG abstracts
web pages into different states, and uses user events that trigger state transition
as edges. Based on SFG, search-based algorithms generate test paths as unit
test cases [2–5, 7, 23, 36]. However, it is difficult to determine whether different
generated paths have logical dependencies. Fret also generates new tests, from
which the business logic (domain knowledge about WUT) is represented by the
human-recorded examples.
• Similar element detection. Web GUI testing techniques use varying criteria
to determine the similarity between web elements. For example, [3, 7] compare
the similarity between web states and select states with significant differences in
similarity to achieve higher coverage. [6, 20, 24, 30] find elements corresponding
to the target element in the WUT’s new version. They rely on the elements’
attributes to determine element correspondence. Fret involves Action Mutator,
which detects similar GUI elements in the current web page using a PBE-based
element selection algorithm.
• Test reuse. Test reuse is a technique that uses existing test scripts to generate
new tests. One application scenario is to extend tests of a web application to
another WUT with similar functionality [12,30,32]. Test reuse can also enhance
automated testing. It often builds an initial SFG based on the example tests, and
then uses a web crawler to extend the SFG. When searching for new test paths,
the web page state is abstracted and the similarity between the newly selected



16 P. Jiang et al.

state and the corresponding state of the example test will be compared. The
new test path will be constructed based on the most similar state [19, 24]. Test
reuse is similar to Fret’s approach. However, test reuse relies on human-written
scripts, while Fret does not require explicit test scripting.

7 Conclusions and Future Work

We proposed Fret, a fuzzy-replay framework to facilitate web testing by syn-
thesizing test sequences from a human-recorded example. With such an example,
Fret expands the test actions to similar target elements through PBE-based el-
ement selection, and connects these selected elements with a tree-coloring based
sequencing algorithm, thus generating new test sequences similar to the example
one. Our experiments show that Fret , compared to two baseline methods, can
generate a considerable number of valid test sequences for 32 top websites un-
der different categories. Fret also successfully improves the number of covered
elements during testing and identifies many real web errors.

In the future, we will further improve Fret’s similar element searching algo-
rithm. We plan to add visual attributes [38] or use large language models (LLMs)
to assist in determining similar elements [9] and find more similar elements that
the current Action Mutator may miss. Additionally, Fret can be combined with
other test generation techniques [3,7,23] to access hard-to-reach web states, thus
increasing the overall functional coverage.
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