
Understanding and Facilitating the Co-Evolution of
Production and Test Code

Sinan Wang∗, Ming Wen†, Yepang Liu∗, Ying Wang‡, Rongxin Wu§
∗Department of Computer Science and Engineering,

Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation,

Southern University of Science and Technology, Shenzhen, China
†School of Cyber Science and Engineering, Huazhong University of Science and Technology, Wuhan, China

‡Software College, Northeastern University, Shenyang, China
§School of Informatics, Xiamen University, Xiamen, China

wangsn@mail.sustech.edu.cn; mwenaa@hust.edu.cn; liuyp1@sustech.edu.cn;

wangying@swc.neu.edu.cn; wurongxin@xmu.edu.cn

Abstract—Software products frequently evolve. When the pro-
duction code undergoes major changes such as feature addition
or removal, the corresponding test code typically should co-evolve.
Otherwise, the outdated test may be ineffective in revealing faults
or cause spurious test failures, which could confuse developers
and waste QA resources. Despite its importance, maintaining
such co-evolution can be time- and resource-consuming. Existing
work has disclosed that, in practice, test code often fails to co-
evolve with the production code. To facilitate the co-evolution of
production and test code, this work explores how to automatically
identify outdated tests. To gain insights into the problem, we
conducted an empirical study on 975 open-source Java projects.
By manually analyzing and comparing the positive cases, where
the test code co-evolves with the production code, and the negative
cases, where the co-evolution is not observed, we found that
various factors (e.g., the different language constructs modified in
the production code) can determine whether the test code should
be updated. Guided by the empirical findings, we proposed a
machine-learning based approach, SITAR, that holistically consid-
ers different factors to predict test changes. We evaluated SITAR
on 20 popular Java projects. These results show that SITAR,
under the within-project setting, can reach an average precision
and recall of 81.4% and 76.1%, respectively, for identifying test
code that requires update, which significantly outperforms rule-
based baseline methods. SITAR can also achieve promising results
under the cross-project setting and multiclass prediction, which
predicts the exact change types of test code.

Index Terms—Software evolution, test maintenance, mining
software repositories

I. INTRODUCTION

Testing is a widely-adopted technique for software quality

assurance. In practice, software developers often write test

code to validate whether the production code behaves as

expected. Since software products frequently evolve, test code

should co-evolve with the corresponding production code to

remain effective in assessing software quality. Otherwise, the

outdated test code may cause undesirable consequences.

Figure 1 shows an example of an outdated test from Apache

commons-pool [1]. On June 13, 2011, a developer updated the

production code to prevent the _factory attribute from being

reset: when setting _factory, an IllegalStateException

∗ Yepang Liu is the corresponding author.

public void setFactory(Factory factory) throws Exception {
- if (0 < getNumActive ()) {
- throw new IllegalStateException ();
+ if (this._factory == null) {
+ this._factory = factory;

} else {
- clear ();
+ throw new IllegalStateException ();

}
- _factory = factory;

}

(a) Production code change (commit d2e27d1 by the developer markt-
asf on June 13, 2011)

- @Test
- public void testSetFactory () {
- GenericObjectPool pool = new GenericObjectPool ();
- pool.setFactory(new SimpleFactory ());
- pool.setFactory(new SimpleFactory ());
- }

(b) Test code change (commit ffe6735 by the developer psteitz on
June 16, 2011)

Fig. 1: Outdated test example in commons-pool (simplified)

will be thrown if it is non-null. However, the corresponding

test code, which resets the factory, was not updated until

June 16, 2011. There are 17 commits between the changes

of production and test code. During this period, the project

developers who were unaware of the production code change

might be confused by the IllegalStateException when

running the outdated test to test the evolved production code.

From the example, we can see that it is important to keep the

test code co-evolving with the production code. However, this

may not be an easy task for developers in practice, especially

when their project has a large code base maintained by

geographically separate teams. Existing work [2] has pointed

out that, test code often fails to co-evolve with production code

due to three reasons: (1) lack of time and QA resources for

test maintenance, (2) unawareness of the existence of tests for

a particular functionality, and (3) lack of time to run all tests

(thus preventing the discovery of outdated tests).

Since it is often non-trivial for developers to keep test code

up to date, a technique that can automatically identify outdated

tests and prompt developers to make updates could be helpful.

This work aims to develop such a technique to facilitate the

co-evolution of production and test code (production-test co-

272

2021 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER)

978-1-7281-9630-5/21/$31.00 ©2021 IEEE
DOI 10.1109/SANER50967.2021.00033

20
21

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 S

of
tw

ar
e

A
na

ly
si

s,
Ev

ol
ut

io
n

an
d

R
ee

ng
in

ee
rin

g
(S

A
N

ER
) |

 9
78

-1
-7

28
1-

96
30

-5
/2

0/
$3

1.
00

 ©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
SA

N
ER

50
96

7.
20

21
.0

00
33

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on July 16,2021 at 08:22:10 UTC from IEEE Xplore. Restrictions apply.

yepang
Typewritten Text
This PDF is for personal use only. The copyright belongs to IEEE.

evolution for short) and we focus on the unit testing scenario.

Given a set of production code changes, it is challenging

to automatically decide whether the corresponding unit tests

should be updated or not. Although existing work has studied

the associations between production and test code (e.g., [3]–

[6]), there is little research that explicitly explores under what

situations test code should co-evolve with production code. To

fill this gap and gain a better understanding of the co-evolution

practices, we conducted a large-scale empirical study on 975

open-source Java projects. We found that whether to update

a unit test can be determined by various factors, such as the

type of the language constructs modified in the production

code and the complexity of the production code changes.

It is not effective to adopt heuristics that consider only

single factors (e.g., when the body of a method is changed,

the corresponding unit test should be updated) to predict

test changes. Based on this key observation, we propose a

machine-learning based approach, SITAR, to help developers

identify whether a unit test should be updated when they make

changes to the corresponding production code. SITAR is able

to efficiently learn a model that considers the interrelations

between the changed code components from the historical

commits of a project. The model can then help developers

make test update decisions by holistically considering multiple

factors, e.g., changes of method calling relations and return

values in production code. We have implemented SITAR and

evaluated it on 20 popular Java projects. The results show that

SITAR is effective in predicting test changes. For example, it

achieves an average precision and recall of 81.4% and 76.1%

(the maximal precision and recall are 93.5% and 87.7%),

respectively, under the within-project setting. Comparatively,

the rule-based methods can only obtain an average precision of

51.8%, although the average recall, 90.5%, is higher than that

of SITAR (this is understandable as the rule-based methods

make predictions simply based on single factors).

To summarize, this work makes the following contributions:

• We performed a large-scale empirical study to understand

the practice of production-test co-evolution in 975 open-

source Java projects.

• We proposed a machine-learning based approach, SITAR,

for automated identification of outdated unit tests to

facilitate production-test co-evolution.

• We evaluated SITAR on 20 Java projects under different

sample configurations and model settings, which demon-

strated the effectiveness and usefulness of our approach.

To facilitate future research, we release the artifacts of our

research at https://github.com/sqlab-sustech/Sitar-project.

II. PRELIMINARIES

A. Java Project Directory Layout and Naming Convention

Java projects managed by Maven mostly follow the standard
directory layout [7], where the src/main directory stores

production code files and the src/test directory stores test

code files. When naming a unit test class, Java developers

often follow a convention to name a test class by appending

the word “Test” to the name of the corresponding production

class as a suffix (or prefix). For example, below is a pair of

production-test class files in commons-io [8]:

• src/main/java/org/apache/commons/io/HexDump.java
• src/test/java/org/apache/commons/io/HexDumpTest.java

Existing studies have widely leveraged the naming con-

vention to associate production and test classes [9], [10].

It is shown that this simple approach can achieve a high

precision and an acceptable recall in establishing production-

test traceability [11]. In this work, we also use this approach to

pair a production class with its corresponding unit test class.

B. Production-Test Co-Evolution

Co-evolution change pair: There are three types of file-

level changes in most version control systems: CREATE,

EDIT, and DELETE. A commit in a version control system

typically contains one or more file changes and is assigned a

unique hash ID (e.g., SHA1 in Git). A file f ’s change, denoted

changef , can be represented as a triple (pathf , idf , typef),
in which the three fields represent the relative path of f ,

the commit’s hash ID, and f ’s change type, respectively.

Based on this, we can define a co-evolution change pair as

(changep , changet), where changep denotes the change of a

production code file p and changet denotes the change of the

corresponding test code file t.
Simultaneous and postponed co-evolution: A unit test

code file may be changed simultaneously with the correspond-

ing production code file in a commit. The co-evolution may

also be postponed, that is, the commit that changes the test

code file is after the commit that changes the production code

file. To ease understanding, let’s consider an example.

0 6 1812 3024 36 42 48 ℎa b c hgfed

On the timeline above, each circle represents a commit.

For simplicity, let us assume that each commit only changes

one file. Among these commits, suppose the solid circles

{a, d, f} change the production class Foo, the dashed circles

{b, c, e, g, h} change the corresponding test class FooTest, and

the empty circle represents a commit that changes another

class (neither Foo nor FooTest).1 For subsequent discussions,

we introduce two notations below.

First, given a commit co that modifies production code, we

use coevoic(co) to denote the set of co-evolved test changes
that are postponed by at most i commits. Here, the subscript c
means that we measure the postponement of co-evolution by

the number of commits. With this notation, coevo0c(co) refers

to the simultaneous test changes that occur in the commit co.

For the above example, coevo1c(a) is an empty set, since the

commit that immediately follows a (i.e., the empty circle) does

not modify FooTest. For i = 2, 3, 4, 5, we have coevo2c(a) =
{b}, coevo3c(a) = {b, c}, coevo4c(a) = {b, c}, coevo5c(a) =
{b, c}, respectively. Note that coevo5c(a) does not contain e.
This is because e is committed after d, which is a later change

1To ease presentation, we also use a− h to represent the file changes.

273

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on July 16,2021 at 08:22:10 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: Star and fork numbers of cloned projects

of the production class Foo. Hence e should be considered as

a co-evolved test change of d, rather than that of a.

Second, we can also measure the postponement by the time

duration. We use coevoih(co) to denote the set of co-evolved

test changes that are postponed by at most i hours after the

commit co. For the above example, we have coevo12h(a) =
{b} and coevo24h(a) = {b, c}.

III. UNDERSTANDING PRODUCTION-TEST CO-EVOLUTION

In this section, we study the co-evolution change pairs in

real-world Java projects. The study explores the following

three research questions:

• RQ1 (Prevalence of Co-Evolution): How prevalent is
the phenomenon of production-test co-evolution?

• RQ2 (Change Type Combinations): What are the com-
mon change type combinations of production code and
test code in co-evolution scenarios?

• RQ3 (Co-Evolution Characteristics): What kinds of
production code changes often result in the co-evolution
of the test code?

For the study, we cloned all 975 Apache Software Founda-

tion (ASF) Java projects from their GitHub mirrors on July 1,

2019. Figure 2 shows the star and fork numbers [12] of these

projects, among which Dubbo [13] is the most popular project

(27,498 stars and 18,142 forks) and Kafka [14] ranks the

second (12,586 stars and 6,756 forks).

To answer RQs 1-2, we first discuss the results in the two

most popular projects, i.e., Dubbo and Kafka, in detail and

then present the results of all projects. To answer RQ3, we

manually studied a subset of co-evolution change pairs and

production code changes that did not result in co-evolution.

We adopted the open-coding [15] process to categorize the

studied changes to understand under what situations test code

would co-evolve with the production code.

A. Prevalence of Co-Evolution

Figure 3 shows the co-evolution situations in two projects.

For each project, the co-evolution changes are grouped by the

time intervals between the commits of the production code and

test code. The figure only reports the co-evolutions within 48

hours of the production code change for better visualization.

In Dubbo, nearly 40% test classes were changed in the same

commit with the production class changes. In other word,

40% production class changes resulted in simultaneous co-

evolutions. Most of the remaining production class changes did

not result in test class co-evolution within 48 hours. Besides,

postponed co-evolutions exist, but they only account for a

small proportion. Also note that the postponed co-evolution

Fig. 3: The co-evolution situations in Dubbo and Kafka

Fig. 4: Co-evolutions within 480 hours in Dubbo and Kafka

within 24 hours (i.e., coevo24h\coevo0h) is more frequent than

that within 24-48 hours (i.e., coevo48h\coevo24h). In Kafka,

the proportion of simultaneous co-evolutions is even higher

(over 50%), while the proportions of postponed co-evolutions

is smaller. This shows that in well-maintained open-source

projects like Dubbo and Kafka, developers tend to update

the test code soon when there are important changes to the

production code.

We also investigated the postponed co-evolutions that hap-

pened beyond 48 hours. The result is shown in Figure 4. Each

point at time t represents the number of observed co-evolution

change pairs in which the test code is updated within t hours

of the production code changes. The point at zero refers to the

number of simultaneous co-evolutions. In both plots of Dubbo

and Kafka, the number of co-evolutions slightly increases after

the first data point. This indicates that co-evolution rarely

happen long after the production code is changed.

To understand the co-evolution practices in other ASF

projects, we first collected their co-evolution change pairs. For

each project, we categorized the pairs into six time intervals

as shown in Figure 5(a) and represented the result as a six-

dimensional vector.2 We normalized each vector so that the

values sum up to 1. Since many ASF projects are small in size

and have few commits or unit tests, their corresponding vec-

tors contain zero values. For better visualization, we remove

those projects whose vector contains zero values. Figure 5(a)

presents the distribution for each category among the studied

ASF projects (after filtering, 151 projects remained). Similarly,

we also categorized the co-evolution change pairs by the

number of commits between the production code change and

the test code change. The statistics are shown in Figure 5(b)

(after filtering, 93 projects remained).

From Figure 5(a), we can observe that in most projects, co-

evolutions often happen in the same commits, with a median

proportion around 47.0% and a mean proportion of 46.9%

(the vertical axis is in log scale). The number of postponed

co-evolutions decreases by time in most projects, similar to

2Due to page limit, we only considered six time intervals in this paper.
More detailed data are available on our project website.

274

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on July 16,2021 at 08:22:10 UTC from IEEE Xplore. Restrictions apply.

(a) Postponed by time

(b) Postponed by commits

Fig. 5: Co-evolution statistics of the studied ASF projects

TABLE I: Co-evolution change types in Dubbo and Kafka

Change Type

CC CD CE DC DD DE EC ED EE

Dubbo 403 0 2 0 247 2 100 14 941
Kafka 316 1 2 2 19 2 149 2 2,899

what we observed in Dubbo and Kafka. There is also a large

amount (the median is 48.0% and the mean is 48.3%) of tests

not being changed within four days. A similar conclusion can

be drawn from Figure 5(b) (simultaneous co-evolutions are

excluded as they are already presented in Figure 5(a)).

Finding 1: (1) Although production-test co-evolutions are

common, a large proportion of production code changes

would not result in the co-evolution of test code; (2) Post-

poned co-evolutions happen but simultaneous co-evolutions

are much more frequent.

B. Change Type Combinations

Table I shows the distribution of co-evolution change types

in Dubbo and Kafka. Here we only consider the co-evolutions

that happen within 20 days of the production code changes. In

the table, the change types C, D, and E represent “Creating”,

“Deleting”, and “Editing”, respectively. For each combination

(e.g., CC), the first letter represents of the change type for

the production code file and the second letter represents the

change type for the test code file.

In both projects, the most frequent change type combination

is EE, where developers update an existing production class

and its test class. The second most frequent combination is

CC, where developers add new production classes and create

the corresponding test classes to test the new production code.

Among the remaining combinations, EC is also frequent. In

the EC scenario, developers update an existing production

class and create a corresponding test class.

Fig. 6: The distribution of co-evolution change type combina-

tions in 182 ASF projects

Besides the common combinations, we also found some

counter-intuitive combinations. For example, there are two DC
cases in Kafka. We checked the commits and found that both

cases are related to the refactoring of production classes. Since

these cases are rare, we do not make further discussions.

Figure 6 shows the distribution of co-evolution change type

combinations in other studied ASF projects. Here we excluded

the following four rarely observed combinations (see Table I):

CD, CE, DC and DE and only kept 182 ASF projects that

have all the five remaining combinations (data processing is

similar to Figure 5). The figure shows that the proportion of

EE is significantly larger than the other combinations, with

a midian of 66.1%, and two quartiles of 56.4% and 75.4%,

respectively. The overall distribution is close to that in Dubbo

and Kafka (Table I).

Finding 2: (1) Various combinations of change types may

occur in production-test co-evolution, some of which are

counter-intuitive (e.g., CD or DC); (2) The change type

combination EE is significantly more frequent than the

other combinations.

C. Co-Evolution Characteristics

Knowing that co-evolutions often happen soon after pro-

duction code changes, and there are different combinations of

change types at the file level, we then went deep to investigate

the co-evolved production and test code by inspecting the code

changes. Based on the previous findings, if a test is changed

within 48 hours of the production code changes, we regard

the pair of production and test code as a “positive pair”; On

the contrary, if the test is not changed within 480 hours of the

production code changes, we regard the pair of production and

test code as a “negative pair”. From the 975 ASF projects, we

extracted 210,291 positive pairs and 217,831 negative pairs.

For each type of pairs, we randomly sampled a subset of

production code changes that are EDITs (we call such changes

“production patches”), since the change type combination EE
dominates the other combinations according to Finding 2.

Specifically, for each type of pairs, we analyzed 384 randomly

picked production patches, which can represent the population

with a confidence level of 95% and a 5% margin of error.

Manual analysis of production patches: During the anal-

ysis, we tagged each patch by the location where it is applied.

Note that a patch can involve code changes in multiple

275

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on July 16,2021 at 08:22:10 UTC from IEEE Xplore. Restrictions apply.

TABLE II: The details of the changes made by production patches

Samples
Programming-Language Construct Natural-Language Construct Average Patch Size (Lines)

package-id import-stmt class-dec method-sig method-body field annotation copyright javadoc comment add delete

positive 384 5/3 166/22 14/0 59/8 242/43 87/3 59/3 34/28 98/0 51/0 29.12 (19.83) 19.65 (13.55)
negative 384 0/0 132/18 9/4 32/8 250/97 57/7 44/9 5/3 87/0 33/4 11.37 (7.72) 6.98 (4.47)

1 The notation “a/b” under category c means: there are a patches that apply on c, and b patches apply solely on c
2 In the notation “a (b)”, b is the average number of patch lines, excluding empty lines and natural-language constructs
3 The shorthands “stmt” stands for “statement”, “dec” for “declaration”, and “sig” for “signature”

locations, such as field and method body. The tagging was

performed by one author and validated by another author. The

process involved several rounds. In each round, the tagging

author presented the results in detail to the validating author.

Then they discussed to revise the results, by splitting, remov-

ing, or merging some tags. For example, the tag “program

header” was split into “package id” and “import statement”. As

shown in Table II, after rounds of discussion, the two authors

reached consensus and classified the production patches into

12 types, which belong to two major categories: (1) changes to

programming-language constructs and (2) changes to natural-

language constructs. From the tagging results, we can make

several interesting observations.

Observation 1: In the sampled positive pairs (positive
samples), the production patches tend to modify more different
language constructs.

Among the seven types of programming-language con-

structs, the changes to “package identifier” only appear in

positive samples: indeed, when a Java class is re-packaged, its

test class should also be updated; otherwise, the test classes

are not compilable. For import statements, the positive samples

involve more changes to them than negative samples.

There are a few production patches that modified the “class

declaration” by updating the production class’s super class (or

interfaces) or changing the generic type parameters. As shown

in the table, none of the positive samples changed only the

class declaration and most of them (12/14) were coupled with

method changes. Negative samples, however, may only modify

the class declaration itself. This is understandable: if a class’s

super class (or interfaces) is changed and some methods need

to be overridden, its corresponding test class should also be

updated, to test the overridden methods. Conversely, if there is

no methods to be overridden, the test often remains unchanged.

Methods in a production class encapsulate almost all busi-

ness logics (in Java programming, field accesses are often

wrapped inside getter and setter methods). In order to better

understand how method changes affect co-evolution decision,

we looked at the changes to “method signature” and “method

body” separately. Unlike the traditional definition of “method

signature”, we also considered modifiers and return type as

part of the signature. Method declarations in abstract classes or

interfaces also belong to “method signature”. As shown in the

table, 59 patches modified method signatures in the production

code, leading to co-evolutions. On the contrary, 32 method

signature modifications did not result in co-evolutions. For the

co-evolution cases, nearly one third of the production patches

(17/59) either added or deleted method parameters, or changed

parameter types (13/59) into incompatible classes, which

would make test code uncompilable. For the cases where there

was no co-evolution, 14 patches changed the parameters or

return types into compatible classes, e.g., from String to

Object or from Collection to Set. Other types of signature

changes include changing modifiers, adding annotations, and

etc., which are rare. As we expected, most production patches

changed method bodies. However, we found slightly more

negative samples modifying method bodies (250 against 242).

More interestingly, we observed 97 negative samples that only

modified method bodies. This indicates that predicting test

changes by looking at whether method bodies are changed

by production patches may not be an effective approach to

identifying outdated tests.

For those patches that modified the member attributes (i.e.,

“field”), 87 patches led to co-evolutions, while 3.4% of them

did not modify other language constructs. In the negative

samples, this proportion becomes 12.3%, which also supports

Observation 1 since more negative samples only modified a

single language construct. We can draw a similar conclusion

for the changes to “annotation” lines.

Observation 2: Production patches in positive samples tend
to modify more lines than those in negative samples.

Table II shows the average size of the sampled patches. For

positive samples, on average, the production patches added

29.12 lines and deleted 19.65 lines. As for negative samples,

these numbers are 11.37 and 6.98, respectively. If we exclude

empty lines, comments, Javadoc, and copyright notices, on

average, the positive samples added 19.83 lines and deleted

13.55 lines, while the negative samples added 7.72 lines

and deleted 4.47 lines. As we can see, all numbers in the

positive samples are significantly greater than those in the

negative samples. Under a one-tailed t-test, we can accept the

hypothesis that “positive samples add/delete more lines than

negative samples” (all p-values are less than 0.00001). This

suggests that when a production patch modifies more lines of

code, a co-evolution is more likely to happen.

Observation 3: Changes to natural-language constructs
can also lead to co-evolutions.

Copyright notices generally appear at the beginning of a

source file. In our studied positive samples, we found that 34

production patches modified copyright notices and 28 involved

only copyright notice changes. The numbers are significantly

higher than those in the negative samples. This seems to

suggest that it may be useful to consider copyright notice

changes as a factor in predicting test changes. However, in

practice, changing copyright notices for a whole project can

be easily realized in IDEs. It is not meaningful to build a tool

to prompt developers to update copyright notices in test code.

276

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on July 16,2021 at 08:22:10 UTC from IEEE Xplore. Restrictions apply.

Fig. 7: SITAR’s Workflow

As for Javadoc and comments, we found that their changes

were often coupled with other types of changes. For exam-

ple, in both positive and negative samples, no production

patches changed only Javadoc. This indicates that considering

the changes to such natural-language constructs may not be

helpful in predicting test changes.

Finding 3: (1) Production code changes that result in the

co-evolution of test code tend to modify different language

constructs; (2) Production code changes involving more

lines of code are more likely to result in the co-evolution

of test code; (3) Changes to natural-language constructs are

not good indicators of test changes.

IV. JUST-IN-TIME TEST UPDATE PREDICTION

A. An Overview of Our Approach

Our empirical study reveals that test code is often updated

when certain types of production code changes occur. In real-

world projects with a large number of production classes,

keeping test code up to date whenever the production code

changes can be a non-trivial task, especially when the produc-

tion code and test code are maintained by different developers.

To ease test maintenance in such scenarios, we propose a

machine-learning based approach named SITAR for juSt-In-

time Test updAte pRediction. SITAR automatically learns a

model from the historical data of production-test co-evolution

in a project and helps find outdated test code when the

developers change the production code during the evolution

of the project. For new projects without such historical data,

the model can also be learned using data from other projects.

Figure 7 gives an overview of SITAR. Given a project’s code

repository, SITAR first extracts features from the production

code changes and the corresponding labels from test code

changes, i.e., their change types. Inspired by our empirical

findings, when extracting features, SITAR considers not only

various types of production code changes but also the size of

such changes. Specifically, SITAR has three major components:

1) The Matcher analyzes the code repository and produces

two types of samples: (1) positive samples, in which the

test code co-evolves with the production code and (2)

negative samples, in which the test code does not co-

evolve with the production code.

2) The Feature Extractor converts samples produced by the

Matcher into structural vector representations. For each

sample, the feature is extracted from the “patch” and

the original source code of the production classes. The

Algorithm 1: Mining positive and negative samples

Input: {commiti}: a code repository with n commits
Output: pos_samples: positive samples (co-evolution),

neg_samples: negative samples (not co-evolved)

1 pos_samples, neg_samples = ∅, ∅
2 for i := 1 to n do
3 prod_list := production code changes in commiti
4 for commit′ in COMMITWITHIN(48, commiti) do
5 test_list := test code changes in commit′

6 for prod in prod_list do
7 test := CORRESPONDINGTEST(prod)
8 if (test exists) && (test in test_list) then
9 p := (prod.path, commiti.id, prod.type)

10 t := (test.path, commit′.id, test.type)
11 add (p, t) to pos_samples
12 for commit′ in COMMITWITHIN(480, commiti) do
13 test_list := test code changes in commit′

14 for prod in prod_list do
15 test := CORRESPONDINGTEST(prod)
16 if (test exists) && (test not in test_list) then
17 p := (prod.path, commiti.id, prod.type)
18 t := test.path
19 add (p, t) to neg_samples

change type of the corresponding test class is regarded

as the sample’s label.

3) The Classifier is trained using the historical data prepared

by the previous steps. After training, the classifier can

help predict whether a piece of test code should be

updated when developers change the production code. To

be practical, SITAR supports multiple learning algorithms

and can be configured to perform multi-class classifica-

tion, i.e., predicting the exact types of changes that should

be made to the test code.

B. Mining Positive and Negative Samples

The Matcher mines samples in a code repository by match-

ing production code changes and their corresponding test code

changes in the repository’s history. Following our empirical

findings, if a test class is updated within 48 hours since its

corresponding production class is changed, we regard it as a

positive sample; On the other hand, if the test is not changed

within 480 hours of the production code changes, we assume

that no co-evolution will happen and regard it as a negative

sample. Such a simple treatment may introduce noises into

the mined samples. However, we did not observe any negative

impact in our experiments.

Algorithm 1 shows how Matcher works. For each commit

in the repository’s main branch, Matcher finds all production

file changes (line 3), which is trivial if the project follows the

standard directory layout. To find positive samples, Matcher

iterates over all commits within 48 hours after (and including)

commiti (line 4), and collects test changes according to the

standard directory layout (line 5). With the list of production

code changes and the list of test code changes, Matcher then

matches them according to the naming convention introduced

in Section II (line 7). If the test exists and is in the change

277

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on July 16,2021 at 08:22:10 UTC from IEEE Xplore. Restrictions apply.

TABLE III: Selected language constructs (features) and their

corresponding grammars

Feature Abbr. Grammar Rule

package-id P PackageDeclaration
import-stmt I ImportDeclaration

class-dec† C NormalClassDeclaration: [^ClassBody]

param-list L FormalParameterList

cond-expr‡ D

Statement:
if (Expression) Statement |
if (Expression) Statement else Statement |
while (Expression) Statement |
do Statement while (Expression); |
for (ForInit; Expression; ForUpdate) Statement

method-call M MethodInvocation
return-stmt R ReturnStatement

field F FieldDeclaration
annotation A Annotation

† All child nodes except ClassBody are considered
‡ Only the child node Expression is considered

list (line 8), a co-evolution change pair is formed and added

to the positive sample set (line 11). Mining negative samples

is similar to mining positive samples and we do not further

explain the process. Since the test code is not changed in a

negative sample, it only records the test file path (line 18).

To determine test existence, Matcher stores all file names

in the history and checks whether the test file ever appears.

The rationale is that if the production code change does not

immediately lead to the creation of a test, while the test

is created long after that, it is reasonable to say that the

production code change is not important enough to require

a corresponding test, hence Matcher should regard this case

as a negative sample.

Matcher labels samples by the file-level changes of the tests.

There are two configurations. In the binary class configuration,

samples are only labeled as should change (SC) or should not
change (NC), depending on whether the sample is positive or

negative. In the multi-class configuration, the positive samples

are divided into three sub-categories: should create (SSC),

should edit (SSE) or should delete (SSD).

C. Feature Extraction

The Feature Extractor converts each sample’s (both positive

and negative) production patch into structural vector repre-

sentation. Particularly, it extracts the number of added/deleted

lines of certain language constructs. Table III lists the selected

features. Most concerned language constructs directly appear

in Table II except that “method signature” is replaced by

“parameter list”, as most signature changes are actually related

to changing parameters (Observation 1). Another difference

is that “method body” is replaced by three representative

constructs [3]: (1) conditional expression, (2) method call

expression, and (3) return statement.

Previous work analyzes source code changes via AST

differencing [3]. Unlike the existing work, which focuses on

release-level changes, our work analyzes file-level changes at

the granularity of commits. Thus our Feature Extractor can be

implemented by a more light-weight method.

The Feature Extractor accomplishes its task via interval
stabbing [16]. We say an interval [li, ri] is stabbed by a point j
if j ∈ [li, ri]. Given a set of interval I and a query point q, the

interval stabbing problem is to find all the intervals in I that

are stabbed by q. In a Java program, each language construct

corresponds to an interval [l, r], where l is the starting line

number (left endpoint) and r is the ending line number (right

endpoint). The intervals can be extracted from specific nodes

in the program’s parse tree (the grammar rules are given in

Table III). For example, to obtain the interval of a while-loop

condition, we can traverse the parse tree until the subtree

“Statement: while (Expression) Statement” is reached and

collect the line interval of the Expression tree node. Note that

intervals may include each other [17] since language constructs

may nest (e.g., conditional expressions may involve method

calls). Given multiple changed lines (queried points), Feature

Extractor finds out which language constructs (intervals) each

line belongs to: for deleted lines, it queries the intervals

generated by the original source code; for added lines, it

queries the intervals generated by the patched code.

Given n queries, a brute force solution takes O(n|I|) time,

as all intervals are scanned for each query. This is inefficient

since it checks for those unstabbed intervals repeatedly. These

unnecessary operations can be eliminated by leveraging seg-
ment tree [18], whose query operations only take logarithmic

time. The idea is to build an immutable segment tree from

a parse tree and perform multiple queries. Since real-world

projects are typically complex and large-scale, which can bring

many intervals and query points, segment tree is an ideal

optimization to the brute force solution.

D. Test Update Prediction

The Classifier can be implemented on top of various

machine-learning algorithms. To be practical, it should also

support both binary and multiclass classifications, since we

may use both configurations depending on application scenar-

ios. The Classifier can be trained using the commit history

of a repository or other repositories. After training, given a

new production patch, the Classifier will be able to predict

whether its corresponding test should be updated (or should

be created/edited/deleted, accordingly). In our implementation

of SITAR, we used four classifiers that are widely-adopted for

software maintenance tasks: Logistic Regression [19], Naïve

Bayes [20], Random Forest [21], and Gradient Boosting [22].

In Section V-B, we will compare their performance.

V. EVALUATIONS

A. Experiment Setup

SITAR is mostly written in Python3 except that the Java

parser is generated by the ANTLR metacompiler from the of-

ficial g4 scripts [23]. For the Classifier component, we adopted

the default implementations in scikit-learn [24] library.

To evaluate SITAR, we randomly selected ten ASF projects

with a large number of positive/negative samples and seven

278

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on July 16,2021 at 08:22:10 UTC from IEEE Xplore. Restrictions apply.

TABLE IV: Selected projects for evaluation

Project From #Co-evo #Samples #Commits #Files KLoC

ActiveMQ ASF 563 1,452 10,197 4,455 415.0
CloudStack ASF 1,274 3,237 32,008 5,404 613.9

Math ASF 1,457 2,470 6,417 1,324 174.5
Flink ASF 961 2,428 17,266 7,782 803.0
Geode ASF 3,395 6,358 8,043 7,806 1,249.2
James ASF 3,779 7,256 7,226 4,674 365.0
Log4j2 ASF 1,965 3,726 10,656 1,975 147.5
Storm ASF 2,428 3,926 9,967 2,340 281.3

Usergrid ASF 4,039 6,749 10,950 2,097 174.8
Zeppelin ASF 1,395 2,527 4,124 758 124.6
JPacman [10] 33 116 374 55 2.4

Gson [3] 276 642 1,485 208 25.3
PMD [3] 618 4,903 17,204 2,788 136.6

BioJava [25] 2,401 2,998 6,208 1,322 150.9
IzPack [25] 194 327 5,648 1,111 105.1

Joda-Time [25] 338 565 2,152 330 86.5
dnsjava [11] 172 247 1,911 258 29.4
Jackson [26] 96 264 2,278 279 47.2
JRuby [27] 489 1,220 48,720 1,716 259.3
jsoup [28] 425 1,095 1,363 120 21.5

Fig. 8: Precision-recall curve of selected classifiers

projects widely used in co-evolution related research [3], [10],

[11], [25]. We additionally selected three popular open-source

projects, i.e., Jackson, JRuby, and jsoup, to enrich our subjects.

The information of the 20 subjects is shown in Table IV. We

will use them to conduct experiments to answer the following

research questions:

• RQ4: Which classifier is the most effective one?
• RQ5: Can SITAR effectively predict production-test co-

evolutions in real-world projects?
• RQ6: Which features are most relevant to co-evolution?
• RQ7: Can SITAR outperform rule-based methods?

B. RQ4: Comparison of Classifiers

To answer RQ4, we compared the aforementioned classifiers

(Section IV-D) with the binary classification configuration.

In this experiment, we used all data of the 20 projects

(Table IV), and we balanced the sample label distribution by

undersampling the majority of each project. To avoid over-

fitting, we used the classifiers’ default hyper-parameters set by

the scikit-learn except that the Logistic Regression’s max_iter

is set to 1000 to converge iterative solving. We randomly split

90% of data for training classifiers and used the remaining

10% for validating the prediction results.

Figure 8 presents the precision-recall curves [29]. It shows

that Random Forest classifier outperforms all other classifiers.

TABLE V: SITAR performance on selected projects (%)

WP WP CP

Project Acc. Prec. Rec. Project Acc. Prec. Rec. Acc. Prec. Rec.

ActiveMQ 71.8 75.6 64.8 JPacman 87.5 93.0 83.3 67.9 76.3 52.2
CloudStack 83.2 86.3 79.1 Gson 71.3 72.3 70.3 65.7 72.8 50.3

Math 71.1 72.8 67.7 PMD 74.0 74.2 73.8 62.9 67.9 49.0
Flink 84.4 84.5 84.3 BioJava 84.4 87.4 80.8 72.8 72.6 73.4
Geode 82.4 84.2 79.8 IzPack 71.8 72.2 72.8 71.4 73.8 66.2
James 75.2 76.7 72.6 Joda-Time 71.1 71.2 71.7 64.5 67.8 55.1
Log4j2 76.5 79.1 72.3 dnsjava 84.7 81.9 89.3 67.5 68.8 64.1
Storm 90.8 93.5 87.7 Jackson 68.3 67.2 75.0 59.7 65.3 41.5

Usergrid 86.1 89.0 82.5 JRuby 73.7 74.9 71.9 62.9 66.2 52.7
Zeppelin 71.6 72.5 70.0 jsoup 70.7 70.3 72.2 57.6 63.4 36.1

Avg. 79.3 81.4 76.1 75.7 76.5 76.1 65.3 69.5 54.1

“Acc.”, “Prec.”, “Rec.” stand for accuracy, precision, and recall, respectively.

The Naïve Bayes classifier is less effective (its curve is at

the bottom when the recall is over 0.18). The main reason

for such a poor performance is that Naïve Bayes classifier

assumes that all features are independent [20], which is not

the case in our context: Finding 3 already shows that in a

co-evolution scenario, the production patch tends to modify

more language constructs, such as modifying the method

signature and body simultaneously. The curve for the Logistic

Regression classifier begins with a cliff. This indicates that

it may estimate a high probability for a negative sample,

resulting in false alarms of outdated tests. It is also worth

mentioning that both ensemble classifiers (Random Forest and

Gradient Boosting) are able to achieve a higher precision with

the same recall, comparing to the other two classifiers.

Answer to RQ4: Random Forest outperforms other clas-

sifiers in test update prediction. Naïve Bayes and Logistic

Regression classifiers are less effective.

C. RQ5: Performance of SITAR in Real-world Projects

To evaluate SITAR’s performance in real-world projects, we

conducted experiments with two settings, within-project (WP)

and cross-projects (CP), using the Random Forest classifier

and the binary classification configuration. We also performed

undersampling for each project in binary classification. In the

first setting, we performed 10-fold cross-validation on each

project and calculated the average scores of each evaluation

metric. In the second setting, we used all ASF projects for

training and validated the performance of the resulting model

with the newly-selected projects, and the final metric scores

were averaged from 10 independent runs.

Table V lists the accuracy, precision, and recall scores in

percentage. Among ASF projects under the WP setting, the

accuracy ranges from 71.1% to 90.8% with an average score

of 79.3%. The precision ranges from 72.5% to 93.5% with

an average score of 81.4%. The average recall is 76.1%. The

results indicate that SITAR can effectively identify outdated

tests in ASF projects.

As for the new projects, SITAR obtains an average accuracy

of 75.7%, precision of 76.5%, and recall of 76.1%. In some

projects, such as BioJava and dnsjava, all scores are above

80%. This shows that SITAR can also perform well under the

WP setting in non-ASF projects.

279

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on July 16,2021 at 08:22:10 UTC from IEEE Xplore. Restrictions apply.

TABLE VI: Multiclass prediction results for the project Storm

SSC SSD SSE NC

SSC 969 19 26 28
SSD 19 176 7 3
SSE 12 1 986 185
NC 10 2 118 1,365

Under the CP setting, among the three metrics, precision

is the highest in most projects. This indicates that SITAR can

learn co-evolution characteristics from ASF projects, and the

learned knowledge can be applied to the new projects for

identifying outdated tests. However, the recall scores under

the CP settings are less satisfactory. A possible reason is

that the classifier is trained with solely the ASF data, thus it

misses some practices that are not present in the ASF projects,

resulting in too many false negatives in outdated test detection.

We also evaluated SITAR with multiclass prediction config-

uration (Section IV-B). We selected the top-3 ASF projects

with the highest accuracies in previous experiments under the

WP setting (Storm, Usergrid, and Flink) and run SITAR with

their unbalanced multiclass data under the WP setting. The

accuracies of the multiclass prediction are 89%, 85.4% and

86.2%, respectively. Table VI shows the confusion matrix of

Storm. Each row is for the actual label while each column is

for the predicted label. The confusion matrix shows that SSC
and SSD can be accurately identified, as there are fewer false

alarms to these two subtypes.

Answer to RQ5: SITAR exhibits promising performance,

with an average accuracy, precision, and recall of 79.3%,

81.4%, and 76.1% in ten ASF projects. In the other ten

projects, these average scores are all above 75%. SITAR can

also perform multiclass prediction with a high accuracy.

D. RQ6: Contribution of Features

We use the recursive feature elimination (RFE) method [30]

with the Random Forest classifier to rank the features. RFE

recursively removes the least-important feature according to

the classifier’s performance until only one feature remains.

The reversed removing order is then a ranking of the features’

importance. With the feature ranking f1, f2, . . . , fn (from the

most important to the least), we train multiple random forests

in the following way to evaluate the contribution of the fea-

tures. Specifically, for each feature fi, we train random forests

with two strategies: (1) the prefix strategy trains with features

f1, f2, . . . , fi to evaluate the contribution of those important

features and (2) the postfix strategy trains with fi, fi+1, . . . , fn
to evaluate the contribution of those less significant features.

To eliminate noise, we used the same train-validation partition

for all random forests and initialized each model with an

identical random seed. To ensure data significance, we selected

eight projects in Table V whose WP accuracy is over 80%. We

use 90% of the data for training and the remaining 10% for

validating, and balance the label distribution for each project.

Fig. 9: The accuracy scores by different training features,

features ranked according to their importance

Figure 9 shows the results. In the figure, the labels on the X-

axis mean “Adding or Deleting certain language constructs”.

For example, AL means “adding parameter list lines” (‘L’

stands for parameter list as shown in Table III). The dark line is

plotted according to the prefix strategy, thus its leftmost point

is obtained by training with the feature AL alone. Similarly,

the rightmost point of the grey line is obtained by training

with only the feature DA. From the figure, we can see that

using the feature AL alone can achieve an accuracy of nearly

70%, while using the feature DA alone can only achieve an

accuracy of 56.4% (slightly better than random guesses). With

the top-3 features (AL, AM and DM), SITAR can achieve an

accuracy of 74.2%. In order to obtain such an accuracy with

the postfix strategy, at least seven less-significant features, i.e.,

from DR to DA, are needed.

We also applied the RFE method on individual projects. The

three features, AL, AM and DM, are all in the top-5 features

for six out of the eight projects. For JPacman, only AL and

AM are in the top-5 (note that JPacman has few samples).

For dnsjava, AM and DM are in the top-5, while AL ranks

at the 6th place. These results also suggest that AL (adding

parameter list lines), AM and DM (modifying method call

sites) are most relevant to co-evolution.

Answer to RQ6: Adding parameter list lines and modifying

method call sites in the production code are most relevant

to co-evolving the test code.

E. RQ7: Comparison with Rule-based Methods

We last compare SITAR with rule-based methods. According

to Finding 1, the most trivial rule, which suggests test update

whenever the production code is changed, would not work

well in practice. Therefore, we chose not to compare with

it. Our experiments compared SITAR with the baseline meth-

ods based on three co-evolution patterns mined by existing

work [3]: (1) adding/deleting a production class would cause

the corresponding test class to be added/deleted (R1), (2)

adding/modifying methods in production classes would result

in adapting the test methods (R2), and (3) modifying fields in

production classes would lead to test update (R3).

Table VII shows the performance of the rule-based methods

when being applied on each project’s balanced data. Due

to page limit, the table only presents the data of the ASF

280

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on July 16,2021 at 08:22:10 UTC from IEEE Xplore. Restrictions apply.

TABLE VII: Precision and recall of rule-based decisions (%)

R1 R2 R3 R1+R2+R3

Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec.

ActiveMQ 99.5 38.2 49.8 80.5 62.9 54.2 49.9 86.3
CloudStack 99.5 33.8 51.6 86.0 77.3 55.2 51.9 89.7

Math 97.6 24.6 53.7 78.8 55.4 39.5 52.0 86.8
Flink 90.1 14.2 51.6 96.7 70.3 64.2 51.6 97.9
Geode 99.6 30.2 55.6 89.7 72.2 42.9 54.5 92.2
James 100.0 24.8 52.0 87.1 74.2 48.4 51.2 89.1
Log4j2 98.3 19.9 55.9 88.4 65.1 44.6 54.3 91.5
Storm 99.7 38.9 52.6 90.7 73.8 70.4 51.5 92.5

Usergrid 96.7 42.2 49.7 76.1 68.2 53.0 50.5 82.9
Zeppelin 98.9 15.9 51.1 94.4 69.3 48.8 50.8 96.3

Avg. 98.0 28.3 52.4 86.8 68.9 52.1 51.8 90.5

projects. Among the rules, R1 achieves the highest average

precision but the lowest average recall. R1 suggests test update

whenever a production class is created or deleted. However,

creating/deleting production classes is not as frequent as other

kinds of code changes, and this is the primary reason of

the low recall. Conversely, R2 achieves a high recall but a

low precision, as method changes cover most co-evolution

and non-co-evolution scenarios (Table II). R3 has a moderate

performance comparing to R1 and R2 but both of its average

scores are worse than that of SITAR under the WP setting.

By combining the three baselines, we can achieve the highest

average recall (90.5%) but its average precision is the worst.

Answer to RQ7: The performance of rule-based methods

varies a lot, and SITAR significantly outperforms these

methods.

VI. THREATS TO VALIDITY

The validity of our study may be subject to several threats.

First, we only conducted our empirical study on ASF projects

and our findings may not be generalizable to other software

projects. To mitigate this threat, we used extra projects in the

evaluation and found that our approach SITAR, which was

designed based on the empirical findings, can also effectively

detect outdated tests for non-ASF projects. Second, when

investigating RQ3, we manually inspected 768 production

patches. Such a manual process may be error-prone. To reduce

the threat, we repeated our tagging process several times, and

the results are cross-validated by two authors. Our dataset is

also released for public scrutiny. Third, to obtain sample labels,

we chose 48 hours for positive samples and 480 hours for

negative samples (Section IV-B). These thresholds were set

according to our empirical observations. In the future, we will

study how to better identify samples, which may improve the

performance of SITAR.

VII. RELATED WORK

A. Production-Test Co-Evolution and Traceability

Zaidman et al. studied the evolution patterns of production

code and test code in two open-source projects [9] and one

commercial project [31]. They presented their results with

three visualization techniques. These visualizations, however,

do not reflect the links between production code and test code.

In comparison, our work presents how production and test

code co-evolve in history. We also show the distribution of

various co-evolution type combinations.
Levin and Yehudai studied co-evolution with semantic

changes [4]. They were aware of the co-evolution caused

by specific maintenance activities and used the number of

corrective, perfective, and adaptive activities as code change

features. Our work is complementary to their work as we focus

on different co-evolution change types in practice, and we use

syntactic features of code changes.
Various techniques [3], [10], [32]–[34] were developed to

establish traceability links between production code and test

code. Most of them are based on a set of pre-defined rules.

Unlike them, we adopt the naming convention to build class-

level production-test traceability links.

B. Machine Learning for Software Maintenance
Machine learning is widely used in various software main-

tenance tasks. An active research topic is software defect

prediction (SDP) [35]. Recent SDP studies include automatic

feature engineering [36], [37], cross-project learning [38],

[39], addressing class imbalance problems [40], [41], classifier

selection [42]. Besides SDP, there are many other application

scenarios of machine learning techniques in the field of soft-

ware maintenance. For example, in a recent survey [43], the

authors studied 15 papers regarding code smell detection using

machine learning and found that decision tree and support

vector machine are the most commonly used algorithms. Other

applications include, but are not limited to, regression test

prioritization [44], code completion [45], and code clone [46].

VIII. CONCLUSION

In this work, we studied how production and test code

co-evolve in real-world Java projects. We found that various

factors can affect whether a test class should be updated, such

as the types of modified language constructs and the complex-

ity of the production code changes. Guided by our findings,

we designed SITAR, a machine-learning based approach, to

automatically identify outdated tests when the corresponding

production code is changed. We evaluated SITAR on 20 Java

projects and found that it can effectively identify outdated

tests under the within-project setting. It can also achieve

promising results under the cross-project setting and multiclass

prediction. Moreover, SITAR can significantly outperform rule-

based baseline methods proposed by existing work. In the

future, we plan to study how to automatically extract more

fine-grained syntactic and semantic features. This can help

improve the effectiveness and practicability of our approach.

ACKNOWLEDGMENT

The authors would like to thank SANER 2021 reviewers for

their comments and suggestions, which helped improve this

paper. This work is supported by the National Natural Sci-

ence Foundation of China (Grant Nos. 61932021, 62002125,

61802164, 61902056, and 61902329) and Guangdong Provin-

cial Key Laboratory (Grant No. 2020B121201001).

281

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on July 16,2021 at 08:22:10 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] “apache/commons-pool: Mirror of apache commons pool.” [Online].
Available: https://github.com/apache/commons-pool

[2] V. Hurdugaci and A. Zaidman, “Aiding software developers to main-
tain developer tests,” in 2012 16th European Conference on Software
Maintenance and Reengineering. IEEE, 2012, pp. 11–20.

[3] C. Marsavina, D. Romano, and A. Zaidman, “Studying fine-grained
co-evolution patterns of production and test code,” in 2014 IEEE
14th International Working Conference on Source Code Analysis and
Manipulation. IEEE, 2014, pp. 195–204.

[4] S. Levin and A. Yehudai, “The co-evolution of test maintenance and
code maintenance through the lens of fine-grained semantic changes,”
in 2017 IEEE International Conference on Software Maintenance and
Evolution (ICSME). IEEE, 2017, pp. 35–46.

[5] X. Sun, X. Peng, H. Leung, and B. Li, “Combort: A new approach for
generating regression test cases for evolving programs,” International
Journal of Software Engineering and Knowledge Engineering, vol. 26,
no. 06, pp. 1001–1026, 2016.

[6] D. Lo, L. Jiang, A. Budi et al., “kbe-anonymity: test data anonymization
for evolving programs,” in 2012 Proceedings of the 27th IEEE/ACM
International Conference on Automated Software Engineering. IEEE,
2012, pp. 262–265.

[7] “Maven - introduction to the standard directory lay-
out.” [Online]. Available: http://maven.apache.org/guides/introduction/
introduction-to-the-standard-directory-layout.html

[8] “apache/commons-io: Mirror of apache commons io.” [Online].
Available: https://github.com/apache/commons-io

[9] A. Zaidman, B. Van Rompaey, S. Demeyer, and A. Van Deursen,
“Mining software repositories to study co-evolution of production &
test code,” in 2008 1st international conference on software testing,
verification, and validation. IEEE, 2008, pp. 220–229.

[10] B. Van Rompaey and S. Demeyer, “Establishing traceability links
between unit test cases and units under test,” in 2009 13th European
Conference on Software Maintenance and Reengineering. IEEE, 2009,
pp. 209–218.

[11] R. White, J. Krinke, and R. Tan, “Establishing multilevel test-to-
code traceability links,” in 42nd International Conference on Software
Engineering (ICSE’20). ACM, 2020.

[12] N. Munaiah, S. Kroh, C. Cabrey, and M. Nagappan, “Curating github for
engineered software projects,” Empirical Software Engineering, vol. 22,
no. 6, pp. 3219–3253, 2017.

[13] “apache/dubbo: Apache dubbo is a high-performance, java based open
source rpc framework.” [Online]. Available: https://github.com/apache/
dubbo

[14] “apache/kafka: Mirror of apache kafka.” [Online]. Available: https:
//github.com/apache/kafka

[15] K. J. Stol, P. Ralph, and B. Fitzgerald, “Grounded theory in software
engineering research: a critical review and guidelines,” in Proceedings
of the 38th International Conference on Software Engineering, 2016,
pp. 120–131.

[16] J. M. Schmidt, “Interval stabbing problems in small integer ranges,” in
International Symposium on Algorithms and Computation. Springer,
2009, pp. 163–172.

[17] A. Krokhin, P. Jeavons, and P. Jonsson, “Reasoning about temporal
relations: The tractable subalgebras of allen’s interval algebra,” Journal
of the ACM (JACM), vol. 50, no. 5, pp. 591–640, 2003.

[18] J. L. Bentley, “Solutions to klee’s rectangle problems,” Unpublished
manuscript, pp. 282–300, 1977.

[19] R. Wu, M. Wen, S. C. Cheung, and H. Zhang, “Changelocator: locate
crash-inducing changes based on crash reports,” Empirical Software
Engineering, vol. 23, no. 5, pp. 2866–2900, 2018.

[20] R. T. Asmono, R. S. Wahono, and A. Syukur, “Absolute correlation
weighted naïve bayes for software defect prediction,” Journal of Soft-
ware Engineering, vol. 1, no. 1, pp. 38–45, 2015.

[21] M. Kim, J. Nam, J. Yeon, S. Choi, and S. Kim, “Remi: defect prediction
for efficient api testing,” in Proceedings of the 2015 10th Joint Meeting
on Foundations of Software Engineering, 2015, pp. 990–993.

[22] H. Zhu, L. Wei, M. Wen, Y. Liu, S. C. Cheung, Q. Sheng, and C. Zhou,
“Mocksniffer: Characterizing and recommending mocking decisions for
unit tests,” 2020.

[23] “Java antlr grammar.” [Online]. Available: https://github.com/antlr/
grammars-v4/tree/master/java/java

[24] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[25] M. Alenezi, M. Akour, and H. Al Sghaier, “The impact of co-evolution
of code production and test suites through software releases in open
source software systems,” International Journal of Innovative Technol-
ogy and Exploring Engineering (IJITEE), vol. 9, no. 1, pp. 2737–2739,
2019.

[26] “Fasterxml/jackson.” [Online]. Available: https://github.com/
FasterXML/jackson

[27] “jruby/jruby.” [Online]. Available: https://github.com/jruby/jruby

[28] “jhy/jsoup.” [Online]. Available: https://github.com/jhy/jsoup

[29] J. Guo, J. Cheng, and J. Cleland-Huang, “Semantically enhanced soft-
ware traceability using deep learning techniques,” in 2017 IEEE/ACM
39th International Conference on Software Engineering (ICSE). IEEE,
2017, pp. 3–14.

[30] I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, “Gene selection for
cancer classification using support vector machines,” Machine learning,
vol. 46, no. 1-3, pp. 389–422, 2002.

[31] A. Zaidman, B. Van Rompaey, A. van Deursen, and S. Demeyer,
“Studying the co-evolution of production and test code in open source
and industrial developer test processes through repository mining,”
Empirical Software Engineering, vol. 16, no. 3, pp. 325–364, 2011.

[32] Z. Lubsen, A. Zaidman, and M. Pinzger, “Using association rules to
study the co-evolution of production & test code,” in 2009 6th IEEE
International Working Conference on Mining Software Repositories.
IEEE, 2009, pp. 151–154.

[33] L. Vidács and M. Pinzger, “Co-evolution analysis of production and
test code by learning association rules of changes,” in 2018 IEEE Work-
shop on Machine Learning Techniques for Software Quality Evaluation
(MaLTeSQuE). IEEE, 2018, pp. 31–36.

[34] A. Qusef, G. Bavota, R. Oliveto, A. De Lucia, and D. Binkley,
“Recovering test-to-code traceability using slicing and textual analysis,”
Journal of Systems and Software, vol. 88, pp. 147–168, 2014.

[35] I. H. Laradji, M. Alshayeb, and L. Ghouti, “Software defect prediction
using ensemble learning on selected features,” Information and Software
Technology, vol. 58, pp. 388–402, 2015.

[36] S. Wang, T. Liu, and L. Tan, “Automatically learning semantic features
for defect prediction,” in 2016 IEEE/ACM 38th International Conference
on Software Engineering (ICSE). IEEE, 2016, pp. 297–308.

[37] J. Li, P. He, J. Zhu, and M. R. Lyu, “Software defect prediction via
convolutional neural network,” in 2017 IEEE International Conference
on Software Quality, Reliability and Security (QRS). IEEE, 2017, pp.
318–328.

[38] J. Nam, S. J. Pan, and S. Kim, “Transfer defect learning,” in 2013 35th
international conference on software engineering (ICSE). IEEE, 2013,
pp. 382–391.

[39] G. Canfora, A. De Lucia, M. Di Penta, R. Oliveto, A. Panichella, and
S. Panichella, “Multi-objective cross-project defect prediction,” in 2013
IEEE Sixth International Conference on Software Testing, Verification
and Validation. IEEE, 2013, pp. 252–261.

[40] G. G. Cabral, L. L. Minku, E. Shihab, and S. Mujahid, “Class imbalance
evolution and verification latency in just-in-time software defect predic-
tion,” in 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE). IEEE, 2019, pp. 666–676.

[41] M. Tan, L. Tan, S. Dara, and C. Mayeux, “Online defect prediction
for imbalanced data,” in 2015 IEEE/ACM 37th IEEE International
Conference on Software Engineering, vol. 2. IEEE, 2015, pp. 99–108.

[42] D. Di Nucci, F. Palomba, R. Oliveto, and A. De Lucia, “Dynamic
selection of classifiers in bug prediction: An adaptive method,” IEEE
Transactions on Emerging Topics in Computational Intelligence, vol. 1,
no. 3, pp. 202–212, 2017.

[43] M. I. Azeem, F. Palomba, L. Shi, and Q. Wang, “Machine learning
techniques for code smell detection: A systematic literature review and
meta-analysis,” Information and Software Technology, vol. 108, pp. 115–
138, 2019.

[44] A. Bertolino, A. Guerriero, B. Miranda, R. Pietrantuono, and S. Russo,
“Learning-to-rank vs ranking-to-learn: strategies for regression testing
in continuous integration,” in Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering, 2020, pp. 1–12.

282

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on July 16,2021 at 08:22:10 UTC from IEEE Xplore. Restrictions apply.

[45] S. Proksch, J. Lerch, and M. Mezini, “Intelligent code completion with
bayesian networks,” ACM Transactions on Software Engineering and
Methodology (TOSEM), vol. 25, no. 1, pp. 1–31, 2015.

[46] G. Mostaeen, J. Svajlenko, B. Roy, C. K. Roy, and K. A. Schneider,

“Clonecognition: machine learning based code clone validation tool,” in
Proceedings of the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, 2019, pp. 1105–1109.

283

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on July 16,2021 at 08:22:10 UTC from IEEE Xplore. Restrictions apply.

		2021-05-09T07:50:31-0400
	Preflight Ticket Signature

