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Abstract The goal of this survey is to summarize the state-of-the-art research results and identify research

challenges of developing and deploying dependable pervasive computing systems. We discuss the factors that

affect the system dependability and the studies conducted to improve it with respect to these factors. These

studies were categorized according to their similarities and differences in hope of shedding some insight into

future research. There are three categories: context management, fault detection, and uncertainty handling.

These three categories of work address the three most difficult problems of pervasive computing systems. First,

pervasive computing systems’ perceived environments, which are also called their contexts, can vary intensively,

and thus have a great impact on the systems’ dependability. Second, it is challenging to guarantee the correctness

of the systems’ internal computations integrated with interactions with external environments for developers.

Fault detection is then an important issue for improving dependability for these systems. Last but not least

importantly, pervasive computing systems interact with their environments frequently. These interactions can

be affected by many uncertainties, which can jeopardize the systems’ dependability. After a discussion of these

pieces of work, we present an outlook for its future research directions.
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1 Introduction

Since the proposal of pervasive computing in Weiser’s seminal paper in the 1990s [1], there has been

tremendous progress in the field, for example, hardware progress. As we have seen, in recent years, various

handheld and wearable devices (e.g., smartphones) equipped with powerful network interfaces and rich

sensors have become part of people’s daily lives, providing smart and customized services. These changes

result in many viable commercial and educational pervasive computing systems [2,3]. However, despite

such fascinating progress, developing and deploying dependable pervasive computing systems still remains

as a challenging task [4,5]. In fact, existing studies disclosed that many real-world pervasive computing

systems do not provide dependable services, causing poor user experiences or economic losses [6,7].
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Figure 1 Overview of a pervasive computing system and its faced dependability challenges.

A pervasive computing system is context-aware, which means the system is cognizant of its environment,

and able to make reaction based on this information [4]. The dependability of a pervasive computing

system can be affected by multiple factors, including context inconsistency, faults in the system, and

uncertainty introduced from the interaction with environment. These factors, which are depicted in

Figure 1, are further discussed below.

First, pervasive computing systems intensively use contexts to capture dynamic changes from their

environments and adapt their behavior accordingly. Contexts such as temperature, speed, and location

are obtained from sensors. However, due to uncontrollable environmental noises, these obtained contexts

may be contaminated or imprecise, which can result in context inconsistencies [6,8,9]. The inconsistencies

could further affect pervasive computing systems’ behavior, leading to unexpected results and reducing

the dependability of such systems. Timely detection and resolution of context inconsistencies is critical.

Techniques addressing these issues can be largely divided into two groups. The first one concerns how to

detect context inconsistencies by checking predefined consistency constraints (or constraints for short).

The second one focuses on how to find a strategy that can effectively and efficiently resolve detected

inconsistencies.

Second, compared with traditional software, pervasive computing systems need to interact with com-

plex and dynamic environments. This poses big challenges on building dependable pervasive computing

systems because developers are expected to consider every detail of such interactions in a predictive way.

However, this is an impractical assumption. Existing studies reported that real-world pervasive comput-

ing systems often suffer from various faults [10–12]. Unfortunately, due to their peculiarity, many of these

faults cannot be effectively detected by existing quality assurance techniques for traditional softwares.

For example, many pervasive computing systems perceive environment using radio frequency identifi-

cation (RFID) [13–17], a key enabling technology for Internet of Things. Many faults in such RFID

systems can easily bypass existing quality assurance techniques [16,17], because these faults can be either

very specific to environmental interactions or are caused by special programming paradigms of pervasive

computing systems. Furthermore, pervasive computing systems running in certain environments need to

satisfy specific requirements. For instance, energy efficiency is a critical requirement for RFID systems

and mobile applications [18].

Third, uncertainty poses stiff challenges to the dependability of pervasive computing systems and ap-

pears in various facets. Pervasive computing systems closely interact with complex and dynamic environ-

ments through devices that can probe and adapt to environmental changes (e.g., sensors and actuators).

These devices can be unreliable and defective in reality. Such uncertain factors could negatively affect

environmental interactions, jeopardizing the dependability of pervasive computing systems. To ease the

understanding of uncertainty in the environmental interaction, we use an RFID system as an example.

Typically, in such a system, there are numerous RFID tags distributed for object labeling and RFID

readers deployed for tag reading. Ideally, each reader should be able to read all tags in its vicinity, but

the correct reading rate of a reader may fall below 70% in real-life RFID deployments, which means at
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least 30% of its contexts derived from RFID reads can be incomplete or imprecise [19]. This is one kind

of uncertainty, and there also exist other kinds of uncertainties caused by unreliable sensing or flawed

adaptation in pervasive computing systems [7,20].

To address the above dependability problems, researchers have expended significant effort in studying

pervasive computing systems from different aspects. In this article, we systematically survey these re-

search efforts. Specifically, we categorize existing studies into three categories with respect to the above

three factors: context management, fault detection, and uncertainty handling. This criterion of catego-

rization focuses on the essential factors affecting system dependability and covers most related research

work. We summarize and compare the techniques for each category. We additionally discuss some open

issues in the field, hoping to inspire future research on further improving the dependability of pervasive

computing systems. The major purpose of this survey can be summed up to a three-folded contribution

as listed below:

• We propose a taxonomy scheme, which can serve as a framework for easy classification of existing

work on improving pervasive computing systems’ dependability.

• We discuss the challenges of building dependable pervasive computing systems and provide a catego-

rization of related state-of-the-art dependability improvement techniques. We also discuss and compare

these techniques.

• We point out open issues in the field and give an outlook for future research.

The remainder of the article is organized as follows. Section 2 discusses context management techniques

for pervasive computing systems. Section 3 summarizes techniques for detecting faults in pervasive com-

puting systems. Section 4 reviews the research progress on uncertainty handling for pervasive computing

systems. Section 5 highlights open issues and gives a vision of future research, and finally Section 6

concludes the article.

2 Context management

Context, a piece of information that captures the characteristics of environments, is a key concept in

pervasive computing systems. It drives these systems to adapt to their dynamic running environments.

To support pervasive computing systems’ usage of contexts, many context modeling [21–24], management

[25,26], processing, and reasoning [27,28] techniques have been proposed. For example, Schmidt et al. [21]

presented a layered processing model in which sensor outputs are transformed into cues that comprise

a set of values with certain measurements. Roman et al. [25] proposed to leverage a framework or

middleware as a tool to manage contexts in a centralized manner to ease the use of contexts. Context

Toolkit [27] aided software developers to capture context data from sensors and interpret them in an

application-specific way.

In real-life systems, contexts are often obtained from heterogeneous sources in highly dynamic and

noisy environments with unreliable network connections. Due to this reason, the obtained contexts can

be error-prone and inconsistent with each other [6,8,9]. This prevents pervasive computing systems from

correctly understanding their running environments and properly adapting to environmental changes.

Many studies have been conducted to address the context inconsistency problem [6,8,19,29]. In sum-

mary, these studies proposed two categories of techniques: context inconsistency detection techniques and

context inconsistency resolution techniques. For example, Cabot [6,29] is a context management mid-

dleware for pervasive computing systems. It owns built-in consistency management services for efficient

context inconsistency detection and automated inconsistency resolution. In the following, we discuss and

compare these techniques in detail.

2.1 Context inconsistency detection

Detecting inconsistencies in contexts resembles detecting inconsistencies in traditional software artifacts,

such as UML models [30], XML documents [31], and data structures [32]. Context inconsistency is

a semantic phenomenon rather than a syntactic one, and its detection requires nontrivial reasoning
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work [6,9]. Informally, we call a set of contexts inconsistent when they collectively violate a consistency

constraint. Consistency constraints define necessary properties on interesting contexts and are often

inferred from physical laws or user requirements. They are the key information that can help detect

context inconsistencies in pervasive computing systems.

To detect context inconsistencies by constraint checking, it is necessary to properly model contexts

and their consistency constraints. Existing studies [21–24] proposed many context modeling approaches,

which adopt different abstraction strategies. One general approach is to model a context as a tuple that

has multiple fields [9]. Each field itself can also be a tuple. These fields specify the context’s type,

content, and other properties and can be extended to include more information. Here, we introduce a

typical context model CM proposed in [9]:

CM := 〈category, fact, restriction, timestamp〉.

The field category specifies a context’s type; fact := 〈subject, predicate, object〉 gives the content of this

context, where the predicate associates the subject and the object; estriction := 〈lifespan, site〉 specifies

the temporal and spatial properties of this context, in which lifespan specifies the validity period of the

context, and site is the place where it occurs; and timestamp records the generation time of this context.

A context is defined by instantiating all fields of the CM, and a context pattern is defined by instantiating

some or all fields of the CM. By this definition, a context itself can also be a pattern.

On the other hand, context consistency constraints can be specified in many types of languages, such

as propositional logic- and first-order logic-based languages. For example, the syntax of a first-order logic

based language can be as follows:

f := ∀v ∈ S (f) | ∃v ∈ S (f) |(f) and (f) |(f) or (f) | (f) implies (f) |

not (f) | bfunc(v, . . . , v).

Set S represents a finite set of contexts, and the formula f is defined recursively, containing standard

first-order logic operators and bfunc terminals. A bfunc terminal refers to a user-defined function that

accepts contexts as input and returns a truth value. Every bfunc terminal is a predicate defined over

one or more fields of one context or of several different contexts. For example, a bfunc terminal can be a

function that determines whether two contexts share the same subject. After properly modeling contexts

and consistency constraints, inconsistency detection is essentially a constraint checking process.

Using constraint checking to detect inconsistencies in software artifacts has been extensively studied

by the software engineering community. The proposed techniques check the software artifacts against

a set of predefined constraints whenever the software artifacts change. Context inconsistency detection

essentially adopts the same idea, but has a critical requirement of efficiency. This is because contexts can

change very frequently in real-life systems. Timely detection and resolution of context inconsistencies is

a must to guarantee the dependability of such systems.

Constraint checking techniques can be classified in terms of their different detecting manners as shown

in Figure 2, which is adapted from [33]. According to how existing context inconsistency detection

techniques perform constraint checking, they can be divided into two categories: nonincremental checking

techniques and incremental checking techniques. Whenever there is a change in a given set of contexts,

nonincremental checking techniques check the contexts against every consistency constraint to find out

inconsistencies. As a comparison, incremental checking techniques only check the contexts against a

subset of consistency constraints, which is selected by certain strategies [8,9], upon context changes.

Therefore, incremental checking techniques are typically more efficient than nonincremental checking

techniques.

We can further refine the classification of incremental checking techniques. Some incremental checking

techniques would recheck an entire constraint as a unit, when a consistency constraint needs recheck-

ing [8,9]. They are called “entire constraint checking (ECC) techniques”. Since contexts come in streams

and change rapidly in pervasive computing systems, rechecking entire constraints may still be inefficient

in some cases. To improve efficiency, other incremental checking techniques only check part of a consis-

tency constraint when it requires rechecking if the previous checking results of the remaining part of the
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Figure 2 Classification of constraint checking techniques.

constraint are reusable. This kind of technique is called partial constraint checking (PCC) in our earlier

work [9].

The basic idea of PCC is to identify the part of a consistency constraint that is irrelevant to a given

context change, reuse the remaining part’s previous checking results, and recheck the remaining part.

The irrelevant part can be identified based on the types of context changes and a constraint’s content.

Let us look at a simple example. Suppose that there is a constraint ∀x ∈ D (x > 10), where D is a set

of contexts and x is a context in the set. The original truth value of this constraint is true. When a

context in D is discarded (a.k.a., a kind of context change), PCC does not have to recheck this constraint.

Because this formula’s truth value will not change after the context discarding changes, PCC can thus

reuse the constraint’s previous checking result. In our earlier work [9], we also proposed algorithms

to check consistency constraints and generate links to explain why certain consistency constraints are

satisfied or violated. Experiments show that PCC reports more inconsistencies and less false positives

compared with ECC. It is worth mentioning that since PCC heavily reuses the previous checking results of

a constraint to avoid some unnecessary rechecking, it needs extra memory to maintain reusable constraint

checking results (i.e., trading space cost to gain efficiency). One limitation of PCC is that it can generate

many redundant links, which waste computational resources (e.g., CPU and memory). In [34], we further

enhanced PCC and optimized its constraint checking by suppressing redundant links generated from

inconsistency detection. This largely saves time and space cost for detecting inconsistencies and storing

detection results.

The above discussed constraint checking techniques follow a centralized approach, which may cause

space overhead and privacy threats to resource-limited mobile devices. Techniques introduced in [35]

support constraint checking in a decentralized manner. It helps protect the privacy of distributed hosts

in context inconsistency detection. To further improve the effectiveness and efficiency of context inconsis-

tency detection, our previous work proposed a concurrent constraint checking algorithm [33]. It exploits

multicore computing capability to systematically improve checking efficiency. Our recent work [36] further

improved the efficiency and scalability of concurrent constraint checking by exploiting graphics processing

unit computing capability. For these PCC-alike techniques, while it makes sense to improve efficiency of

constraint checking, we also need to pay enough attention to the correctness of checking results. In [37],

we noticed that many detected inconsistencies do not indicate real context problems. Instead, they are

caused by improper inconsistency detection (e.g., improper detection timing). We can suppress the de-

tection of such inconsistencies (named unstable inconsistencies) that do not indicate real problems by

pattern learning and constraint analysis [37].

2.2 Context inconsistency resolution

Detecting context inconsistencies is the first step that allows pervasive computing systems to obtain a

consistent picture of what they aim to handle. The next step is to resolve detected context inconsistencies.
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Table 1 Comparison of different context inconsistency resolution strategies.

Strategy Basic idea Pros Cons

Drop-latest
Discards the latest context

that causes inconsistency
Simple and efficient

Insufficient, may not give

desirable resolution

Drop-all
Discards all contexts rele-

vant to any inconsistency
Simple and efficient

Discards more contexts

than necessary

User-preferred
Follows user preferences

to resolve inconsistencies
User-defined and flexible

Results’ quality depends

on user policies

Drop-bad
Discards contexts that are

most likely to be faulty

Can support effective

inconsistency resolution

Needs extra computing

and judgment

Effect
Automatically chooses a

solution to minimize impact
Flexible and effective

Expensive, needs to

compare all solutions

Hybrid-fixing
Postpones the decision for

inconsistency resolution

Can increase

resolution accuracy

Hard to decide the post-

poned time for resolution

In recent years, researchers have proposed various resolution techniques and heuristic strategies to enable

automatic context inconsistency resolution [38–44]. There are roughly six mainstream strategies, as

shown in Table 1. Ranganathan et al. [38] and Insuk et al. [39] attempted to follow user preferences or

policies to resolve inconsistencies in context evaluations, which may not be sound but can work in some

cases. Bu et al. [40] proposed a drop-all resolution strategy that discards all contexts relevant to detected

inconsistencies. It assumes that the contexts relevant to inconsistencies are incorrect and conservatively

discards all of them for safety. Chomicki et al. [41] suggested discarding the latest context if it causes

any inconsistency, which is known as the drop-latest resolution strategy. It assumes that the collection

of all existing contexts is consistent, and that a new context is permitted to be included in this collection

only if it does not cause any inconsistency with existing contexts. Both the assumptions may not hold in

practice. This is because usually context inconsistencies are caused only by a subset of contexts (i.e., not

all of them), and these contexts are not necessarily the latest ones (i.e., they may already exist before

a new context is obtained). So in such cases, drop-all will discard more contexts than necessary and

drop-latest may discard wrong contexts that are actually of high quality.

Another heuristic strategy drop-bad was formulated in [42], which aims to be applicable to more sce-

narios in pervasive computing systems. It tries to identify contexts that participate more frequently in

inconsistencies. These contexts are more likely to be incorrect, and thus are considered bad contexts.

Existing studies and experiments showed that in many cases, the drop-bad strategy works better than

other heuristic-based techniques. Furthermore, research work [43,44] attempted to resolve context incon-

sistencies from a pervasive computing system’s perspective. When a strategy discards some contexts to

resolve inconsistencies, it may change a pervasive computing system’s behavior unexpectedly because it

cannot anticipate how these contexts will be used by the system. In other words, this strategy may pro-

duce side effect. In view of this, researchers proposed a strategy effect to resolve context inconsistencies

by automatically choosing the solution that minimizes the side effect [43,44].

In practice, context inconsistency resolution may not filter out all problematic contexts. Some prob-

lematic contexts may still affect the pervasive computing systems and cause potential failures. To address

this problem, Chen et al. [45] proposed a hybrid-fixing approach to resolving context inconsistencies by

combining low-level context inconsistency resolution with high-level system error recovery mechanisms.

It postpones the resolution to make use of future system semantics and context information to help

calculate the probability that a context is problematic.

The above discussed strategies and techniques are mainly for a single pervasive computing system.

Work by Yang et al. [46] further extends them for multiple pervasive computing systems that run on the

same middleware. The proposed technique relies on consistent context views to isolate different pervasive

computing systems, and thus makes their resolving requirements conflict-free. To ease comparison, we

further summarize the basic idea, pros and cons of each strategy in Table 1.
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3 Fault detection

Faults commonly exist in software artifacts. They reduce the dependability of software artifacts to

a large extent. Pervasive computing systems can suffer from faults that exist in traditional software

artifacts. What is worse, since pervasive computing systems continually adapt to environmental changes

in an autonomic way, their adaptation may be faulty when the complexity of modeling all environmental

changes is beyond a developer’s capability [7,47]. For example, RFID systems, a typical kind of pervasive

computing systems, are very difficult to implement because developers have to carefully consider, predict,

and handle various environmental factors such as cross-coupling of neighboring RFID tags. Thus, in

practice, these systems often contain many faults and are error-prone [13–17,48]. To help developers

improve the dependability of pervasive computing systems, much research effort has been devoted to

study possible faults in such systems and techniques for diagnosing such faults. In this section, we first

discuss and categorize the faults studied in the literature, and then survey the techniques proposed for

fault detection.

3.1 Faults categorization

Existing literature disclosed that many faults can occur in pervasive computing systems. Here, we roughly

classify these faults into several major categories according to their behavioral characteristics. This

categorization facilitates a clearer understanding of faults in pervasive systems and facilitates designing

effective techniques for fault detection.

Determinism. Determinism requires a pervasive computing system’s adaptation behavior to be pre-

dictable upon any situation, that is, absence of nondeterminism. For example, many pervasive computing

systems are designed based on a set of adaptation rules [7,47,49], which specify the actions that the sys-

tems should execute when certain conditions are satisfied at certain system states. A system is considered

to be deterministic if there is at most one rule that can be triggered at any situation. However, some

pervasive computing systems’ rules may be triggered simultaneously at runtime due to faults in the rule

design or system implementation. This will lead to nondeterminism and cause unpredictable behavior

in pervasive computing systems [10,11,50]. Many existing studies consider such nondeterminism faults

harmful [11,38]. To detect these nondeterminism faults, Sama et al. proposed a model checking approach

to verifying that all adaptations in a pervasive computing system should be deterministic [11,50]. Our

previous work enhanced this model checking approach by removing false positives from its verification

results through modeling the running environment of a pervasive computing system [10,51,52]. Other

related studies detect nondeterminism faults at runtime and fix or tolerate them as requested [39,41,53].

Liveness and reachability. Reachability and liveness are properties commonly studied in model check-

ing. They are also checked for pervasive computing systems’ correctness. To ease understanding of the two

properties, we use the above-mentioned rule-based systems for illustration again. Reachability requires

each system state to be reachable from the initial state of a pervasive computing system. Liveness requires

a pervasive computing system to be able to leave from any system state and trigger a corresponding rule

within a finite period of time (i.e., without getting stuck in a state forever). These two properties are

extensively studied for pervasive computing systems in recent years [10,11,50–52], and different checking

algorithms have been proposed. Violating these properties is a strong indicator of potential faults in such

systems.

Stability. As we discussed earlier, pervasive computing systems make adaptation to environmental

changes smartly. Stability requires a pervasive computing system to be stable after each adaptation.

Otherwise, a pervasive computing system may continually adapt itself without reaching a stable state,

thus forming a long adaptation trace or even running into an infinite adaptation loop. As a consequence,

the system can freeze and fail to respond to any environmental stimulus. Enumerative algorithms were

proposed in [50] to detect the violation of the stability property for pervasive computing systems. Also,

our previous work [10] supports dynamically checking pervasive computing systems’ stability at runtime.

Energy efficiency. Pervasive computing systems sense environments by sensors and connect to a

tremendous world of users and things. RFID systems and smartphone applications are two typical
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examples. However, the services of many real-world pervasive computing systems are realized in an

energy-inefficient way [12,18,54], wasting a lot of energy and causing bad user experiences. For example,

existing studies found that a large percentage of smartphone applications on market contains various

bugs that would cause serious energy waste [12]. To improve the energy inefficiency of pervasive com-

puting systems, many approaches have been proposed recently [18,30,54]. For example, our earlier work

studies an interesting type of energy inefficiency problem in pervasive computing systems: sensory data

underutilization [18,54] and proposes a systematic analysis approach to diagnosing these problems. This

approach conducts code analysis to simulate the runtime behavior of a system. It checks how sensory

data are used at each explored system state to locate those system states where sensory data are compar-

atively underutilized, which may cause energy waste. Other researchers also worked on improving energy

efficiency for pervasive computing systems from different perspectives. Some proposed design strategies

to reduce energy consumption of pervasive computing systems [53,55]. Others studied energy problems

from the security aspect. For instance, Kim et al. proposed to use power signatures based on system

hardware states to detect energy-greedy malwares [56].

Performance. Recent studies have also shown that lots of pervasive computing systems suffer from

performance inefficiency [12,54]. Performance is a vital property in pervasive computing systems. Bad

performance could slow down these systems and affect user experiences. In particular, most pervasive

computing systems, for example, smartphones and wearable devices, constantly interact with users. This

makes user experiences extremely important in evaluating the service quality of these systems. A recent

study collected and analyzed performance problems [12] that commonly occur in pervasive computing sys-

tems. The work studied the characteristics (e.g., common types and how problems manifested) and root

causes of the collected performance problems and proposed diagnosis algorithms for problem detection.

Atomicity. Nowadays, multithreaded programs are everywhere and also benefited pervasive computing

systems (e.g., improving system performance). However, despite the benefits, multithreaded programs

also bring many concurrency bugs into pervasive computing systems [57,58]. It is well known that con-

currency bugs are notoriously difficult to detect because there can be vast combinations of interleavings

among concurrent threads, and yet only a small fraction of them can reveal bugs [59]. What is worse, in

pervasive computing systems, context collecting devices (i.e., sensors) may not have synchronized clocks

and may run at different speeds, which makes concurrency bug detection even more challenging. Atom-

icity is an important property in multithreaded programs that guarantees a set of important operations

to be executed without any disruption. Recently, a number of serializability criteria have been proposed,

including atomicity, causal atomicity, conflict/view serializability, and atomic-set serializability [60]. Our

earlier work also proposed a testing technique that can effectively detect atomic-set serializability vio-

lations in pervasive computing systems [59]. Still, there are many atomicity-related problems that have

not been adequately considered for pervasive computing systems and require more attention.

3.2 Detecting techniques

Different faults have different characteristics. To detect the above discussed faults in pervasive computing

systems, researchers have proposed various techniques. In this subsection, we discuss some of them in

detail.

Statistical analysis-based detection. Some faults are difficult to recognize, for example, energy ineffi-

ciency faults. There are no precise criteria that can be used to judge their existence. Fortunately, these

faults typically exhibit some statistical characteristics, which can be used to identify them. Statistical

analysis-based fault detection techniques have been popularly studied in recent years. In our previous

work [18,54], we proposed a technique to detect an important type of energy inefficiency fault: sensory

data underutilization. In pervasive computing systems, sensory data are acquired at the cost of energy

and should be effectively used by a system. Sensory data are underutilized when their energy cost out-

weighs their actual uses. Such underutilization often suggests design or implementation faults that could

cause energy waste. To analyze how sensory data are used in a system, one needs to know which program

data depend on sensory data and how they are used. This requires analyzing data usage statistics at

runtime. Our technique tracks the usage of these data at a bytecode instruction level and adapts dynamic
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tainting for a precise analysis of sensory data utilization. For energy analysis, we further designed our

data utilization coefficient metric that helps compare data usage across different system states to identify

sensory data underutilization cases.

Pattern matching-based detection. Lots of existing studies show that faults in pervasive computing

systems demonstrate regular patterns [10–12,50,61], which can be used for fault detection. Sama identified

various fault patterns in pervasive computing systems, for example, determinism, stability, liveness, and

reachability [11,50]. Similar patterns were also studied in our previous work [10]. Also, we identified a

new pattern of consistency faults. The faults violate the requirement that a system’s understanding to

its environment should be consistent with its actual environmental conditions. These above discussed

functional fault patterns have been reported in various failure reports in pervasive computing systems

and help enable the automatic fault detection. On the other hand, we also investigated many pervasive

computing systems to identify faults that relate to nonfunctional properties of these systems in our earlier

work [12]. Specifically, we studied common patterns of performance faults in popular pervasive computing

systems and learned how these faults manifest themselves. We further proposed a tool to detect such

performance inefficiency faults.

Coverage criteria-based detection. Pervasive computing systems differ from conventional software sys-

tems in many aspects. For instance, they are context-aware and may have some special programming

paradigms [62]. Due to this reason, most conventional testing and fault detection techniques are not

directly applicable [63,64]. For instance, Lu et al. disclosed that conventional data-flow testing tech-

niques are inadequate for pervasive computing systems [63]. To address this problem, they proposed

a novel family of context-related data flow coverage criteria to measure the comprehensiveness of test

suites for pervasive computing systems. On the other hand, pervasive computing systems may also have

some special programming paradigms. As discussed in [62], NesC is a programming language for perva-

sive computing systems that run on top of networked sensor nodes. Such a system mainly uses interrupt

mechanism to trigger a sequence of operations. However, the magnitude of inter-interrupt interleavings in

such systems may cause many failures. Existing testing techniques for traditional concurrency programs

that only contain a small scale of inter-interrupt interleavings are not applicable for nesC systems. While

nesC blocks new interrupt interleavings when handling interrupts, this feature significantly restricts the

scale of inter-interrupt interleavings that can occur in a nesC system. Based on this observation, Lai

et al. [62] modeled how operations may interleave as inter-interrupt flow graphs, and proposed two test

adequacy criteria, one on inter-interrupt data-flows and the other on inter-interrupt control-flows.

Simulation based detection. Simulation is often adopted to study the design and validate the correctness

of pervasive computing systems. This is because the behavior of these systems is highly coupled with

their software, hardware, and deployment environments and it is impractical to deploy a system in many

different environments for locating potential faults. However, even with simulation, it is not easy to

validate pervasive computing systems due to various noises and uncertainties in real environments. For

example, radio waves in RFID systems can be affected by many environmental factors such as multipath

effects, backing materials, and electromagnetic noises. The effect of these factors on radio waves cannot

be precisely simulated. In [13], an effective technique was proposed to construct a mixed-reality simulator

for pervasive computing systems (i.e., RFID systems) using iterated learning based on a support vector

machine. In our previous work, we also used simulation to verify and detect faults in robot-car pervasive

computing systems [7,47,49].

4 Uncertainty handling

Uncertainty poses a big threat to the correctness and dependability of pervasive computing systems, which

continually sense and adapt to their changing environments [5]. This problem is gaining a lot of attention

in recent years. When a pervasive computing system perceives environmental changes, it will adapt its

behavior according to its predefined logics. However, there are many uncertain factors affecting pervasive

computing systems and their complex environments [7,20]. For example, the interactions between a

system and its environment can be affected unexpectedly by uncertainty [7]. More specifically, when
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Figure 3 Examples of unreliable environmental sensing and flawed adaptation.

pervasive computing systems sense noisy environments via unreliable sensors, the sensing results will be

unfaithful. Besides, pervasive computing systems sometimes react to their environments by uncertain

flawed actors. Such uncertainties will impair pervasive computing systems’ functionalities if they are not

properly handled [47].

While there is no uniform and widely accepted definition of uncertainty in pervasive computing systems,

most researchers agree that uncertainty arises from a system state of incomplete or inconsistent knowledge

about the environmental or system configurations at a specific point [20]. Many efforts have been made

to study and address uncertainty-related problems [65–68]. Ramirez et al. [20] reported a taxonomy of

uncertain factors that can affect pervasive computing systems. The uncertainty is classified according

to whether a source of uncertainty arises predominantly at requirement, design, or runtime levels. In

this survey, we mainly focus on uncertainty at the runtime level according to this classification. Sources

of runtime uncertainty occur primarily from interactions between a pervasive computing system and its

unpredictable environment [7,20].

In our recent work [7], we modeled the uncertainty caused by unreliable environmental sensing and

flawed adaptation in verifying pervasive computing systems. For environmental sensing, a pervasive com-

puting system may only be able to obtain an estimate of its environmental conditions, but never know its

real state. As shown in Figure 3(a), an ultrasonic sensor’s sensing always contains unpredictable noise,

and its sensed values may not faithfully reflect real distances. For adaptation, a pervasive computing sys-

tem can only interact with its environment as designed, but may not know whether the interaction indeed

proceeds as expected. For instance, when a robot-car system controls its robot-car to take a right-turning

action, the system’s expectation is that the robot-car should turn right by 90◦. However, in reality, the

car may just turn right for 85◦ due to its hardware deficiency, as illustrated in Figure 3(b), while the

robot-car system may not be able to know whether or to what extent the uncertainty has happened. Such

uncertainty can cause pervasive computing systems to fall into failures due to their imprecise or even

incorrect understanding to environments. In our previous work, we studied uncertainty in many real cases

and observed that uncertainty caused by unreliable sensing or flawed adaptation demonstrates regular

patterns. Specifically, the sensed value of unreliable sensing or the effects of flawed adaptation often fall

into an error range, with a distribution associated with the physical characteristics of sensing technologies

and actions. So, we modeled the uncertainty by providing error ranges for context variables affected by

uncertainty. Furthermore, we ranked the verification results (i.e., counterexamples) according to their

likelihoods of occurrence in an environment with uncertainty. Another piece of previous work [69] also p-

resented a ranking strategy to prioritize verification results for pervasive computing systems, but by using

an environment model inferred from historical environmental data. The environment model contains rich

information, including environmental uncertainty. Despite the same goal, there is one major difference

between the two pieces of work [7] and [69]. The former considers uncertainty in the verification process,

while the latter uses uncertainty to refine the verification results. These techniques can help developers

judge whether uncertainty has been properly handled in their pervasive computing systems. Unhandled

uncertainty would probably cause undesirable results, for example, consistency failures, which imply that

a system’s internal state deviates from its actual external environment. As an additional safeguard, ex-

isting work [47,49,70] also proposed a runtime failure handling strategy that enables pervasive computing
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systems to automatically recover from consistency failures caused by uncertainty.

There is also a large body of research work focusing on how to handle the uncertainty at requirement

and design level for pervasive computing systems. Esfahani et al. [65] described an approach to tackling

the challenge of uncertainty by assessing both the positive and negative consequences of uncertainty,

and proposed a framework for handling uncertainty in pervasive computing systems [66]. RELAX [71]

is a requirement language for pervasive computing systems that helps engineers capture uncertainty in

requirement definitions. Ghezzi et al. [67] proposed a framework that supports adaptation to nonfunc-

tional manifestations of uncertainty by relying on alternative or optional functionalities. The framework

allows engineers to derive from an initial model of the system to a finite state automaton augmented with

probabilities. Famelis et al. [68] designed a methodology to express uncertainty using annotations with

well-defined semantics to change a model into a partial model and proposed an approach to reasoning

with such models.

5 Future work and open issues

Pervasive computing is a well-studied area, yet still progressing area. Researchers have explored several

directions and addressed many issues in recent years. However, to realize the full potential of pervasive

computing systems, certain topics need further investigation. Future work can be carried out in different

categories, which correspond to different factors and challenges affecting the dependability of pervasive

computing systems.

First, regarding the context management, more efficient and effective context consistency checking

and resolution techniques can be exploited, such as using GPU’s capacity to accelerate the process of

checking. Besides, automated context inconsistency resolution mechanisms are in great need for different

application scenarios. Second, the nature of pervasive computing is to blend-in computing devices within

the background environment of our everyday lives. However, due to limited system resources and their

dynamic nature, pervasive computing systems have been susceptible to many dependability issues. Several

fault patterns have been sorted out in existing studies and our survey, but there still exist more other

complex issues that need to be explored and studied in depth, for example, security and energy issues.

Lastly, uncertainty raises many challenges to the dependability of pervasive computing systems. The

uncertainty can appear at different phases of a pervasive computing system’s life cycle, such as requirement

and design phases, and even at runtime. What is more, uncertain environmental interactions between a

pervasive computing system and its environment pose stiff challenges to its design, test, verification, and

validation.

6 Conclusion

In this article, we surveyed the research efforts that have been made to improve the dependability of

pervasive computing systems. We presented a taxonomy to organize improvement techniques for perva-

sive computing systems according to their addressed problems. By following this taxonomy, we discussed

three categories of existing research work: context management, fault detection, and uncertainty han-

dling. Each category focuses on one major factor that affects pervasive computing systems’ dependability.

For example, some techniques consider context an important concern and provide various context incon-

sistency detection and resolution methods. Some present techniques for fault pattern identification and

fault detection to improve pervasive computing systems’ dependability. Uncertainty is also taken into ac-

count for its significant influence on pervasive computing systems. There are some techniques proposed to

handle uncertainty caused by environmental interactions between pervasive computing systems and their

environments. Even though most of these discussed techniques have succeeded in improving pervasive

computing systems’ dependability, they addressed the dependability problem only from one single aspect.

In practice, developing and deploying highly dependable pervasive computing systems still face unique

challenges. So, we wish that our survey can inspire more efforts not only from research communities, but
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also from industries. In this way, we can make solid progress toward dependable pervasive computing.
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