
Towards the Adoption and Adaptation of the AndroidX Library: An Empirical Study

Jiacheng Li∗, Kerui Huang∗, Sinan Wang, Yepang Liu†
Southern University of Science and Technology, Shenzhen, China

{12012705,12012427,wangsn}@mail.sustech.edu.cn, liuyp1@sustech.edu.cn

Abstract—AndroidX is an official Android library that enables
backward compatibility for Android APIs used by various
apps. It is the successor of the Android Support library since
Android 9.0. Since then, many apps that originally relied
on Android Support needed to be adapted to use AndroidX.
However, for app developers, such a migration task can be
challenging and error-prone. Yet, there is no systematic study
on the migration status of real-world Android apps or the
issues that may arise during the migration to AndroidX. To
fill this knowledge gap, we conducted the first comprehensive
study concerning the adoption and adaptation of the AndroidX
library. In this study, we inspected 171 Stack Overflow posts
about AndroidX and identified common categories of issues
that can occur when adapting apps to use AndroidX, as well
as the causes. We also examined the trend of these issues in
recent five years to assess their impact over time. Then, we
investigated the utilization status of both Android Support and
AndroidX libraries in 15,334 top commercial apps and 2,470
open-source apps. Finally, we developed an algorithm that
utilizes cosine similarity to identify Java class mappings be-
tween Android Support and AndroidX. The algorithm allows
us to recover an additional mapping of 579 Java class pairs,
which can supplement the official class mapping. Our study
reveals the following key findings: (1) Improper API usage,
misuse of dependencies, and incorrect build configurations are
common challenges faced by developers during the adoption
of AndroidX; (2) Around 13.3% commercial apps and 17%
open-source apps still rely on the Android Support library;
(3) Inconsistencies are observed between the API migration
table in Android Studio and the API mapping table provided
in AndroidX documentation. (4) On average, the migrated
AndroidX classes achieve a 0.978 code similarity score with
the original Android Support classes.

Keywords–Android; AndroidX; Android Support Library; API
Migration

1. INTRODUCTION

Android is the most popular open-source mobile operating
system over the world. Due to its continuous evolution, An-
droid undergoes frequent updates and releases. Consequently,
Android app developers need to deal with compatibility issues
across various OS versions [1], [2] and customized devices [3].
This presents a crucial technical challenge when building and
maintaining Android apps.

*The two authors equally contributed to this work.
†Corresponding author.

The Android Support library is a cross-version Android com-
patibility library [4]. It was introduced by Google [5] to
address the API compatibility issue on Android devices. The
Android Support library focuses on back porting features
for new SDK releases. It provides wrappers for a subset of
interfaces (or types) on different SDK versions. Instead of
directly invoking Android SDK APIs, apps can call their
Android Support wrappers. As such, apps developed for a
new Android version can be run on previous versions, without
extensive modification on the app program [2].
The Android Support library was also evolving. Initially, it
only contained fundamental components [6] such as Fragment,
ViewPager, RecyclerView, etc. These components made it
easy to develop high-quality GUIs. Over the time, the An-
droid Support library continues to iterate [4], adding new
components and APIs, and keeping in sync with the Android
platform. During the evolution, developer’s feedback indicated
that the growth of the Android Support library has become
confusing in some naming rules [7]. As an example, there are
components and packages named "v7" while the minimal SDK
level support is 14. To fix these confusions, in 2018, Google
released AndroidX [7] to replace the original Android Sup-
port library [4]. Now, AndroidX is constantly being iterated,
updated, and improved in terms of functionality, performance,
and compatibility [7], [8], with Google regarding it as the
future direction of Android development.
AndroidX was introduced to address issues with the old An-
droid Support library. Therefore, developers are encouraged to
transition from the Android Support library to AndroidX. It’s
been over four years since AndroidX was launched, however,
no prior study has systematically explored the adoption and
adaptation of AndroidX, which motivates our work.
In this study, we analyzed 171 high-quality Stack Overflow
posts to identify six common AndroidX issues, categorizing
them by occurrence during app building and runtime. Build-
ing issues, notably related to dependencies and build tools,
prevailed over runtime errors, which stemmed primarily from
improper API usage.
Issue trends from 2018 to 2023 revealed a decrease in build
tool-related bugs and an increase in API usage errors, sug-
gesting developers’ growing familiarity with AndroidX, yet
occasional mistakes when handling specific APIs.
Besides, our study extensively examined 15,334 commercial
apps from Google Play and 2,470 open-source apps from F-
Droid, uncovering that approximately 13.3% of commercial
apps and 17% of open-source apps still rely on the Android
Support library.
Additionally, we compared mapping tables for Support-to-

418

2023 IEEE 23rd International Conference on Software Quality, Reliability, and Security (QRS)

DOI 10.1109/QRS60937.2023.00048

20
23

 IE
EE

 2
3r

d
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 S
of

tw
ar

e
Q

ua
lit

y,
 R

el
ia

bi
lit

y,
 a

nd
 S

ec
ur

ity
 (Q

R
S)

 |
97

9-
8-

35
03

-1
95

8-
3/

23
/$

31
.0

0
©

20
23

 IE
EE

 |
D

O
I:

10
.1

10
9/

Q
R

S6
09

37
.2

02
3.

00
04

8

979-8-3503-1958-3/23/$31.00 ©2023 IEEE

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on February 01,2024 at 04:18:01 UTC from IEEE Xplore. Restrictions apply.

For personal use only. Copyright belongs to the publisher.

AndroidX migration, highlighting inconsistencies between An-
droid Studio’s automatic migration tool and the official An-
droidX documentation, which could lead to migration failures
or confusion for developers.
Furthermore, we applied cosine similarity and Soot Jimple IR
to examine code similarity between Support and AndroidX
libraries. On average, migrated AndroidX classes exhibited
a 0.978 code similarity with their original Android Support
counterparts, and this algorithm expanded the official mapping
table with 579 additional entries.
In summary, our study makes the following contributions:
• We performed the first empirical investigation of AndroidX

issues. Through an in-depth analysis of real problems from
Stack Overflow, we have compiled a comprehensive taxon-
omy of AndroidX-related issues. Our findings can provide
valuable guidance to developers and shed light on potential
future research in common issue detection techniques.

• We analyzed a substantial number of Android apps to
investigate their utilization of the AndroidX and Support
libraries. We mined the migration status of these apps
from Support to AndroidX. Our results can provide useful
statistical insights into the AndroidX ecosystem.

• We devised a cosine similarity-based algorithm for measur-
ing class similarity and have employed this algorithm to
identify an additional 579 mapping entries for the official
mapping table of AndroidX and Support APIs.

• We released the source code, dataset, and results in a GitHub
repository1 to facilitate follow-up studies.

2. BACKGROUND

To ease presentation, we will use Support and AndroidX to
refer the Android Support library and the AndroidX library
throughout this paper. This section provides the necessary
background knowledge, including the mechanisms and ap-
proaches used by the two libraries to ensure compatibility
across different Android OS versions, and the migration pro-
cess from Support to AndroidX.
The code snippet in Listing 1 is an example, which comes from
the source code of an AndroidX class ActivityCompat[9]. It
is a representative API in Support/AndroidX to address API
backward-compatibility issue.

public boolean isLaunchedFromBubble(Activity activity) {
if (Build.VERSION.SDK_INT >= 31) {

// activity.isLaunchedFromBubble ()
return Api31Impl.isLaunchedFromBubble(activity);

} else if (Build.VERSION.SDK_INT == 30) {
return Api30Impl.getDisplay(activity) != null &&

Api30Impl.getDisplay(activity).getDisplayId () !=
Display.DEFAULT_DISPLAY;

} else if (Build.VERSION.SDK_INT == 29) {
return activity.getWindowManager ().getDefaultDisplay ()

!= null && activity.getWindowManager ().
getDefaultDisplay ().getDisplayId () != Display.
DEFAULT_DISPLAY;

}
return false;

}

Listing 1: An example of AndroidX API

1https://github.com/huangkr03/AndroidX-Empirical-Research

The Android API Activity.isLaunchedFromBubble() is to
determine whether the activity was launched from a bubble
(a feature that allows certain activities to be presented in a
floating bubble on top of other apps). It is only accessible
in SDK version 31 and above. For earlier versions like 29
or 30, maintaining extra code is required to avoid crashes
when invoking this API. The Support and AndroidX classes
do this job to unify their API signatures, as shown in the
code snippet, thus developers can use the unified API and
avoid struggle with multiple API representations in different
Android versions.
To migrate from Support to AndroidX, the app developers
should modify all dependencies from Support to their cor-
responding AndroidX artifacts and updating all references
in the host app’s code. As an example, the Support arti-
fact com.android.support:support-compat is mapped to
the AndroidX artifact androidx.core.app, and the Support
class android.support.v4.app.ActivityCompat is mapped
to androidx.core.app.ActivityCompat. Android provides
a official migration tutorial [10], in which Android Studio can
automatically migrate the app to AndroidX with appropriate
settings. Nevertheless, app developers may still encounter
migration issues at times, which require manual adjustment
of dependency and reference classes. To aid migration, de-
velopers can refer to the official mapping table [11], [12].
However, as we will show, there are some omissions in this
mapping table.

3. EMPIRICAL STUDY AND RESULTS

In this section, we present our empirical study in terms of three
research questions. For each RQ, we discuss its motivation, our
studying method and the obtained results. Figure 1 shows the
overview of our empirical study, which concerns the following
three research questions:
• RQ1 (Issue types and causes) What are the common types

of issues when adopting and adapting the AndroidX library,
and what are their causes?

• RQ2 (API usage) What is the current utilization and migra-
tion status of AndroidX APIs in top Android apps?

• RQ3 (Class mapping) What can we learn from the official
Support-to-AndroidX mapping table? Are there any omis-
sions?

3.1 RQ1. What are the common types of issues when adopting
and adapting the AndroidX library, and what are their causes?

Motivation. Examining developer concerns with AndroidX
provides insights into common obstacles. Understanding
prevalent issue types during adoption guides enhancements
for smoother migration. Analyzing recurring problems helps
pinpoint key challenges and develop effective solutions.
We collected Stack Overflow posts discussing AndroidX is-
sues, capitalizing on its popularity among developers as a
platform for problem-solving. Stack Overflow data has been
widely employed in various software engineering research
studies. [13], [14], [15].

419

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on February 01,2024 at 04:18:01 UTC from IEEE Xplore. Restrictions apply.

Support AndroidX

class1

class2

class3

class1’

class2’

class3’

RQ2: API usage

RQ3: Class mapping

RQ1: Issue types
and causes

App developers

Figure 1: Overview of our empirical study

TABLE I: Numbers of Stack Overflow posts about AndroidX

Year 2018 2019 2020 2021 2022 2023
#posts (all) 324 1,101 593 227 165 51

#posts (filtered) 30 67 21 32 15 6

Data collection. To collect posts related to AndroidX, we
utilized the Stack Overflow REST API [16]. We performed a
search using the "AndroidX" tag as a filter, which resulted in
2,461 posts. The distribution of these posts of date of creation
across different years is shown in Table I (the "all" row).
The numbers of posts reveal a clear pattern in the distribution
over the years. There was a notable peak in 2019, followed
by a gradual decrease in subsequent years. This pattern can be
attributed to the release of AndroidX in the middle of 2018.
After its release, there was a surge in the adoption and usage
of AndroidX by developers, resulting in a significant number
of posts in the following year. As time went on, developers
became more familiar with AndroidX and its features and they
can refer to existing posts for guidance, leading to a decrease
in the number of new posts created over time.
To gain more understanding, we performed manual analysis.
However, analyzing posts is a time-consuming task, and it
is important to prioritize newer issues while avoid being
overwhelmed by older ones. Therefore, for posts from 2018,
2019, and 2020, we selected only the top 20% of posts
based on their view counts, ensuring a reasonable number
of posts for manual analysis. We further filtered the posts
based on the following criteria: first, the issues discussed in
the posts should be bugs related to AndroidX, as we wanted
to specifically focus on topics related to this library; second,
the posted questions should have accepted answers, indicating
their solutions or explanations were confirmed. With the above
process, we obtained 171 high-quality Stack Overflow posts
related to AndroidX. Table I also shows the yearly distribution
of posts after filtering.
Analysis Method. We followed an open coding procedure [17]
to categorize the issues discussed in each post. Two authors
of this paper independently analyzed the posts, including their
title, body, accepted answers, and comments. After each round
of analysis and categorization, the two authors compared and

discussed their results, and made adjustment when necessary.
If conflicting opinions occurred during this process, all co-
authors of this paper participated in thorough deliberation
to reach a conclusive resolution. Finally, consensus on posts
categorization was reached after five rounds of iteration.
Results. The collected posts can be broadly classified into
two main categories: host app bugs and AndroidX library
bugs. Host app bugs are primarily caused by incorrect im-
plementation of the Android app by the developers. On the
other hand, AndroidX library bugs stem from issues within the
AndroidX library itself. These library bugs commonly occur
during the evolution of AndroidX versions, and developers
often face challenges in finding effective solutions. As a result,
developers tend to raise issues on the Google Issue Tracker
[18] and wait for a fixing version of AndroidX libraries, an
example post is #66578828.

Finding 1: AndroidX issues not only can be caused by
developers’ problematic implementation of apps, but also
by bugs in the AndroidX library itself.

We found host app bugs have more complicate reasons. In our
categorization, host app bugs can be further classified into six
subcategories based on their causes.
3.1.1 Host app bugs categorization: Figure 2 provides a
summary of all the identified bugs. The six bug causes for
host app bugs are described as below:
• Reference to wrong class. This type of bug occurs when the

client references the wrong AndroidX class in their code.
A typical symptom of this bug is that the client receives
an error message that says “classes could not be found”.
This type of bug mainly occurs when the client is trying to
migrate from Support to AndroidX. For example, in post
#51617186, the auto-migration process changed the app
dependency from Support to AndroidX, but it missed some
client code references. As a result, the user’s reference class
could not be found. Another typical cause of this bug is that
the client is confused by some AndroidX namespaces. For
example, in post #57050888, the client should have used
the class androidx.viewpager.widget.ViewPager, while
they wrongly referenced androidx.core.view.ViewPager
instead.

• Improper usage of API. This type of bug occurs when
the client use some AndroidX API improperly. Typical
symptom is that client has wrong implementation logic or
wrong XML configurations. Typical post is #57837514, in
which client has wrong implementation logic. And in post
#53458821, client use the wrong XML configuration which
cause UI not working.

• Dependency misuse. To utilize AndroidX library, develop-
ers are required to configure their dependencies and specify
the versions. This type of bug is related to app dependency
configuration. Client referenced to some classes but missed
its dependency or use the wrong dependency, the typical
error message is "failed to resolve". For example, in post
#54809410, developers missed necessary dependency.

420

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on February 01,2024 at 04:18:01 UTC from IEEE Xplore. Restrictions apply.

AndroidX related posts on
StackOverFlow Host app bugs

AndroidX library bugs

Bugs caused by incorrect
client code implementation

 Reason 1: Reference to wrong class

 Reason 2: Improper usage of API

 Reason 3: Dependency misuse

 Reason 4: Dependency conflict

Bugs caused by incorrect
program dependencies

 Reason 5: Build plugin problem

 Reason 6: Incorrect build config

5 / 55

21 / 4

9 / 1

21 / 0

9 / 04 / 11

28 / 3

Bugs caused by incorrect
usage of build tools

Figure 2: Categorization results of Stack Overflow posts about AndroidX, right side of each cause category represent the count
of posts, displayed as: # build issue / # runtime issue

• Dependency conflict. This type of bugs indicate apps’ de-
pendencies have conflicts. For example, in post #70550502,
some dependencies are pulling different versions of the
androidx.lifecycle:lifecycle-common-java8 artifact,
which cause conflicts and give the error message "duplicate
class". Also, we noticed that some conflicts occur when
developers trying to use Support and AndroidX at the same
time, as discussed in post #51918301.

• Build plugin problem. This type of bug is occurred be-
cause some build plugin problems. Typically, migrating to
AndroidX needs a build plugin Jettifier [19], which can
migrate Support-dependent libraries to instead rely on the
equivalent AndroidX packages. However, Jettifier may fail
to transform in some cases, as discussed in post #53484988,
the client shall manually set Jettifier blacklist to ignore
specific libraries.

• Incorrect build config. Mistakes can happen during migra-
tion or utilization configuration. As in the post #53268865,
developer should set android.useAndroidX=true and an-
droid.enableJetifier=true. Another typical problem relates
to incorrect compileSdkVersion. SDK version is required
to be above 28. However, in post #51291407, this require-
ment is not met.

Finding 2: Build issues occur more frequently (56.7%)
than runtime issues (43.3%). The primary causes of build
issues are Reference to wrong class, dependency misuse,
and Incorrect build config, while runtime issues are mainly
caused by Improper usage of APIs.

3.1.2 The trends of AndroidX issues: Figure 3 gives the yearly
percentage distribution for our collected posts. The Y-axis
value represents the percentage of this category bugs of the
yearly total count. We have the following observations:

• Issues of Reasons 1, 5 and 6 decreased over the years.
These issues commonly happen during the migration from
Support to AndroidX, developers doesn’t fully change all
class references, and wrongly use build plugins or set
wrong build configuration. The decreasing trend in these
issues suggests that, as the adoption of AndroidX has
become widespread, developers have gradually completed

Figure 3: AndroidX issue trends from 2018 to 2023

the migration, resulting in fewer such issues being reported.
• The percentage of issues related to Reason 2 has exhibited

an upward trend over time. This category of issues attribute
to improper usage of AndroidX APIs. It suggests that
developers shift their focus towards utilizing AndroidX
itself. Consequently, an increasing percentage of posts are
centered around the usage of AndroidX APIs.

• The percentage of issues associated with Reasons 3 & 4
does not exhibit a discernible trend. However, it consistently
maintains a proportion of approximately 30% over the
course of these years. This consistent proportion suggests
that the identified problem continues to perplex developers.

Finding 3: The percentages of AndroidX issues caused by
Reference to wrong class, Build plugin problem and Incor-
rect build config have decreased over time. On the other
hand, the percentage of issues stemming from Improper
usage of API has increased.

421

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on February 01,2024 at 04:18:01 UTC from IEEE Xplore. Restrictions apply.

3.1.3 Discussion: AndroidX library bugs present a distinct
category on their own and accounts 8.8%. These kinds of
bugs often lack straightforward solutions, leading to prolonged
troubleshooting periods. We remain the further exploration of
bugs within the AndroidX library itself as our future work.
From the issue counts by category, the Reference to wrong
class category accounts for 14.6% of the total bugs. Our obser-
vations revealed that in some cases, automated migration tools
failed to correctly change all class references made by develop-
ers. Additionally, we also noticed instances where developers
struggled with the mapping relationship from Support classes
to AndroidX classes. These findings suggest the possibility of
inaccuracies or incompleteness in the auto-migration tool and
the mapping table from AndroidX to Support, which will be
subject to further investigation in our RQ3.
The dependency related (Reasons 3 & 4) and build related
(Reasons 5 & 6) bugs constituted a significant portion of
the developers’ bugs, accounting for 30.0% and 17.5%, re-
spectively. And they consistently maintains a high proportion
of during during the observed years. These findings have
implications for the development of auto-build configuration
and dependency detection tools, which could assist developers
in resolving such issues.
We found that Improper usage of API represents 35.1% of all
the issues, and its prevalence has been consistently increasing
in recent years. While the causes of these bugs differ, we
noticed recurring issues with popular APIs like navigation,
fragment, and viewpager. Investigating these common wrong
implementation patterns could offer developers guidance in
API usage and help enhance official API design. This aspect
remains for future work.

3.2 RQ2. What is the current utilization and migration status
of AndroidX APIs in top Android apps?

Motivation. The analysis of AndroidX and Support API
utilization patterns in the latest top apps holds immense value
in providing key insights into prevailing best practices and
trends within the Android app development industry. Gaining
an understanding of the migration status among the top apps
can offer valuable knowledge. This includes identifying the
proportion of apps that have already completed the migration
process, those currently in the process, and those that have
yet to initiate migration. It can guide developers in deciding
whether to migrate their own apps to AndroidX or continue
utilizing Support. Therefore, this RQ aims at mining and
uncovering these invaluable data points, shedding light on
the adoption and usage of AndroidX among developers and
providing practical guidance for the Android app development
community.
Data Collection. AppBrain [20] provides ranking information
for the latest Google Play apps. Our data collection process
involved crawling the top 500 most prominent APKs from each
category available on AppBrain. To obtain the corresponding
APK files for these apps, we utilized the AndroidZoo dataset
[21], [22], an ever-expanding collection of Android apps, in
which 15,334 apps were successfully crawled. Furthermore,

Figure 4: Migration status of apps on Google Play (left) and
F-Droid (right)

we explored F-Droid [23], a curated catalogue of FOSS (Free
and Open Source Software) apps specifically designed for the
Android platform. Our crawling efforts encompassed all the
apps released on F-Droid after 2019, the year after AndroidX
was released, resulting in 2,470 apps.
Analysis Method. To extract the API usages from APK
files, we utilize the static analysis framework Soot [24]. Soot
enables us to efficiently process APK files by converting their
code into an intermediate representation (IR), Jimple. This
structured representation facilitates our program analysis.
We leveraged Soot to extract all application classes, fields,
and methods. We considered an API "utilized" if it is invoked
from the client code (excluding official libraries). Then, we
conducted a thorough scan of the client code, identifying
utilized APIs whose namespaces start with androidx.* or
android.support.*. By following these outlined steps, we
successfully identify utilized AndroidX and Support APIs
within the APK files.
Result. We use the utilizing situation to reflect the migrating
status of an app, to see weather it utilizes only AndroidX,
only Support, both AndroidX and Support, or use none. We
draw the pie graphs for the apps on Google Play and F-
Droid, respectively, in Figure 4. It shows that a large portion
of apps have completely adopted AndroidX. However, there
are a proportion of apps still utilizing Support.

Finding 4: Around 13.3% commercial apps and 17%
open-source apps are still using the Android Support li-
brary.

Notice that the proportion of open-source apps not using
Support and AndroidX (17.9%) is greater than that of com-
mercial apps (3.0%), and the adoption of AndroidX in open-
source apps (65.1%) is less than that in commercial apps
(83.7%). A possible reason is, commercial apps often benefit
from dedicated development teams or access to professional
developers with ample resources and expertise. Consequently,
they are more likely to prioritize compatibility with a wide
range of devices while also keeping up-to-date with the latest
libraries and tools. In contrast, open-source projects often
involve a diverse group of contributors with varying levels
of experience. This can result in compatibility considerations
being overlooked and can slow down the adoption of newer
libraries in these projects.

422

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on February 01,2024 at 04:18:01 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Collected data source and count

Data Source JAR AAR Support AndroidX
Google Maven 28 515 121 478Other repository 50 6

TABLE III: Numbers of APIs in the dataset

#Class #Outmost Class #Method #Field
Support 6,938 2,325 54,217 24,502

AndroidX 66,105 30,766 332,486 136,873

3.3 RQ3. What can we learn from the official Support-to-
AndroidX mapping table? Are there any omissions?

Motivation. There are two kinds of mapping provided by
Google from Support to AndroidX. The first one is Google’s
class mappings table [12] (referred to as WEB mapping)
and the second one is Android Studio’s automated migration
mapping [25] (referred to as IDE mapping). The former assists
with manual migration, while the latter enables automatic
migration. In RQ1, based on the analysis of collected posts,
we revealed that developers encounter challenges during the
migration from Support to AndroidX, instances of automatic
migration failures were observed, and developers expressed
confusion regarding the mapping relation between the two
libraries. Furthermore, Figure 4 indicates that a proportion of
apps continue to utilize the Support library. These motivate
us to investigate both mappings in detail. By undertaking
this investigation, we aim to discern any discrepancies or
disparities between the two mappings and evaluate their overall
completeness.
Data Collection. We implement Selenium based crawler
Python script to crawl the artifact information and obtain the
download URLs for each artifacts of Support and AndroidX
from the Maven repository of Google [26]. For each artifact,
we would find its latest release version. If there was no such
version, we chose its latest alpha version. We favored AAR file
for each artifact. If there was no AAR file, we turned to find
JAR file. If both AAR and JAR files were missing, we would
store the artifact names and try manually search the files from
other public Maven repository [27]. Table II shows the our
final dataset of JAR/AAR files from Google Maven and other
repository, and the number of files related to Support library
or AndroidX library.
Result. We analyzed the crawled files with Soot to extract the
containing APIs. Table III shows the numbers of APIs among
our collected artifacts. We divide our analysis result into 4
sections:
3.3.1 Dependency between AndroidX and Support: It showed
that in a few AndroidX related artifacts (8 artifacts), both
Support classes and AndroidX classes are packaged, in
which 327 AndroidX classes have dependency on the Sup-
port classes. Upon further examination, we observed that
certain AndroidX classes reuse code from the Support
classes to implement specific functions. For instance, in
the artifact androidx.browser:browser:1.5.0, the class

CustomTabsCallback has method newSession() to create a
new session through an instance of ICustomTabsService[28],
which is a Support class.

Finding 5: A modest subset of AndroidX classes, com-
prising a total of 327 instances, maintain dependencies on
the Android Support library.

3.3.2 Difference between WEB and IDE mappings: The
WEB mapping is on the Google AndroidX website [12],
developers can directly access it. IDE mapping is obtained
from the source code of Android Studio, Android Studio has
the function Migrate to AndroidX, we analyzed the source
code and locate the implementation logic for this in class
MigrateToAndroidxAction, and the migration process is
based on a mapping file migration.xml, which we regard as
IDE mapping. Upon analyzing this XML file and comparing it
to the WEB mapping, we have found the former contains 259
class mappings, 93 package mappings, and 155 dependency
mappings. In comparison, these 259 class mappings and 93
package mappings essentially cover the original 1,569 map-
ping entries of WEB mapping. However, there are a total of
64 distinct mappings. Among them, 3 mappings have different
target classes for migration, 17 mappings are present in IDE
mapping but not in WEB mapping, and 44 mappings are
present in WEB mapping but not in IDE mapping. A small
portion of them is displayed in Table IV.

Finding 6: There are variations in the mapping rela-
tionships between the official web mapping table and the
automatic mapping table in the Android Studio IDE. Some
mappings have different target classes, while others are
exclusively present in either the IDE mapping or the WEB
mapping.

3.3.3 Analysis of WEB class mappings: WEB mapping has
1,549 class mappings from Support to AndroidX (excluding
inner classes and anonymous classes). We gained some in-
sights from the mapping table. For example, there are 786
mapping entries that merely convert the prefix android.
support in the package names into androidx. There are 610
mappings that modify, add or delete certain words in the
package names; and there are 153 mappings that do not target
androidx. We have observed that within these 153 mapping
entries, certain Support classes remained unchanged before
and after migration, such as android.support.v4.media.*.
There were some Support classes being mapped into pack-
age names starting with com.google.android, rather than
androidx. For instance, android.support.design.* became
com.google.android.material.*.

Finding 7: Not all Support libraries are migrated to the
androidx packages. Some of them maintain their original
package names, and some have changed their package
names starting with com.google.android.

423

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on February 01,2024 at 04:18:01 UTC from IEEE Xplore. Restrictions apply.

TABLE IV: Differences between the IDE mapping and the WEB mapping (partial)
Support Class AndroidX Class (IDE Mapping) AndroidX Class (WEB Mapping)
android.support.v4.os.ResultReceiver android.support.v4.os.ResultReceiver androidx.core.os.ResultReceiver
android.support.test.InstrumentationRegistry androidx.test.platform.app.InstrumentationRegistry androidx.test.InstrumentationRegistry
android.support.test.runner.AndroidJUnit4 androidx.test.ext.junit.runners.AndroidJUnit4 androidx.test.runner.AndroidJUnit4
android.support.design.math.MathUtils com.google.android.material.math.MathUtils (missing)
android.support.constraint.helper.Flow androidx.constraintlayout.helper.widget.Flow (missing)
android.support.v4.media.AudioAttributesCompatApi21 androidx.media.AudioAttributesCompatApi21 (missing)
android.support.v7.widget.PositionMap androidx.recyclerview.widget.PositionMap (missing)
android.support.design.animation.AnimationUtils (missing) com.google.android.material.animation.AnimationUtils
android.support.design.widget.SnackbarContentLayout (missing) com.google.android.material.snackbar.SnackbarContentLayout
android.support.media2.BaseRemoteMediaPlayerConnector (missing) android.support.media2.BaseRemoteMediaPlayerConnector

Algorithm 1: Cosine Similarity Analysis
Input: Two Jimple class C0 and C1

Output: Cosine similarity score S
1 Function splitWords(C)
2 Use regex to remove package names;
3 return C.split (‘\W+’);
4 Function termFrequencyAnalysis(L)
5 vector ← empty dictionary;
6 foreach word in L do
7 if word is not in frequency then
8 vector[word]← 1;
9 else

10 vector[word]← vector[word] + 1;
11 end
12 end
13 return vector;
14 Function expandDimension(vector1, vector2)
15 wordSet← vector1.keyset ∪ vector2.keyset;
16 foreach word in wordSet do
17 if word is not in vector1 then

vector1[word]← 0;
18 if word is not in vector2 then

vector2[word]← 0;
19 end
20 return vector1, vector2;
21 Function calculateSimilarity(vec1, vec2)

22 similarity =
∑n

i=1 vec1i·vec2i√∑n
i=1 vec12i ·

√∑n
i=1 vec22i

;

23 return similarity;
24 L0, L1 ← splitWords(C0, C1);
25 A,B ← termFrequencyAnalysis(L0, L1);
26 A,B ← expandDimension(A,B);
27 S ← calculateSimilarity(A,B);
28 return S;

Next, we aim to utilize a similarity algorithm to calculate
the similarity of the existing mappings, in order to examine
what insights we can gain from the code before and after
the migration. The similarity algorithm we have chosen is
the cosine similarity algorithm, which is commonly used
to determine the similarity between two vectors in a high-
dimensional space [29]. It calculates the cosine of the angle
between the two vectors, indicating how close they are related.
It is widely utilized in various fields such as information

Figure 5: Cosine similarity of WEB mapping

retrieval, text mining, and recommendation systems. Its scale
ranges from 0 to 1, where 0 represents orthogonality or decor-
relation, and values in between indicate moderate similarity or
dissimilarity. In text matching scenarios, the attribute vectors
A and B typically represent the term frequency vectors of
the documents. Cosine similarity can be seen as a method
to normalize document length during the comparison process.
The formula for cosine similarity is:

Similarity(A,B) =

∑n
i=1 Ai ·Bi√∑n

i=1 A
2
i ×

√∑n
i=1 B

2
i

Where Ai and Bi are components of vector A and B.
The process of obtaining code similarity using cosine sim-
ilarity is shown in Algorithm 1. We utilized this algorithm
to compute the code similarity of WEB mapping. Our initial
step is to employ Soot to decompile the AAR files and
obtain the corresponding Jimple class representations. Then
we can calculate the similarity score between two classes. By
employing this approach, we calculated the similarity scores of
the Support classes and their corresponding AndroidX classes
listed in the WEB mapping. We visualized the results of the
computation in Figure 5.
From the illustration, it is evident that more than half of the
classes remain the same code before and after the migra-
tion. Approximately 75% of the classes demonstrate a code
similarity score of 0.99 or higher before and after migration.
Furthermore, 91% of the classes exhibit a code similarity of
over 0.95 after class migration. Additionally, the majority of
classes in Support remain virtually unchanged before and after

424

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on February 01,2024 at 04:18:01 UTC from IEEE Xplore. Restrictions apply.

migration, with only a small portion (approximately 5% of the
classes) undergoing significant modifications.

Finding 8: Most AndroidX classes exhibit a high degree
of similarity before and after migration, with only a small
number of classes undergoing significant modifications.

3.3.4 Reconstructing missing mappings: The mapping table
provided by Android Developers [12] contains 1,549 map-
pings from Support to AndroidX. However, through Table III,
we have found 2,325 outmost classes in Support, indicating
that some Support classes have not been officially mapped.
We intend to investigate whether these classes have been
migrated. Therefore, we utilized the cosine similarity algo-
rithm for matching unmapped Support classes. Specifically,
we investigated whether the mapped Support classes have
their corresponding AndroidX classes. We attempt to find the
most fitting AndroidX class to serve as the mapping for each
Support class that lacks a mapping relationship. The procedure
was as follow:
1) Decompilation and preprocessing: Employing Soot, we

decompile all Support classes as well as AndroidX classes
to obtain their Jimple IRs. We then merge the code of
inner classes into the outer classes. Note that the order of
merging is not important, as the cosine similarity algorithm
does not take it into account.

2) Iteratively searching for the best match: For each
Jimple IR of the Support classes, we iterate through all
of AndroidX classes and use Algorithm 1 to find the one
with the highest similarity score.

3) Manual validation: For each Support class, we manually
review whether its best matching AndroidX class indeed
establishes a mapping relationship. Those classes that fail
to establish such a relationship are eliminated.

Finally, we have identified a total of 579 additional mapping
relationships that are not covered by the official web class
mapping. Each of these mapping entries has undergone metic-
ulous manual review to ensure their utmost accuracy. After
that, there are only approximately 197 Support classes that do
not have a corresponding mapping relationship. As a result
of our work, we have significantly increased the mapping
coverage from 66.62% to 91.53%.

Finding 9: The WEB mapping covers approximately 70%
of the Support classes, yet there are still some omissions.
We have discovered an additional 579 mapping entries to
supplement the WEB mapping.

The 579 mappings we have recovered exhibit a high degree
of similarity to the WEB mapping in terms of their naming
pattern. The majority of these mappings involve replacing
android. support with androidx and making adjustments to
the length and content of package names. Additionally, there
are some mappings that even involve changes to the class
names, such as android.support.media2.IMediaSession2
becoming androidx.media2.IMediaSession. Table V shows

a partial of additional mapping entries that we have found for
supplementing the WEB mapping. The whole reconstructed
mappings can be found on our data publicity repository.
We have already submit a issue about the supplementary
mappings on Android Issue Tracker [30]. At the time of paper
submission, the issue has not yet received reply from the
Android maintainers.

4. THREATS TO VALIDITY

Posts trends bias: Because we only choose the top 20% of the
posts in year 2018, 2019, 2020, it is important to acknowledge
that this filtering process may not accurately capture the true
evolution trend of AndroidX adoption, as the distribution
of post categories in the top 20% might not matches the
distribution below the top 20%. It’s also worth noting that
this approach might not necessarily reflect the most viewed
posts, as developers can refer to previous posts. Unfortunately,
obtaining view time data for all users was not feasible, and
we had to resort to this alternative method.
Generalizability of APK dataset: The study acknowledges the
potential issue of generalizeability concerning the APK dataset
used. It is crucial to recognize that the dataset may not cover
the entire Android app ecosystem, and some variations may
exist in apps that were not considered in this research. The
authors encourage further research to validate the findings with
diverse APK datasets to enhance the generalizability of the
results.
Non-exhaustive collection JAR/AAR files: Another concern
is related to the collection of JAR/AAR files concerning
AndroidX and Support source code. It was observed that a
few JAR/AAR files could not be sourced from the official
Google Maven repository or any other place, and few source
files downloaded from Google Maven are corrupt and can not
be used for further analysis. These limitation might impact
the comprehensiveness of the dataset, but we make our best
efforts to obtain as many relevant files as possible from reliable
sources.

5. RELATED WORK

McDonnell et al. [31] conducted an empirical study about
Android API adoption. Their study aimed at understanding the
co-evolution behavior of Android APIs and dependent Android
apps. It revealed that outdated API references in client apps
are prevalent, and the time taken to adopt new API versions
is longer for fast-evolving APIs. The paper also explores the
defect-proneness of API usage adaptation code. Wei et al.
[32], [33] studied the fragmentation of the Android ecosystem,
which causes compatibility issues for app developers. The
main reason for Android fragmentation is the various device
models and OS versions. They conducted a study on real-
world issues, and proposed FICFINDER, a tool for automatic
detection of compatibility issues in Android apps via static
code analysis. Xia et al. [34] also investigates the challenges
of API compatibility issues faced by Android developers. They
explored how developers handle these issues and proposed a
tool called RAPID to automate the identification of addressed

425

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on February 01,2024 at 04:18:01 UTC from IEEE Xplore. Restrictions apply.

TABLE V: Supplement to the WEB mapping (partial)

Support Class AndroidX Class
android.support.constraint.ConstraintAttribute androidx.constraintlayout.widget.ConstraintAttribute
android.support.constraint.StateSet androidx.constraintlayout.widget.StateSet
android.support.wearable.complications.ProviderUpdateRequester androidx.wear.complications.ProviderUpdateRequester
android.support.v4.media.AudioAttributesImplBase androidx.media.AudioAttributesImplBase
android.support.multidex.BuildConfig androidx.multidex.BuildConfig
android.support.multidex.instrumentation.BuildConfig androidx.multidex.instrumentation.BuildConfig
android.support.media2.IMediaSession2 androidx.media2.IMediaSession

compatibility issues. The study reveals that a significant num-
ber of developers do not provide alternative implementations
for incompatible API invocations. However, when Google
provides replacement recommendations, developers are more
likely to offer alternative solutions. Wang et al. [13] con-
ducted an empirical study on Android runtime permission
issues (ARP). They manually analyzed Stack Overflow posts
and open-source projects to identify 11 prevalent types of
ARP issues. They investigated the manifestations, prevalence,
potential fixes, and impact of these issues on the Android
ecosystem.
Besides Android ecosystem, researchers have also conducted
empirical studies for software compatibility issues on the other
platforms. Zheng et al. [35] examines the evolution of Python
framework APIs and the resulting compatibility issues in client
programs. They analyzed 288 releases of six popular Python
frameworks and 5,538 open-source projects built on them.
They also identified common strategies used by developers
to fix compatibility issues. Marcel et al. [36] conducted an
empirical study on Swift programming language, in which they
analyzed 59,156 Stack Overflow questions and interviewed
12 Swift developers. They found developers’ questions about
Swift centered on basic language elements and the toolset
(compiler, Xcode, libraries).
These papers reveal the common procedures for conducting
empirical research about API evolution and compatibility
issues. While Support and AndroidX are widely utilized as
official libraries to address compatibility, there is a lack of
systematic research focused on the Android Support and
AndroidX libraries. Our study examined the distribution and
migration status of both libraries in top apps, analyzing the
common issue types faced by developers when adopting and
adapting AndroidX, and try to establish a complete mapping
relationship between the Support library and corresponding
components in the AndroidX library.

6. CONCLUSION

In this work, we conducted a comprehensive analysis of
the adoption and adaptation of the AndroidX library. First,
we built a taxonomy of AndroidX issues from 171 Stack
Overflow posts and investigated their reasons and trends.
Besides, we investigated 15,334 apps from Google Play and
2,470 apps from F-Droid, through which we gained the
AndroidX migration status of current Android apps. Finally,
we have compared the class similarity between the original
Support Library and the new AndroidX Library, and created

a supplementary class mapping, addressing certain omissions
in the official mappings. Our research contributes a compre-
hensive understanding of AndroidX, developers’ challenges of
using the library, migration status, and class mapping from
Support, which provides guidance and knowledge to Android
practitioners and researchers.

ACKNOWLEDGEMENT

This work is supported by the Guangdong Basic and Applied
Basic Research Fund (Grant No. 2021A1515011562).

REFERENCES

[1] M. E. Joorabchi, A. Mesbah, and P. Kruchten, “Real
challenges in mobile app development,” in 2013 ACM
/ IEEE International Symposium on Empirical Software
Engineering and Measurement, 2013, pp. 15–24.

[2] D. He, L. Li, L. Wang, H. Zheng, G. Li, and J. Xue,
“Understanding and detecting evolution-induced compat-
ibility issues in android apps,” in Proceedings of the
33rd ACM/IEEE International Conference on Automated
Software Engineering, ser. ASE ’18. New York, NY,
USA: Association for Computing Machinery, 2018, p.
167–177.

[3] L. Wei, Y. Liu, and S.-C. Cheung, “Pivot: learning api-
device correlations to facilitate android compatibility
issue detection,” in 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE). IEEE,
2019, pp. 878–888.

[4] Android Developers, “AndroidX Overview,” https://
developer.android.com/jetpack/androidx, 2022.

[5] Google, “Support Library Introduction,” https:
//developer.android.com/topic/libraries/support-library,
May 2020.

[6] Android Developers, “Support Library Revision
Archive,” https://developer.android.com/topic/libraries/
support-library/rev-archive, 2021.

[7] Alan, K. Kam, and L. Bergstrom, “Hello world,
androidx,” https://android-developers.googleblog.com/
2018/05/hello-world-androidx.html, 2018.

[8] Android Developers, “AndroidX versions,” https://
developer.android.com/jetpack/androidx/versions, 2023.

[9] AndroidX, “ActivityCompat,” https://github.com/
androidx/androidx/blob/androidx-main/core/core/src/
main/java/androidx/core/app/ActivityCompat.java, 2023.

[10] Android Developers, “Migrate to AndroidX,” https://
developer.android.com/jetpack/androidx/migrate, 2023.

426

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on February 01,2024 at 04:18:01 UTC from IEEE Xplore. Restrictions apply.

[11] Android Developers, “Support Library Artifact
Mappings,” https://developer.android.com/jetpack/
androidx/migrate/artifact-mappings, 2023.

[12] Android Developers, “Support Library Class Mappings,”
https://developer.android.com/jetpack/androidx/migrate/
class-mappings, 2023.

[13] Y. Wang, Y. Wang, S. Wang, Y. Liu, C. Xu, S.-C. Cheung,
H. Yu, and Z. Zhu, “Runtime permission issues in
android apps: Taxonomy, practices, and ways forward,”
IEEE Transactions on Software Engineering, vol. 49,
no. 1, pp. 185–210, 2023.

[14] M. Linares-Vásquez, G. Bavota, M. Di Penta, R. Oliveto,
and D. Poshyvanyk, “How do api changes trigger stack
overflow discussions? a study on the android sdk,” in
Proceedings of the 22nd International Conference on
Program Comprehension, ser. ICPC 2014. New York,
NY, USA: Association for Computing Machinery, 2014,
p. 83–94.

[15] M. Duijn, A. Kucera, and A. Bacchelli, “Quality ques-
tions need quality code: Classifying code fragments
on stack overflow,” in 2015 IEEE/ACM 12th Working
Conference on Mining Software Repositories, 2015, pp.
410–413.

[16] Stack exchange, “2023,” https://api.stackexchange.com/
docs.

[17] S. Lewis, “Qualitative inquiry and research design:
Choosing among five approaches,” Health Promotion
Practice, vol. 16, no. 4, pp. 473–475, 2015.

[18] Google, “Google Issue Tracker,” https://issuetracker.
google.com/, 2023.

[19] Google, “Jetifier,” https://developer.android.com/tools/
jetifier, 2023.

[20] AppBrain, “AppBrain: Android app market & app dis-
covery,” https://www.appbrain.com/.

[21] AndroZoo, “AndroZoo,” https://androzoo.uni.lu/.
[22] K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon,

“Androzoo: Collecting millions of android apps for the
research community,” in Proceedings of the 13th Inter-
national Conference on Mining Software Repositories,
ser. MSR ’16. New York, NY, USA: ACM, 2016, pp.
468–471.

[23] F-Droid, “F-Droid,” https://f-droid.org/, 2023.
[24] Soot, “Soot - A framework for analyzing and transform-

ing Java and Android applications,” https://github.com/
soot-oss/soot.

[25] Android Developers, “AndroidX migration using
Android Studio,” https://developer.android.com/jetpack/
androidx/migrate#migrate_an_existing_project_using_
android_studio, 2023.

[26] Google, “Google Maven Repository,” https://maven.
google.com, 2023.

[27] Maven, “Maven Repository,” https://mvnrepository.com/,
2023.

[28] Android Developers, “CustomTabsClient,”
https://developer.android.com/reference/androidx/
browser/customtabs/CustomTabsClient, 2023.

[29] A. D. Hartanto, Y. Pristyanto, and A. Saputra, “Doc-
ument similarity detection using rabin-karp and cosine
similarity algorithms,” in 2021 International Conference
on Computer Science and Engineering (IC2SE), vol. 1,
2021, pp. 1–6.

[30] “Missing class mappings of Support Library and
AndroidX,” https://issuetracker.google.com/issues/
289442452, 2023.

[31] T. McDonnell, B. Ray, and M. Kim, “An empirical study
of api stability and adoption in the android ecosystem,”
in 2013 IEEE International Conference on Software
Maintenance, 2013, pp. 70–79.

[32] L. Wei, Y. Liu, and S.-C. Cheung, “Taming android
fragmentation: Characterizing and detecting compatibil-
ity issues for android apps,” in 2016 31st IEEE/ACM
International Conference on Automated Software Engi-
neering (ASE), 2016, pp. 226–237.

[33] L. Wei, Y. Liu, S.-C. Cheung, H. Huang, X. Lu, and
X. Liu, “Understanding and detecting fragmentation-
induced compatibility issues for android apps,” IEEE
Transactions on Software Engineering, vol. 46, no. 11,
pp. 1176–1199, 2020.

[34] H. Xia, Y. Zhang, Y. Zhou, X. Chen, Y. Wang, X. Zhang,
S. Cui, G. Hong, X. Zhang, M. Yang, and Z. Yang,
“How android developers handle evolution-induced api
compatibility issues: A large-scale study,” ser. ICSE
’20. New York, NY, USA: Association for Computing
Machinery, 2020, p. 886–898.

[35] Z. Zhang, H. Zhu, M. Wen, Y. Tao, Y. Liu, and
Y. Xiong, “How do python framework apis evolve?
an exploratory study,” in 2020 IEEE 27th International
Conference on Software Analysis, Evolution and Reengi-
neering (SANER), 2020, pp. 81–92.

[36] M. Rebouças, G. Pinto, F. Ebert, W. Torres, A. Sere-
brenik, and F. Castor, “An empirical study on the usage of
the swift programming language,” in 2016 IEEE 23rd In-
ternational Conference on Software Analysis, Evolution,
and Reengineering (SANER), vol. 1, 2016, pp. 634–638.

427

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on February 01,2024 at 04:18:01 UTC from IEEE Xplore. Restrictions apply.

