
Finding Sensor Related Energy Black
Holes In Smartphone Applications

Yepang Liu1, Chang Xu2, S.C. Cheung1

1The Hong Kong University of Science and Technology
2State Key Lab for Novel Software, Nanjing University

IEEE PerCom 2013

San Diego, California, USA

25+ billion downloads
(September 2012)

650,000+ applications
(September 2012)

Smartphone apps

1/29

Energy Problem

Full Network access

Frequent sensor usage 3D rendering

2/29

Energy Problem

Full Network access

Frequent sensor usage 3D rendering

Annual density improvement
very slow (6%)

Energy Inefficiency

2/29

Energy Problem

• Problem magnitude
– Thousands of apps are NOT energy efficient

– Millions of users affected and complained

– Phone batteries drained in a few hours

• Major reasons
– Hardware management burden (e.g., sensors)

– Lack of dedicated QA, short time to market

– Difficulty in problem diagnosis

3/29

(Pathak et al. Hotnets 2011)

Motivation

• What are the common causes of energy
problems?

• Can we distill patterns to enable automated
diagnosis?

4/29

Our Work

Investigation

•Diagnosis difficulty

•Common causes

Evaluation

•Effectiveness

•Efficiency

Automated
diagnosis

•State exploration

•Energy efficiency
analysis

5/29

Investigated Subjects

7/29

10

33

136

SourceForge

GitHub

Google Code

0 40 80 120 160

App Availability Distribution

174 popular open-source Android apps

Investigated Subjects

Source Repository
(24 affected apps)

� Bug reports

� Comments on bug
reports

� Bug fixing patches

� Revision commit logs

7/29

10

33

136

SourceForge

GitHub

Google Code

0 40 80 120 160

App Availability Distribution

174 popular open-source Android apps

Observations

8/29

• Reproduce problem (extensive testing, energy profiling)

• Figure out root cause (instrumentation, runtime logging)

Diagnosis difficulty

Observations

• Reproduce problem (extensive testing, energy profiling)

• Figure out root cause (instrumentation, runtime logging)

Diagnosis difficulty

• Common causes (10/24): improper use of sensors

Problem causes

8/29

Patterns

• Sensor listener misusage

9/29

R

Registration

(All executions)

Patterns

• Sensor listener misusage

9/29

R

“Always un-register sensor listener before program exits!”

UnregistrationRegistration

U (All executions)

Patterns

• Sensor listener misusage

9/29

R

“Always un-register sensor listener before program exits!”

UnregistrationRegistration

U (All executions)

• Sensory data underutilization

R U (Execution 1)

Location data well utilized

Patterns

• Sensor listener misusage

9/29

R

“Always un-register sensor listener before program exits!”

UnregistrationRegistration

U (All executions)

• Sensory data underutilization

R U (Execution 1)

Location data well utilized

R R U (Execution 2)

Poor utilization

Sensory Data Underutilization

9/29

R U (Execution 1)

Location data well utilized

R R U (Execution 2)

Poor utilization

“GeoHashDroid should slow down sensor update significantly if
nothing besides the notification bar is listening.”

(GeoHashDroid Issue 24)

“GPS sensor should be timely disabled if location data are used
to update an invisible map.”

(Osmdroid Issue 53)

Approach Overview (GreenDroid)

• Dynamic analysis (on top of Java PathFinder)

• Goal: Simple, scalable, and effective

11/29

Approach Overview (GreenDroid)

• Dynamic analysis (on top of Java PathFinder)

• Goal: Simple, scalable, and effective

11/29

Java PathFinder

Sensory Data
Utilization Analyzer

Runtime
Controller

Application
Under Analysis

*.class

*.xml

Analysis
Report

• Application state
• Energy inefficiency

• Dynamic analysis (on top of Java PathFinder)

• Goal: Simple, scalable, and effective

11/29

Java PathFinder

Sensory Data
Utilization Analyzer

Runtime
Controller

Application
Under Analysis

*.class

*.xml

Analysis
Report

• Application state
• Energy inefficiency

Input Output

Approach Overview (GreenDroid)

• Dynamic analysis (on top of Java PathFinder)

• Goal: Simple, scalable, and effective

11/29

Java PathFinder

Sensory Data
Utilization Analyzer

Runtime
Controller

Application
Under Analysis

*.class

*.xml

Analysis
Report

• Application state
• Energy inefficiency

1. Event generation
2.State exploration

Approach Overview (GreenDroid)

• Dynamic analysis (on top of Java PathFinder)

• Goal: Simple, scalable, and effective

11/29

Java PathFinder

Sensory Data
Utilization Analyzer

Runtime
Controller

Application
Under Analysis

*.class

*.xml

Analysis
Report

• Application state
• Energy inefficiency

1. Sensory data tracking
2.Utilization analysis
3.Sensor listener usage monitoring

Approach Overview (GreenDroid)

• Dynamic analysis (on top of Java PathFinder)

• Goal: Simple, scalable, and effective

• Major Challenges

– App execution and state exploration in Java PathFinder

– Sensory data identification and utilization analysis (no metrics)

11/29

Java PathFinder

Sensory Data
Utilization Analyzer

Runtime
Controller

Application
Under Analysis

*.class

*.xml

Analysis
Report

• Application state
• Energy inefficiency

Approach Overview (GreenDroid)

12/29

General Java programs
(explicit control flow)

• Absence of explicit control flow (event-driven)

• Heavy reliance on native system libs (platform specific)

• Essentially interactive (valid user input generation)

App Execution in JPF (Problems)

12/29

General Java programs
(explicit control flow)

Android programs
(event-driven)

VS

Class C
• Handler 1
• Handler 2
• …
• Handler n

Class B
• Handler 1
• Handler 2
• …
• Handler n

Class A
• Handler 1
• Handler 2
• …
• Handler n

Loosely coupled handlers

• Absence of explicit control flow (event-driven)

• Heavy reliance on native system libs (platform specific)

• Essentially interactive (valid user input generation)

App Execution in JPF (Problems)

12/29

Applications

Frameworks

Libs Dalvik VM

Linux Kernel

Android Platform

Scheduled by

• Absence of explicit control flow (event-driven)

• Heavy reliance on native system libs (platform specific)

• Essentially interactive (valid user input generation)

App Execution in JPF (Problems)

Implicit control flow

12/29

Applications

Frameworks

Libs Dalvik VM

Linux Kernel

Android Platform

Scheduled by

Mostly
native!

• Absence of explicit control flow (event-driven)

• Heavy reliance on native system libs (platform specific)

• Essentially interactive (valid user input generation)

App Execution in JPF (Problems)

Implicit control flow

12/29

• Absence of explicit control flow (event-driven)

• Heavy reliance on native system libs (platform specific)

• Essentially interactive (valid user input generation)

App Execution in JPF (Problems)

• Absence of explicit control flow (event-driven)

• Heavy reliance on native system libs (platform specific)

• Essentially interactive (valid user input generation)

App Execution in JPF (Solutions)

13/29

Android Specs Temporal rules
(AEM Model)

Handler scheduling policies

Temporal rules
(AEM Model)

Input: (1) app execution history
(2) Newly received event

Output: next handler to execute

Decision procedure

Concretization

14/29

• Absence of explicit control flow (event-driven)

• Heavy reliance on native system libs (platform specific)

• Essentially interactive (valid user input generation)

App Execution in JPF (Solutions)

14/29

Identify native methods

Native method

• Absence of explicit control flow (event-driven)

• Heavy reliance on native system libs (platform specific)

• Essentially interactive (valid user input generation)

App Execution in JPF (Solutions)

14/29

Identify native methods

Create stubs (native peers)
Native peer

Native method

• Absence of explicit control flow (event-driven)

• Heavy reliance on native system libs (platform specific)

• Essentially interactive (valid user input generation)

App Execution in JPF (Solutions)

14/29

Identify native methods

Create stubs (native peers)

Implement logics

Native peer

Native method

• Absence of explicit control flow (event-driven)

• Heavy reliance on native system libs (platform specific)

• Essentially interactive (valid user input generation)

App Execution in JPF (Solutions)

15/29

Application configurations

Activity 1

……

Activity n

GUI
Layout

GUI
Layout

Association

Association

GUI Layout Analysis (Static)

• Absence of explicit control flow (event-driven)

• Heavy reliance on native system libs (platform specific)

• Essentially interactive (valid user input generation)

App Execution in JPF (Solutions)

15/29

• Absence of explicit control flow (event-driven)

• Heavy reliance on native system libs (platform specific)

• Essentially interactive (valid user input generation)

App Execution in JPF (Solutions)

JPFJVM

Call stack

onResume()

Listener
VM events

Waiting for user interaction?

Event sequence generation (Dynamic)

…

Click Long press

Sequence length bounded!

State Exploration

• State changes as the app continuous handles events (user
events, system events etc.)

16/29

(Execution 1)

(Execution 2)

(Execution k)

… …

Event State

State Exploration

• State changes as the app continuous handles events (user
events, system events etc.)

16/29

(Execution 1)

(Execution 2)

(Execution k)

… …

Event State
How to analyze sensory data utilization?
Are they well utilized?

Sensory Data Tracking & Identification

17/29

Data enter app

Transformed and
consumed

Data leave app

Data Lifecycle:

Sensory Data Tracking & Identification

17/29

Data enter app

Transformed and
consumed

Data leave app

Data Lifecycle:

• Taint the mock sensory data

Taint source

Sensory Data tracking process:

Sensory Data Tracking & Identification

17/29

Data enter app

Transformed and
consumed

Data leave app

Data Lifecycle:

• Taint the mock sensory data

Taint source

• Tracking and pinpointing sensory data

• Record sensory data usages

Taint propagation

Sensory Data tracking process:

Sensory Data Tracking & Identification

17/29

Data enter app

Transformed and
consumed

Data leave app

Data Lifecycle:

• Taint the mock sensory data

Taint source

• Tracking and pinpointing sensory data

• Record sensory data usages

Taint propagation

• Terminate tainting

• Compute sensory data utilization

Taint sink

Sensory Data tracking process:

Taint Propagation Policy

18/29

Index Bytecode Instruction Taint Propagation Rule

1 Const-op C T(stack[0]) = Ø

2 Load-op index T(stack[0]) = T(localVarindex)

3 LoadArray-op arrayRef, index T(stack[0]) = T(arrayRef) ⋃ T(arrayRef [index])

4 Store-op index T(localVarindex) = T(stack’[0])

5 StoreArray-op arrayRef, index T(arrayRef [index]) = T(stack’[0])

6 Binary-op T(stack[0]) = T(stack’[0]) ⋃ T(stack’[1])

7 Unary-op T(stack[0]) = T(stack’[0])

8 GetField-op index T(stack[0]) = T(stack’[0].instanceField) ⋃ T(stack’[0])

9 GetStatic-op index T(stack[0]) = T(ClassName.staticField)

10 PutField-op index T(stack’[1].instanceField) = T(stack’[0])

1 PutStatic-op index T(ClassName.staticField) = T(stack’[0])

12 Return-op(non-void) T(callerStack[0]) = T(calleeStack’[0])

Example

19/29

float x = values[0];
float y = values[1];
float z = values[2];

float g = GRAVERTIY_EARTH;

float acc = (x*x + y*y + z*z) / (g*g);

Compute acceleration
Input: accEvent from accelerometer

float[] values = accEevent.values;

Example

19/29

float x = values[0];
float y = values[1];
float z = values[2];

float g = GRAVERTIY_EARTH;

float acc = (x*x + y*y + z*z) / (g*g);

Compute acceleration
Input: accEvent from accelerometer

float[] values = accEevent.values;Tainted Data

accEvent

Example

19/29

float x = values[0];
float y = values[1];
float z = values[2];

float g = GRAVERTIY_EARTH;

float acc = (x*x + y*y + z*z) / (g*g);

Compute acceleration
Input: accEvent from accelerometer

float[] values = accEevent.values;Tainted Data

accEvent

values (Rule 8)

Field access

Example

19/29

float x = values[0];
float y = values[1];
float z = values[2];

float g = GRAVERTIY_EARTH;

float acc = (x*x + y*y + z*z) / (g*g);

Compute acceleration
Input: accEvent from accelerometer

float[] values = accEevent.values;Tainted Data

accEvent

values (Rule 8)

x (Rule 3)

y (Rule 3)

z (Rule 3)

Array element
access

Example

19/29

float x = values[0];
float y = values[1];
float z = values[2];

float g = GRAVERTIY_EARTH;

float acc = (x*x + y*y + z*z) / (g*g);

Compute acceleration
Input: accEvent from accelerometer

float[] values = accEevent.values;Tainted Data

accEvent

values (Rule 8)

x (Rule 3)

y (Rule 3)

z (Rule 3)

acc (Rule 6)

Arithmetic computation

Sensory data usage measurement

20/29

Usage Accumulationusage(s, d) = weight(i, s)× rel(i)
i∈Instr(s,d)

∑

Sensory data usage measurement

20/29

(Execution 1)

(Execution 2)

State1 State2

State3

Osmdroid issue 53:

Usage Accumulationusage(s, d) = weight(i, s)× rel(i)
i∈Instr(s,d)

∑

Sensory data usage measurement

21/29

dataProcess()

broadcast()

updateMap()

Location data dataProcess()

broadcast()

updateMap()

Location data

writeToDB()

State 2(map invisible) State 3

dataProcess()

broadcast()

updateMap()

Location data

State 1

1 2 (Execution 1)

(Execution 2)3

Sensory data usage measurement

21/29

dataProcess()

broadcast()

updateMap()

Location data dataProcess()

broadcast()

updateMap()

Location data

writeToDB()

State 2(map invisible) State 3

dataProcess()

broadcast()

updateMap()

Location data

State 1

+n

+n

+n

+n

+n

+0

+n

+n

+n

+n

1 2 (Execution 1)

(Execution 2)3

Usage Comparison

22/29

1 2 (Execution 1)

(Execution 2)3

Index Usage Utilization coefficient

State 1 3n 0.75

State 2 2n 0.5

State 3 4n 1

utilization _ coefficient(s, d) =
usage(s, d)

Maxs '∈S,d '∈D (usage(s ', d '))

Usage Comparison

22/29

1 2 (Execution 1)

(Execution 2)3

Index Usage Utilization coefficient

State 1 3n 0.75

State 2 2n 0.5

State 3 4n 1

utilization _ coefficient(s, d) =
usage(s, d)

Maxs '∈S,d '∈D (usage(s ', d '))

Report
• Event sequence
• Sensory data usage details

Usage Comparison

22/29

1 2 (Execution 1)

(Execution 2)3

Index Usage Utilization coefficient

State 1 3n 0.75

State 2 2n 0.5

State 3 4n 1

utilization _ coefficient(s, d) =
usage(s, d)

Maxs '∈S,d '∈D (usage(s ', d '))

Report
• Event sequence
• Sensory data usage details

Sensor listener misusage

Evaluation

• RQ1 (Effectiveness): Can GreenDroid effectively
detect energy problems?

• RQ2 (Efficiency): How much overhead does
GreenDroid incur? Is GreenDroid practical enough
to handler real-world large subjects?

23/29

Subjects

24/29

Application
Basic Information

Revision No. Lines of code Downloads Availability

Osmdroid 750 18,091 10K—50K Google Play

Zmanim 322 4,893 10K—50K Google Play

Omnidroid 863 12,427 1K—5K Google Play

DroidAR 204 18,106 1K—5K Google Code

Recycle-locator 68 3,241 1K—5K Google Play

GPSLogger 15 659 1K—5K Google Code

Effectiveness

25/29

Energy Problem Problem type New problem

OsmDroid Issue 53 Sensory data underutilization No

Zmanim Issue 50 Sensory data underutilization No

Zmanim Issue 56 Sensory data underutilization No

DroidAR Issue 27 Sensor listener misusage No

Recycle-Locator Issue 33 Sensor listener misusage No

Omnidroid Issue 179 Sensory data underutilization Yes

GPSLogger Issue 7 Sensory data underutilization Yes

GreenDroid found seven real problems. Five problems are
caused by poor sensory data utilization. Two problems are
caused by sensor listener misusage.

Energy Problem Problem type New problem

OsmDroid Issue 53 Sensory data underutilization No

Zmanim Issue 50 Sensory data underutilization No

Zmanim Issue 56 Sensory data underutilization No

DroidAR Issue 27 Sensor listener misusage No

Recycle-Locator Issue 33 Sensor listener misusage No

Omnidroid Issue 179 Sensory data underutilization Yes

GPSLogger Issue 7 Sensory data underutilization Yes

Effectiveness

25/29

First five problems were confirmed before our experiments.
The Last two were new problems found by GreenDroid

Effectiveness

25/29

“Completely true, Omnidroid does suck up way more energy
than necessary. I'd be happy to accept a patch in this regard”.

(Omnidroid issue 179)

Energy Problem Problem type New problem

OsmDroid Issue 53 Sensory data underutilization No

Zmanim Issue 50 Sensory data underutilization No

Zmanim Issue 56 Sensory data underutilization No

DroidAR Issue 27 Sensor listener misusage No

Recycle-Locator Issue 33 Sensor listener misusage No

Omnidroid Issue 179 Sensory data underutilization Yes

GPSLogger Issue 7 Sensory data underutilization Yes

Efficiency

26/29

Application
Analysis Overhead

Explored states Time (seconds) Space (MB)

Osmdroid 120,189 151 591

Zmanim 54,270 110 205

Omnidroid (12 KLOC) 52,805 220 342

DroidAR (18 KLOC) 91,170 276 217

Recycle-locator 114,709 43 153

GPSLogger 58,824 35 149

Thousands of states explored in a few minutes. Memory
Consumption well supported by modern PCs even without
optimization.

Efficiency

26/29

Application
Analysis Overhead

Explored states Time (seconds) Space (MB)

Osmdroid (18 KLOC) 120,189 151 591

Zmanim 54,270 110 205

Omnidroid (12 KLOC) 52,805 220 342

DroidAR (18 KLOC) 91,170 276 217

Recycle-locator 114,709 43 153

GPSLogger 58,824 35 149

Large subjects’ analysis overhead suggests that GreenDroid is
practical enough to handle real world Android applications.

Discussion

• Limitations
– Imprecision in AEM model and native lib modeling

– Complex inputs generation (e.g., password)

– Limited subjects in evaluation

• Future work
– Validate the effectiveness with more subjects

– Investigate energy problems caused by other reasons (e.g.,
network)

28/29

Conclusion

29/29

Thank you!

