
What You See Is What You Get? It Is Not the Case! Detecting
Misleading Icons for Mobile Applications

Linlin Li
lill3@mail.sustech.edu.cn

Southern Univ. of Sci. and Tech.
Shenzhen, China

Ruifeng Wang
twilight_wang@163.com
Northeastern University

Shenyang, China

Xian Zhan
chichoxian@gmail.com

Southern Univ. of Sci. and Tech.
Shenzhen, China

Ying Wang∗
wangying@swc.neu.edu.cn
Northeastern University

Shenyang, China

Cuiyun Gao
gaocuiyun@hit.edu.cn

Harbin Institute of Technology
Shenzhen, China

Sinan Wang
wangsn@mail.sustech.edu.cn
Southern Univ. of Sci. and Tech.

Shenzhen, China

Yepang Liu†
liuyp1@sustech.edu.cn

Southern Univ. of Sci. and Tech.
Shenzhen, China

ABSTRACT

With the prevalence of smartphones, people nowadays can access
a wide variety of services through diverse apps. A good Graphical
User Interface (GUI) can make an app more appealing and com-
petitive in app markets. Icon widgets, as an essential part of an
app’s GUI, leverage icons to visually convey their functionalities
to facilitate user interactions. Whereas, designing intuitive icon
widgets can be a non-trivial job. Developers should follow a se-
ries of guidelines and make appropriate choices from a plethora of
possibilities. Inappropriately designed or misused icons may cause
user confusion, lead to wrong operations, and even result in secu-
rity risks (e.g., revenue loss and privacy leakage). To investigate
the problem, we manually checked 9,075 icons of 1,111 top-ranked
commercial apps from Google Play and found 640 misleading icons
in 312 (28%) of these apps. This shows that misleading icons are
prevalent among real-world apps, even the top ones.

Manually identifying misleading icons to improve app quality is
time-consuming and laborious. In this work, we propose the first
framework, IconSeer, to automatically detect misleading icons for
mobile apps. Our basic idea is to find the discrepancies between the

commonly perceived intentions of an icon and the actual functionality
of the corresponding icon widget. IconSeer takes an Android app
as input and reports potential misleading icons. It is powered by

∗Ying Wang is also affiliated with Hong Kong University of Science and Technology.
†Yepang Liu is the corresponding author. He is affiliated with both the Department
of Computer Science and Engineering and the Research Institute of Trustworthy
Autonoumous Systems at Southern University of Science and Technology.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISSTA ’23, July 17–21, 2023, Seattle, WA, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0221-1/23/07. . . $15.00
https://doi.org/10.1145/3597926.3598076

a comprehensive icon-intention mapping constructed by analyz-
ing 268,353 icons collected from 15,571 popular Android apps in
Google Play. The mapping includes 179 icon classes and 852 inten-
tion classes. Given an icon widget under analysis, IconSeer first
employs a pre-trained open-set deep learning model to infer the
possible icon class and the potential intentions. IconSeer then ex-
tracts developer-specified text properties of the icon widget, which
indicate the widget’s actual functionality. Finally, IconSeer deter-
mines whether an icon is misleading by comparing the semantic
similarity between the inferred intentions and the extracted text
properties of the widget. We have evaluated IconSeer on the 1,111
Android apps with manually established ground truth. IconSeer
successfully identified 1,172 inconsistencies (with an accuracy of
0.86), among which we further found 482 real misleading icons.

CCS CONCEPTS

• Software and its engineering→ Software testing and debug-

ging.

KEYWORDS

Android Apps, Icon Design, Discrepancy Detection, Deep Learning

ACM Reference Format:

Linlin Li, Ruifeng Wang, Xian Zhan, Ying Wang, Cuiyun Gao, Sinan Wang,
and Yepang Liu. 2023. What You See Is What You Get? It Is Not the Case!
Detecting Misleading Icons for Mobile Applications. In Proceedings of the

32nd ACM SIGSOFT International Symposium on Software Testing and Anal-

ysis (ISSTA ’23), July 17–21, 2023, Seattle, WA, USA. ACM, New York, NY,
USA, 13 pages. https://doi.org/10.1145/3597926.3598076

1 INTRODUCTION

“One picture is worth a thousand words.”

- Fred R. Barnard, in Printers’ Ink, 1927.
Nowadays, smartphones are playing significant roles in our daily

lives. People can access various services through a wide range of
apps. Graphical User Interfaces (GUIs) serve as a bridge between

538

https://doi.org/10.1145/3597926.3598076
https://doi.org/10.1145/3597926.3598076

ISSTA ’23, July 17–21, 2023, Seattle, WA, USA Linlin Li, Ruifeng Wang, Xian Zhan, Ying Wang, Cuiyun Gao, Sinan Wang, and Yepang Liu

apps and users. A well-designed GUI can make an app more ap-
pealing and usable, which helps increase app downloads and us-
age [23, 27, 37, 40, 41, 47, 50]. As an important part of GUIs, UI
widgets (e.g., buttons) are ubiquitous and provide a convenient
way for users to interact with the apps. Many UI widgets leverage
icons (small images, e.g.,2) to visually convey their functionalities.
These widgets are called icon widgets in the literature [53].

Designing intuitive icons can be non-trivial, requiring designers
and developers to follow certain guidelines [1]. A well-designed
icon can accurately convey the corresponding widget’s function-
ality to users, while a poorly-designed icon may confuse users
and even mislead them to perform wrong operations [38]. Figure 1
shows three examples of real misleading icons. Figure 1(a) shows
two screenshots from v2.5 and v3.5 of a drawing app “Paint and

Drawing Fun” [19] for kids. The left screenshot contains an icon
(in the red box) for removing drawings, but the icon looks like
a “photo”, which makes users misinterpret its real functionality.
We found users’ complaints about that on Google Play: “Can you

replace the top left icon with a dustbin icon? My baby can’t figure

out what the icon is for.” In the new version (v3.5), developers re-
placed the “photo” icon with a “dustbin” icon. Figure 1(b) shows
two screenshots from version 1.8.1 and 2.0.0 of BabyCam [7]. The
left one (v1.8.1) contains an icon that is a “share” button but many
users think it is the logo of this app. To avoid confusion, in the
new version (v2.0.0), the share functionality was removed by de-
velopers, and the icon became non-clickable. The two screenshots
in Figure 1(c) are from version 6.6 and 7.0.5 of Speak and Translate
Languages [20]. The left one (v6.6) contains an icon-widget whose
real functionality is to exchange the two languages but the icon
contains two arrows pointing to the same direction, which usually
indicates “randomization”. In v7.0.5, developers replaced it with an
appropriate one, a “two-way arrow” icon. All these three misleading
icons are from popular apps with over one million downloads.

We found that misleading icons are prevalent in real-world apps.
According to our manual investigation of 9,075 icons in 1,111 top-
ranked Android apps from 32 different app categories on Google
Play, 28% (312/1,111) of the apps contain at least onemisleading icon.
Such misleading icons can lead to poor user experience, which may
further affect app rating and downloads [25, 55]. Unfortunately, in
practice, spotting them is not an easy task. It may require developers
to carefully check each icon widget in their app or find potential
issues from users’ feedback via review analysis. Such a process can
be time-consuming and laborious, especially when the app contains
a large number of icon widgets or user reviews. It is therefore
highly desirable to have an automated tool to assist developers or
app companies in detecting misleading icons. However, little effort
has been devoted into designing such tools in both industry and
academia. To fill the gap, we propose the first framework, IconSeer,
to automatically identify misleading icons in their mobile apps.

To detect misleading icons, a possible solution is to analyze
whether there is any discrepancy between the actual functionality

of an icon widget and the commonly perceived intentions of its corre-

sponding icon. To infer the functionality of an icon widget, we may
leverage two data sources. First, it is possible to analyze widget
functionality by performing program analysis on the corresponding
event handler (i.e., the callback). However, it is known to be difficult
to accurately inferring high-level semantics from low-level code

features such as framework API calls. Besides, many techniques,
e.g., code obfuscation and hardening, can hide or encrypt the real
intention of code, which can dramatically increase the analysis diffi-
culty. Second, textual properties such as the annotations around the
icon widgets or the content descriptions [9] (cf. Section 2) can also
help infer widget functionality. After a full consideration of various
factors (e.g., efficiency, effectiveness, the availability of code, etc.)
and a pilot study (cf. Section 3), we decided to leverage the textual
properties to infer the functionalities of icon widgets. On the other
hand, to obtain the accurate and complete commonly perceived
intentions for an icon, we need to tackle two specific challenges.

• The flexibility of icon design.When it comes to icon design,
developers or designers can have an unlimited number of choices,
ranging from simple symbols with obvious meaning (e.g.,,)
to complex images with delicate details. The designed icons may
differ in shapes, sizes, or colors. For example, all of these icons�,
,○,, , can represent “play music”. Both1 and “é” can
represent the delete operation.
• Multiple intentions of icons. The same icon can represent
different meanings. For instance, the icon “ ” can represent a
filter, a setting button or a volume adjuster. The icon “ ” can
represent numerous intentions, such as refresh, repeat, playback,
update, reload, sync, spin, rotate, loading, and so on.

To address the first challenge, we manually analyzed our col-
lected 1,111 top Android apps and made an important observation.
We found that although developers have abundant choices when
designing icons, for app usability, they tend to use similar icons
(e.g.,,○,) for widgets providing similar functionalities, as com-
mon icons require little cognitive effort and thus users can easily
understand their meanings. Inspired by this observation, we auto-
matically extracted 268,353 icons from 15,571 popular Android apps
of different categories. We sampled 10% of these icons and catego-
rized them into 179 classes via an open coding process. Each icon
class contains similar icons with different styles. To alleviate the
interference caused by the flexibility of design, we used the labelled
26,835 icons and trained an open-set deep learning model [24] to
automatically capture deep linkages among icons. This model was
then employed to classify unlabelled icons into the 179 icon classes
or an “unknown” class. In this way, we ensured the diversity of
icons in each class. To address the second challenge, for each of
the 179 icon classes, we extracted the icons’ corresponding text
properties by static analysis of the app layout files and code. By
applying statistical analysis, we obtained frequent text properties
of each icon class to represent the commonly-perceived intentions
of the icons. After careful manual validation, we finally mapped the
179 classes of icons to 852 classes of intentions, which is referred
to as icon-intentions mapping hereinafter.

With the comprehensive icon-intentions mapping, our frame-
work, IconSeer, performs the following steps to help developers
identify misleading icons in Android apps. Given an icon widget un-
der analysis, IconSeer first classifies the icon into possible classes
and retrieves the corresponding intentions from the icon-intentions
mapping. It then extracts the developer-specified text properties of
the icon widget as a representation of the widget’s actual function-
ality. Finally, it compares the semantic similarity of the retrieved

539

What You See Is What You Get? It Is Not the Case! Detecting Misleading Icons for Mobile Applications ISSTA ’23, July 17–21, 2023, Seattle, WA, USA

(a) Screenshots from Paint and Drawing
Fun (v2.5 and v3.5)

(b) Screenshots from BabyCam
(v1.8.1 and v2.0.0)

delete
share

(c) Screenshots from
Speak and Translate Languages

(v6.6 and v7.0.5)

exchange

Figure 1: Examples of misleading icons

intentions and the extracted text properties. If there exists any dis-
crepancy, it will report a warning to developers, who can further
validate whether the icon is really misleading or not.

To evaluate our work, we first compared our constructed icon-
intention mapping with those constructed by two prior studies [29,
39]. Compared with the two existing mappings, our mapping in-
volves a much larger number of icons (268,353 vs. ~100k or 73,449),
more icon classes (179 vs. 40 or 80), and more intention classes (852
vs. 184 or 320). Second, we conducted experiments to evaluate the
performance of the trained open-set deep learning model. Results
show that the model can achieve an F1-score of 0.8519, outperform-
ing different baselines [31, 32, 34, 46]. Finally, to evaluate IconSeer’s
capability of detecting misleading icons, we conducted experiments
on 1,111 real-world apps. The results show that IconSeer is able to
effectively detect inconsistencies between icon intentions and wid-
get functionalities and find 482 real misleading icons. To summarize,
this paper makes the following major contributions.

• To the best of our knowledge, we are the first to investigate the
misleading icons problem in real-world apps. Our pilot study
reveals the prevalence of this problem.
• We propose a novel framework, IconSeer, to automatically de-
tect misleading icons in Android apps. Experiments on popular
Android apps show that IconSeer can effectively help developers
find real icon design issues to further improve app quality.
• We release our constructed icon-intentions mapping and all ex-
periment data [15]. In future, we will continue to maintain and
improve the mapping. We believe that our mapping can support
many follow-up studies. For example, it can be used to detect and
repair accessibility issues (e.g., misused or meaningless content
descriptions) and confusing textual annotations of icons. It can
also be used to detect malicious behaviors of UI widgets.

2 BACKGROUND

This section introduces text properties related to icon widgets.
• Content description of icon widgets. Users with vision impair-
ment often have difficulties in interacting with apps. To improve
app accessibility [4], Google recommends developers to provide a

content label [9], a short textual description of functionality, for
each interactive UI widget in their apps, which will be read out by
smartphones’ built-in screen reader to help vision-impaired users
to use the apps. [4]. Developers provide content label of an icon
widget by setting its content_description attribute. Therefore,
the value of content_description can be leveraged to reveal the
functionality of icon widgets.
• Identifier of icon widgets.When defining an icon widget, devel-
opers often assign it a unique ID by setting the widget’s id attribute.
Then the widget can be retrieved from the view tree (a.k.a. GUI hier-
archy)with View.findViewById() or Activity.findViewById()
when needed. For app maintenance consideration, developers of-
ten supply meaningful ids (e.g., “searchButton”) for icon widgets.
Hence, it is feasible to obtain the functionality of icon widgets by
analysing the value of their id attributes.
• Surrounding text of icon widgets. To ease user interaction,
developers often provide textual annotations around icon widgets
to explain its functionalities. For example, in Figure 1(b), “Parents”
indicates the functionality of the icon widget . We can obtain
icon-surrounding-text by extracting the value of the text compo-
nent satisfying the following conditions[42]: (1) being a sibling of
the icon-widget in the GUI hierarchy; (2) being on a horizontal
or vertical line with the icon (the abscissa or ordinate difference
between the center point of the icon and that of the text component
is less than 20 pixels); (3) being close to the icon (the abscissa or
ordinate difference between the icon boundary and the text com-
ponent boundary is less than 200 pixels); (4) not being the child
components of Toolbar components (the text in a Toolbar, e.g.,
“Speak & Translate” in Figure 1(c), is typically the title of an activity,
which does not indicate widget functionalities).

3 PILOT STUDY

In this section, we perform a pilot study to investigate: (1) the
significance of the misleading icons problem and (2) the feasibility
of detecting misleading icons via finding semantic inconsistencies
between the commonly perceived intention of an icon and the text
properties of its corresponding icon widget.

540

ISSTA ’23, July 17–21, 2023, Seattle, WA, USA Linlin Li, Ruifeng Wang, Xian Zhan, Ying Wang, Cuiyun Gao, Sinan Wang, and Yepang Liu

Table 1: Statistics of Discrepancies and Misleading Icons

Quadruples # Discrepancies # Misleading Icons

content_description 1,920 254 (13.2%) 41 (16.1%)
id 5,505 1,138 (20.7%) 224 (19.7%)

icon-surrounding-text 4,104 1,156 (28.2%) 508 (43.9%)
all three text properties 9,075 1,576 (17.4%) 640 (40.6%)

• Data collection. Our study requires a data set of icons and
the text properties associated with the corresponding widgets. For
this purpose, we first crawled the latest version of the top-100
commercial apps for 32 categories from Google Play. We success-
fully downloaded 3,033 apps. We then adopted DroidBot [36], a
light-weight action (e.g., click, scroll) generator, to automatically
explore each of the collected apps for half an hour. 24,731 pairs of
screenshots and GUI hierarchies were collected after the explor-
ing process. We cropped the icons from the screenshots follow-
ing the heuristics proposed by Liu et al. [39]: (1) an icon should
be visible to user, (2) its occupied area should be less than 5% of
the total screen area, and (3) its aspect ratio should be greater
than 0.75. We extracted the content_description, id, and icon-
surrounding-text of the icon widgets from the GUI hierarchies. In
this way, we obtained 15,668 unique quadruples, in the form of
⟨𝑖𝑐𝑜𝑛, content_description, id, icon-surrounding-text⟩, each con-
taining at least one non-empty text property. Here, we regard two
quadruples as the same if the three text properties are the same and
the Structural Similarity Index (SSIM) of the two icons is larger than
0.9 [51]. It is worth mentioning that these 15,668 quadruples are
from 1,111 apps instead of all the 3,033 apps. The main reasons that
many apps have no icons extracted are as follows: (1) we performed
dynamic analysis using the Android emulator but some apps cannot
run in emulators due to their internal protection mechanism [44];
(2) DroidBot failed to start some apps; (3) some apps have a login
page requiring the username and password, which could not be
skipped by DroidBot. We will further discuss this in Section 6.
• Data cleaning.We performed the following steps to further re-
move noises from our data set. First, we removed 1,652 quadruples
containing icons with pure color. Such icons carry little semantic
information1 and may be accidentally collected due to the glitches
of image cropping (i.e., the real icons may not be pure-colored ones).
Second, we removed 1,058 quadruples containing icons with text
using PaddleOCR [18]. Such icons are less likely to cause serious
confusions since users may rely on the embedded text to infer
icon intention. Third, we removed 3,883 quadruples containing
three meaningless text properties such as “null”, “icon”, “defalut”,
and “no image found”2. Finally, 9,075 quadruples remained after
our data cleaning. Among these 9,075 quadruples, there are 1,920
ones containing non-empty content_description, 5,505 ones con-
taining non-empty id and 4,104 ones containing non-empty icon-
surrounding-text, as shown in Table 1 (column #2).
•Misleading icons identification. To identify misleading icons,
we first manually checked each of the 9,075 quadruples to find
semantic inconsistencies between the icon and the three text prop-
erties. If there are inconsistencies, we then installed and ran the
concerned apps on a real device, i.e., Google Pixel 4 with Android 11,

1We do not deal with misleading icons that are pure-colored in this work. So far, there
is no evidence that such misleading icons are common in practice.
2The full list of meaningless text can be found on our website [15].

Table 2: Examples of misleading icons

App Name Version Downloads Icon Widget Functionality

HP Print Service Plugin [13] 22.1.0.38 500M+ Advanced settings

ABC [3] 10.26.0.101 10M+ Open my list

HD Wallpapers [12] 1.7.1 10M+ Close menu

Cool DJ Club Theme [10] 7.5.0_0527 5M+ More keybord themes

10times [2] 3.8.10 100k+ Explore new events

to understand the functionalities of the corresponding icon-widgets
to decide whether the icons are really misleading or not. We per-
formed such dynamic validation because the inconsistencies may
also be caused by inaccurate or wrong text properties. This manual
checking process was independently performed by two authors of
this paper. When there were conflicting decisions, they would invite
another author to discuss and then vote to get the final results.
• Results. Table 1 presents the results of our pilot study. The sec-
ond column shows the number of checked quadruples that contain
each type of text properties. The third column shows the number
of discrepancies (and the corresponding proportion) by examining
the icons and the corresponding text properties. The last column
shows the number of real misleading icons and the proportion in
the number of discrepancies. For example, by examining the 1,920
content_descriptions and the corresponding icons, we found
254 inconsistencies, from which we finally identified 41 real mis-
leading icons. In total, among the 9,075 quadruples, we found 640
misleading icons, which are from 312 different apps. Table 2 lists
several examples of such identified misleading icons.
• Reporting issues to developers. We randomly selected 111
misleading icons from 640 founded ones and reported them to the
app developers via emails. So far, we have received 31 responses.
20 (64.5%) of them confirm our reported issues and the remaining
11 (35.5%) say that the issues will be further examined by experts
for confirmation. More details can be found on our website [15].
• Users’ perceptions of misleading icons. To understand how
users think about the detected misleading icons, we randomly se-
lected 100 icons from the 640 misleading ones and collected users’
opinions on them by issuing questionnaires. As the example in
Figure 2(a) shows, for each of the 100 icons, we prepared a question,
which contains the following content: (1) the misleading icon, (2)
an alternative icon, (3) the associated screenshot of the app with a
red bounding box marking the location of the misleading icon, and
(4) the actual functionality of the corresponding widget. We shared
our questionnaire with 13 volunteers, who have used smartphone
apps for at least five years, and asked them to rate the qualities of
the two icons from 1 to 5, where 1 means the icon conveys incorrect
information to the user, 2 means the user can’t figure out the icon’s
intention, 3 means it took the user a while to correctly figure out
the icon’s intention, 4 means the user can correctly figure out the
icon’s intention at the first glance but thinks that there are better
options, and 5 means the icon is good enough. We also collected
the confidence levels of the volunteers’ responses for each question
by letting them select high, low or medium. For each question,
we made sure that we collected responses from at least 10 volun-
teers. In the end, we received 1300 answers in total. After filtering

541

What You See Is What You Get? It Is Not the Case! Detecting Misleading Icons for Mobile Applications ISSTA ’23, July 17–21, 2023, Seattle, WA, USA

Figure 2: An example question and the study results

answers with low confidences, 1214 answers remained. We then
calculated the average rating for each misleading icon and its paired
alternative icon. As shown in Figure 2(b), misleading icons received
low ratings, with an average of 2.46. Some of them could convey
wrong information to users, which may cause serious confusions
and wrong user interactions. In comparison, the ratings of alterna-
tive icons are much higher, with an average of 4.55. These results
indicate that whether icons can precisely convey app functionality
information indeed matters to many users.
• Developers’ actions to misleading icons. Our email communi-
cations with app developers show that misleading icons can indeed
draw developers’ attention. However, it is still unclear whether
developers would take actions to fix icons that can potentially mis-
lead users. Since the 312 apps with misleading icons were collected
in October 2022 and 213 of them have been updated, we further
studied whether the 436 misleading icons found in the 213 apps
have already been fixed by developers. For the study, we crawled
the latest version of the 213 apps. We installed and ran these up-
dated apps on a Google Pixel 4 device with Android 11, to check
whether our found misleading icons were fixed. A misleading icon
was considered fixed if (1) the shape of the icon was changed, not
just the style such as color and background, or (2) the icon was
removed, but the relevant functionality remained. With our manual
checking, we found that 26 misleading icons were already fixed ,
in which 19 icons were changed and 7 icons were removed (the
functionality remained). More information can be found on our
website [15]. These results show that the problem of misleading
icons is indeed relevant to real-world app developers.

Conclusion:We canmake four observations from our pilot study.
First, it is feasible to detect misleading icons by checking semantic
inconsistencies between the icon intentions and the text prop-
erties of the corresponding widgets. Second, misleading icons
are widespread. Third, users generally agree that the detected
misleading icons could convey wrong or unclear information to
them and could be replaced with better ones. Lastly, 26 of the
detected misleading icons were quickly fixed in the apps’ new
versions, showing that developers indeed care about such issues.

4 METHODOLOGY

We propose a framework, IconSeer, to detect misleading icons. As
shown in Figure 3, IconSeer is based on icon-intentions mapping,
which maps commonly perceived intentions with each icon class.

It takes an Android app as input and reports potential misleading
icons. In the following, we first introduce the construction of the
mapping and then present the detection process of IconSeer.

4.1 Icon-Intentions Mapping Construction

4.1.1 Apps Collection. IconSeer relies on a high-quality and com-
prehensive icon-intentions mapping that maps icon classes to their
commonly perceived intentions to identify misleading icons in real-
world Android apps. In order to construct the mapping, we need
a large set of representative and diverse apps. Thus, we crawled
the latest version of the top-500 apps for 32 categories from Google
Play and 15,571 apps were successfully downloaded.

4.1.2 Icon-Text Pairs Extraction. This step aims to identify icons
from the apps and extract the text properties associated with them.
Here, we use the term “icon-text pair” to denote an icon and all
of its associated text properties. In the pilot study, we collected
quadruples through dynamic analysis, where a quadruple includes
an icon and the three text properties. However, the dynamic ap-
proach suffers from two limitations: first, it takes a long time to
run each app (half an hour per app in the pilot study); second,
it cannot collect all icons in the app due to the limited coverage.
These two limitations prevent us from collecting a comprehensive
dataset. So IconSeer adopts static analysis to extract icon-text pairs
from an app’s code and resources files. Notice that, unlike the dy-
namic approach, with static analysis, we can only extract two text
properties, i.e., content_description and id. This is because the
icon-surrounding-text is rendered at runtime, while static analysis
cannot accurately extract such runtime information in a lightweight
manner. In the following part, we illustrate how IconSeer performs
static analysis on two types of app resource: the layout XML files
and the program code.
• Static analysis on layout XML files. Android developers usu-
ally define an app’s GUI components as layout files, which are
stored in XML format under the res/layout/ directory in the app
archive [16]. IconSeer parses the layout files and extracts the values
of android:src, android:id and android:contentDescription
attributes of the image components [39]. Here, android:src spec-
ifies image resource (i.e., drawable objects), which can mapped
to certain files (e.g., res/drawable/search_btn.png) in the re-
source directory. The other two attributes are used to specify the
text properties mentioned above. Below is an example layout file
player_widget.xml from the app AntennaPod [6], which defines
an image button widget with two associated text properties.

1. <ImageButton android:id="@+id/butPlay"
2. android:src="@drawable/ic_play_arrow_white_24dp"
3. android:contentDescription="@string/play_label"/>

In some situations, developers do not directly bind a fixed image
to an icon widget. The reason is that the app needs to adapt its GUI
appearances to different styles or themes. In this case, developers
usually assign a reference value to the android:src attribute [5].
Depending on the configurations, the app can select a suitable image
as the widget’s icon. To ease understanding, we provide a code snip-
pet from mediaplayerinfo_activity.xml in the app AntennaPod
below. In this case, IconSeerwill extract the value of android:src
by retrieving the av_play item name in the styles.xml file.

542

ISSTA ’23, July 17–21, 2023, Seattle, WA, USA Linlin Li, Ruifeng Wang, Xian Zhan, Ying Wang, Cuiyun Gao, Sinan Wang, and Yepang Liu

42

Image Preprocessing

Resize to
64*64

AV

41

40

39

“Unknown”
CAV

SoftMax
Grayscale

Edge Detection

OpenMax

AV
calibration

Closed-set ClassifierExtract
Icon-Text Pairs

Dynamic Analysis

1
icons

2

Android Apps

Predicted
Icon class

offer icon training set

text properties

Icon-Intentions Mapping Construction

Intention set

Extract
Icon-Text Pairs

Static Analysis

Collect Apps icons
4

Merging
Filtering

Construct
Icon-Intentions Mapping

Construct Icon Classes

DL-assisted Icon
Classification

Open Coding
icon classes

text
properties

1
2 3

Predict Icon Class
Detect Intention

Discrepancies

3

Semantics
Comparison

Potential
Misleading Icons

search corresponding
intention set

Misleading Icons Detection

APP

Figure 3: Overview of the IconSeer framework

1. <ImageButton android:id="@+id/butPlay"
2. android:src="?attr/av_play"
3. android:contentDescription="@string/pause_label"/>

<resources>
<style name="Theme.Base.AntennaPod.Dark">

<item name="av_play">@drawable/play_arrow_white</item>
</style>

...
<style name="Theme.Base.AntennaPod.Light">

<item name="av_play">@drawable/play_arrow_grey600</item>
</style>

</resources>

styles.xml

For the above two cases, IconSeer extracts triples in the form of
⟨𝑖𝑚𝑎𝑔𝑒, id, content_description⟩ from app layout files.
• Static analysis on program code. In Android framework, de-
velopers can bind image resources (i.e., icons) and corresponding
text properties to icon widgets programmatically. There are three
APIs widely used: setImageResource(), setImageDrawable(),
and setImageBitmap(). For example, the code below binds the
icon with the resource ID R.drawable.imgIcon to the widget ob-
ject img. To deal with such cases, IconSeer performs backward
slicing on the arguments of these API methods to obtain their defini-
tion statements. With the actual values of these arguments (e.g., the
R.drawable.imgIcon), IconSeer can then retrieve the icons from
the app’s resource directory (e.g., res/drawable/imgIcon.png).

1. Integer resource = R.drawable.imgIcon; // R$drawable.imgIcon
2. img.setImageResource(resource);

There are two ways to identify the id attribute of an icon wid-
get. Similar to identifying image resources, IconSeer uses Soot to
obtain the argument of the API findViewById() or setId(). As
the first code snippet below shown, the string with the resource ID
R.id.imgIcon is the id attribute of the widget object img. In the
second code snippet, an ImageView object img is created and then
bound with a unique id string resource by calling the setId() API.

1. Integer resource = R.id.imgIcon; //R$id.imgIcon
2. ImageView img = (ImageView)findViewById(resource);

1. ImageView img = new ImageView();
2. Integer id = R.id.imgIcon; //R$id.imgIcon
3. img.setId(id);

Developers invoke the API method setContentDescription()
to set the content_description attribute of an icon widget, as

shown in the code below. For such cases, IconSeer can also obtain
the attribute content_description via static analysis, which is
similar to the way it extracts the image resources or IDs.

1. String contentDesc = R.string.imgIcon; //R$string.imgIcon
2. img.setContentDescription(resource);

It is essential to perform object-sensitive analysis when extract-
ing an icon and its corresponding text properties. For example, in
the above code snippets, we need to make sure that the img variable
should point to the same object, so that the icon and the texts can be
paired. Since these API invocations only consist of a few statements,
to match the objects, we perform an intra-procedural analysis on
the static single assignment (SSA) form of the caller’s method body.
In Soot, this intermediate representation corresponds to the Shim-
ple code, in which an identifier can only be assigned once, thus the
same identifier always points to the same object. In this way, we
can extract ⟨𝑖𝑚𝑎𝑔𝑒, id, content_description⟩ triples.

During analysis, we only kept the triples (obtained from both
the layouts and the code) whose image can satisfy the definition of
icons mentioned in Section 3. As we could not obtain the screen
size through static analysis, we limited the length and width of
the images to less than 300 pixels rather than setting limits on
their occupied areas. With these restrictions, we extracted 277,395
distinct triples, in the form of ⟨𝑖𝑐𝑜𝑛, id, content_description⟩.
Then, we removed noises from the dataset. First, we removed 9,042
triples containing icons with pure color or with text. The reason
and processing are same as that in Section 3. Then, we removed
meaningless text properties for each remaining triple. Finally, we
obtained 268,353 triples, of which 237,993 ones contain at least
one text property (232,960 triples contain non-empty id and 31,628
triples contain non-empty content_description).

4.1.3 Icon Classes Construction. In the previous step, we obtained
a total of 268,353 icons. Intuitively, these icons are not unique.
They should belong to some groups (i.e., icon classes) that share
similar action semantics. Thus, the goal of this step is to classify
the collected icons into a smaller number of groups. Below, we
introduce how we determined the number of icon classes and how
we trained deep neural networks to automatically classify icon.
• Open coding for determining icon classes. Firstly, we should
identify the appropriate classes for the 268,353 extracted icons.
Two prior studies [29, 39] have constructed icon classes by open

543

What You See Is What You Get? It Is Not the Case! Detecting Misleading Icons for Mobile Applications ISSTA ’23, July 17–21, 2023, Seattle, WA, USA

coding [22]. However, they only presented 80 and 40 icon classes,
respectively, which cannot cover many icons in our dataset. Given
that the existing classifications are insufficient and manually in-
specting all collected icons are time-consuming, we performed
an open coding process on a subset of icons to determine the ap-
propriate icon classes. To ensure a 99% confidence level with a
1% confidence interval, we randomly sampled 26,835 (10%) of our
collected icons to decide the icon classes.

The open coding process is as follow. First, we merged the icon
classes of two prior works [29, 39], which resulted in 92 unique
classes (called “initial classes”). Then, for each icon, three authors
(annotators) independently inspected it and determined which ini-
tial class it should belong to. The belonging class would be con-
firmed if two or more authors could reach a consensus. After that,
16,291 (60.7%) icons were successfully classified into the initial
classes. For the remaining unclassified icons, we conducted an itera-
tive process of creating, adjusting, and removing icon classes, until
all the annotators had no conflicting opinions. Moreover, if an icon
class contained too many icons, we would further categorize its
containing icons into smaller classes. For example, the class “emoji”
was split into three sub-classes: “smile”, “sad”, and “others”. At the
end, 179 icon classes were finally identified.
• Deep learning-assisted icon classification. After identifying
the icon classes, our next step is to train a classifier for classifying
all the remaining icons. We used the 26,835 icons with manually
labeled classes to train and evaluate icon classifiers (90% for training
and 10% for testing). We considered four state-of-the-art convolu-
tional neural network (CNN) models for this task: ResNet50 [31],
DeseNet161, DenseNet201 [32] and, EfficientNetB7 [49].

Before training classifiers, we performed image preprocessing.
First, we resized the icons in the data set to 64*64 pixels. Second,
we converted the icons to Grayscale3 to eliminate the effect of
colors. Then, we enhanced the edges of the icons using canny edge
detection [8]. The values of the parameters minVal and maxVal in
edge detection algorithm were set to 10 and 40, respectively.

After preprocessing, we fine tuned these models by replacing
their classification layers with our self-defined head model and
trained the re-structured models on our dataset. The head model
contains three fully connected layers: Linear(numFeatures, 512),
Linear(512, 256), and Linear(256, 179). The two numbers in () indi-
cate the numbers of the input and output dimensions of the layer,
and numFeatures is same as the number of input dimensions of
models’ original classification layer. During training, the weights in
the body of the original models were frozen, that is, we only trained
the weights of self-defined three linear layers on the dataset. The
epochs and Batch Size were set to 50 and 64. We chose Adam [33]
as the optimizer and set the learning rate to 0.001. We used the
cross-entropy loss [11] as the loss function and F1-score (weighted)
to measure the performance of the models. The results showed that
DenseNet201 outperformed others, with an F1-score of 0.8001.

As the dataset to be classified is an open one [48, 52], containing
icons from “unknown” classes (i.e., not all icons belong to the 179
icon classes), it is not suitable to directly apply the trained closed-
set DenseNet201 to classify all the icons. In the trained model

3We compared the performances of classifiers when trained on gray images and colored
images and found that the former way can achieve a better performance.

Figure 4: Distribution of the size for the 179 icon classes

DenseNet201, the output of the fully-connected layer (penultimate
layer) will be fed to the SoftMax layer, which will produce the prob-
ability for each class. The ideal result for an “unknown” image is
that all existing classes would have low probabilities. However, a
deep network often likes to assign a most-likely existing class for an
“unknown” image [48, 52]. OpenMax [24], proposed by Bendale and
Boult, is a classical solution towards this problem. It is designed to
adjust the activation vector (AV), i.e., the output of the penultimate
layer. To apply OpenMax, it is recommended to use grid search to
select its hyper-parameters [, 𝛼 , 𝜖 , using a set of training images
plus a sampling of open set images, such that the F1-score can be
optimized over the set [24]. We constructed the dataset by combin-
ing the 2,415 icons (10%) sampled from the training dataset and 200
“unknown” icons. We did a grid search on the dataset to select the
three parameters. We searched [from 1 to 29, with a step size of
2; 𝛼 from 1 to 30, with a step size of 1; Y from 0 to 1, with a step
size of 0.05. Among the 9,000 combinations of the three parameters,
we selected the combination that can lead the models to obtain the
highest F1-score. The best combination was ⟨5, 10, 0.5⟩.

During icon class prediction, the output of DenseNet201 was fed
to the OpenMax layer to classify the icon into one of 179 classes or
“unknown”. We used the open-set classifier to classify the 241,518
(=268,353-26,835) icons without labels. There were 60,858 icons
being predicted as “unknown”, and the other 180,660 icons were
classified into one of the 179 classes. To validate the result, we
manually checked the predicted class of the 180,660 icons, removed
mis-classified icons from each icon class. Here, 21,515 mis-classified
icons were removed, resulting in 159,145 icons with ground truth
labels. We combined these correctly classified icons with the 26,835
manually classified icons to obtain a dataset of 185,980 icons. Figure
4 shows that the distribution of the size for the 179 icon classes. The
final icon classes in the dataset exhibit an imbalanced distribution,
with a maximum size of 23,619 for the class containing icons similar
to “é” , and a minimum size of 56 for the class containing icons
similar to “ ”. The average class size is 912, the median is 336.
There are 165 (92%) classes containing more than 100 icons.

4.1.4 Icon-Intentions Mapping Construction. To extract textual de-
scriptions of icon intention for a particular class, we gathered all the
text properties of icons with the same class label. For each text prop-
erty in a set, we converted it into lowercase and tokenized it with
common text delimiters (e.g., empty space, underscore, and camel
case). In the resulting set of words (i.e., document consisting of
terms), we calculated term frequency-inverse document frequency
(TF-IDF) for each term. We kept only the terms with a TF-IDF score
greater than 0.005 for each document. Across all 179 documents,
a total of 10,094 terms remained, of which 3,204 were unique. For
each icon class, three authors checked the corresponding words
and discussed whether they could be commonly perceived inten-
tions for the icons in the class. After several rounds of checks and

544

ISSTA ’23, July 17–21, 2023, Seattle, WA, USA Linlin Li, Ruifeng Wang, Xian Zhan, Ying Wang, Cuiyun Gao, Sinan Wang, and Yepang Liu

Table 3: Examples of icon-intentions mapping

refresh, repeat, reset, retry, playback,
update, reload, sync, spin, rotate, …

rating, rate, like, save, recommend,
favor, star, …

more, menu, category, dashboard, grid,
kits, …
settings, sets, filter, adjuster, adjust,
config, equalizer, …

select, submit, right, checked, check,
done, success, choose, tick, confirm,…

Example Icons IntentionsNo.

8

19

24

63

41

discussions, we finally obtained 1,425 intentions for 179 classes,
among which there are 852 unique ones. Table 3 shows part of the
mapping. The whole mapping can be found on our website [15].

4.2 Misleading Icons Detection

We will introduce the process for detecting misleading icons below.

4.2.1 Icon-Text Pairs Extraction. First, IconSeer performs dynamic
analysis to extract icons and the three text properties of their corre-
spondingwidgets from the app under test. It extracts unique quadru-
ples ⟨𝑖𝑐𝑜𝑛, content_description, id, icon-surrounding-text⟩ from
the screenshots and GUI hierarchies collected by DroidBot and then
performs data cleaning. The process is the same as that in Section 3.

4.2.2 Icon Class Prediction. In the previous section, IconSeer ob-
tains 179 classes of icons andmaps each icon class to a set of possible
intentions. In this section, it classifies each icon under analysis by a
pretrained classifier to obtain the icon’s commonly perceived inten-
tions to be further compared with the three text properties. Before
classification, IconSeer preprocesses the icon under analysis by
resizing, grayscaling, and edge enhancement, which is same as that
introduced in Section 4.1.3. To do classification, IconSeer leverages
DenseNet161 after comparing its performances with other state-of-
the-art models, including ResNet50, DeseNet201 and EfficientNetB7.
The classifier was trained and tested using the 179 classes of icons
obtained earlier (see Section 4.1.3). Since the 179 icon classes have
imbalanced sizes (Figure 4), we first performed downsampling on
classes over 500 icons to reduce the class size to 500. After such
processing, the total number of icons was reduced to 57,991. As the
trained icon classifier will be evaluated on the dataset with ground
truth built in our pilot study, we further excluded 197 icons, which
are also in the evaluation dataset, to prevent data leak. After this,
57,794 icons were left. We then trained the classifier on 90% of the
icons (52,015) and used the remaining 10% (5,779) as a hold-out test
set. The training process and parameters setting are the same as
that in Section 4.1.3. The output of trained DenseNet161 was fed to
an OpenMax layer, whose three hyper-parameters [, 𝛼 , 𝜖 were set
to 5, 15, 0.5, identified follow a same process in Section 4.1.3.

4.2.3 Intention Discrepancies Detection. If an icon is classified to
the “unknown” class, IconSeer will not further process it. Other-
wise, IconSeer will proceed to check whether the semantic inten-
tions of the icon are inconsistent with all the three text properties.
Algorithm 1 describes the semantic similarity calculation process.
It takes two inputs: (1) an icon’s intentions set and (2) the three

Algorithm 1: Calculating the similarity score between an
icon’s intentions set and three text properties
Input: Semantic intentions set intens; Text properties set text_props
Output: Similarity score sim_score

1 Initiate list text_sims

2 for text_prop in text_props do

3 for inten in intens do

4 if text_prop.Contains(inten) then
5 text_sim← 1

6 else

7 text_prop_words← PreProcess(text_prop)
8 inten_words← PreProcess(inten)
9 text_prop_vec←

Avg(GloveWordEmbedding(text_prop_words))
10 inten_vec← Avg(GloveWordEmbedding(inten_words))
11 text_sim← CosineSim(text_prop_vec, inten_vec)
12 text_sims.Add(text_sim)

13 sim_score← Max(text_sims)
14 return sim_score

text properties of the widget. It outputs a similarity score between
them. The algorithm begins by initializing a list text_sims to store
the similarities (Line 1). For each text property text_prop and each
icon intention inten, it checks if text_prop contains inten (Line 4). If
so, text_sim will be directly assigned with 1 (Line 5). Otherwise, the
similarity will be calculated using text embedding technique. First,
text_prop and inten are preprocessed (Lines 7-8). The preprocessing
contains four steps: punctuation removal by nltk [17], word segmen-
tation by wordninja [21], lowercasing, lemmatization by nltk. The
proprecessing will return two lists of words: text_prop_words and
inten_words. Then, GloveWordEmbedding()will be called to obtain
the list of vectors corresponding to the words in text_prop_words

(Line 9) and inten_words (Line 10). GloveWordEmbedding() lever-
ages word vectors, pretrained by Glove [45], to embed a given
word. The two lists of vectors obtained by word embedding will
be averaged and assigned to text_prop_vec and inten_vec. Then,
cosine similarity between the two vectors will be calculated (Line
11) and added to the list text_sims (Line 13). When the nested loop
finishes, text_sims between each text_prop and inten have been
added to text_sims. Finally, the max value of text_sims will be re-
turned as sim_score (Lines 13-14). If sim_score < 0.9, IconSeer will
consider that the icon has semantic inconsistencies with the three
text properties, and report it as an suspicious misleading icons.

5 EVALUATION

The evaluation aims to investigate the following research questions:

• RQ1 (Classifier Performance): What is the performance of

IconSeer’s open-set icon classifier?

• RQ2 (Mapping Comprehensiveness): How does IconSeer’s

icon-intentions mapping compared with existing mappings?

• RQ3 (Discrepancy Detection Capability): Can IconSeer ef-

fectively detect discrepancies between icons and the three text prop-

erties of their corresponding widgets?

• RQ4 (Misleading Icon Detection Capability): Can IconSeer

identify real misleading icons through detecting the discrepancies?

545

What You See Is What You Get? It Is Not the Case! Detecting Misleading Icons for Mobile Applications ISSTA ’23, July 17–21, 2023, Seattle, WA, USA

Table 4: The performances of different open-set classifiers

Models \Metrics

Performance Metrics

(Closed-Set Classifiers)

OpenMax

Parameters

Performance Metrics

(Open-Set Classifiers)

Top-1 Acc. Top-3 Acc. Top-5 Acc. Top-10 Acc. Precision Recall F1-score [𝛼 𝜖 Accuracy Precision Recall F1-score

ResNet50 0.8618 0.8924 0.8993 0.9155 0.9107 0.8618 0.8796 5 10 0.6 0.7849 0.8629 0.7849 0.7986
DenseNet161 0.8699 0.8981 0.9077 0.9181 0.9205 0.8699 0.8884 5 15 0.5 0.8395 0.8783 0.8395 0.8519

DenseNet201 0.8696 0.9000 0.9077 0.9186 0.9193 0.8696 0.8872 5 24 0.5 0.8370 0.8754 0.8370 0.8491
EfficientNetB7 0.8582 0.8965 0.9077 0.9183 0.9080 0.8582 0.8766 5 10 0.5 0.8163 0.8615 0.8163 0.8298

Table 5: The mapping comparison results

Mapping Data Source #Apps #Icons

#Known Icon

Classes

#Known

Intentions

Liu et al. [39] Google Play ~9.7k 73,449 80 320
Auto-Icon [29] Iconfont - ~100k 40 184
IconSeer Google Play 15,571 268,353 179 852

5.1 RQ1: Classifier Performance

The open-set icon classifier is divided into two components: the
closed-set classifier and an extra OpenMax layer. To answer RQ1,
we first evaluated the performance of the closed-set classifier; then,
we conducted experiments to determine the parameters of the
OpenMax layer; finally, we evaluated the performance of the open-
set classifier as a whole. As introduced in Section 4.2.2, we used
DenseNet161 as our closed-set classifier in the detection module
of IconSeer. Thus, we compared its performance with the other
three CNN models: ResNet50 [31], DeseNet201 [32], and Efficient-
NetB7 [49] in our experiments.

5.1.1 Performance of the Closed-Set Icon Classifier. We compared
the performances of the four fine-tuned models for closed-set clas-
sification. We used the dataset of 57,794 icons constructed in Sec-
tion 4.2.2 to train and evaluate the classifiers (90% for training
and 10% for testing). The image preprocessing, training process and
parameters setting are the same as that in Section 4.1.3. For this mul-
ticlass classification task, we used accuracy, precision (weighted),
recall (weighted), and F1-score (weighted) to measure the perfor-
mance of the four models. Besides, as there are many icon classes
and some icons from different classes have high similarities. To
fairly compare the models’ performances, we also used the top-
3, top-5 and top-10 accuracy to evaluate and compare them. The
top-3 accuracy (top-5 accuracy/top-10 accuracy) is the percentage
of test icons whose right label is among the predicted top three
(five/ten) labels. The metrics used here are standard ones for eval-
uating the performance of multi-class classifications [30]. Table 4
shows the performance of the four models in terms of seven metrics.
DeseNet161 shows the best F1-score, 0.8884, compared with others.

5.1.2 Performance of the Open-Set Icon Classifier. We identified
the three parameters of OpenMax, namely, [, 𝛼 , 𝜖 , by performing
a grid search of 9,000 parameter combinations using the dataset
containing 10% training data (5,201) and 500 “unknown” icons (see
Section 4.2.2 for more details). The best parameter combinations
of the four models are showed in Table 4. We constructed the
test dataset of the open-set classifier by combining the 5,779 icons
from the test dataset of closed-set classifier and 500 newly sampled
“unknown” icons. For the four trained models, the output of their

penultimate layer will be passed to the OpenMax layer to get the
scores for each class. The models’ performances are shown in Table
4. DenseNet161 performs best with the OpenMax parameters (5, 15,
0.5), achieving an F1-score of 0.8519.

Answer to RQ1: The performance IconSeer’s open-set icon
classifier, which is based on DenseNet161, is better than that of
other alternatives.

5.2 RQ2: Mapping Comprehensiveness

There are two recent studies that have also built the icon-intentions
mapping: (1) the work of Liu et al. [39] and (2) Auto-Icon [29]. Both
of them built the mapping on self-constructed dataset following
an open coding process. We compared our mapping with the two
existing mappings from five perspectives as shown in Table 5. We
discuss the comparison results below.
• Data source: Liu et al. collected apps from Google Play to build
the icon-intentions mapping, which is the same as our work. This
ensures that the extracted icons are really used by real-world apps.
Comparatively, Auto-Icon collected icons from Iconfont [14], a
popular icon website, instead of real apps.
• Number of apps: We collected 15,571 apps to construct the
mapping. For Liu et al.’s work, the number is 9.7k.
• Number of icons, icon classes, and intentions: Liu et al.’s
mapping contains 73,449 icons from 80 different classes andmapped
these icon classes to 320 different intentions. Auto-Icon contains 100k
icons from 40 different classes and mapped the icons to 184 different
intentions. Compared with the two prior works4, our mapping is
much more comprehensive. As presented in Section 4.1.3, we suc-
cessfully assigned 185,980 icons to 179 classes. Among the 185,980
icons, 30,320 (16.30%) cannot be covered by Liu et al.’s mapping, i.e.,
they do not belong to any of the 80 icon classes mentioned in Liu
et al.’s paper, and 78,070 (41.98%) cannot be covered by Auto-Icon.
We also mapped the 179 classes to 852 unique intentions, which is
significantly more than that of the existing mappings.

Answer to RQ2: The icon-intentions mapping constructed by
us is so far the most comprehensive one.

5.3 RQ3: Discrepancy Detection of IconSeer

In the pilot study, we manually checked 9,075 icons from 1,111
apps and found that 1,576 icons are semantically inconsistent with
their corresponding three text properties. In this section, we take
the 9,075 icons as the test dataset to evaluate the effectiveness of
4The papers only reported partial mappings. We emailed the authors for complete
mappings and full datasets, but did not receive responses. The statistics reported in our
paper are based on the available data, i.e., classes and intentions listed in the papers.

546

ISSTA ’23, July 17–21, 2023, Seattle, WA, USA Linlin Li, Ruifeng Wang, Xian Zhan, Ying Wang, Cuiyun Gao, Sinan Wang, and Yepang Liu

Table 6: The discrepancies detection results of IconSeer

Settings

#Discrepancies

Reported

Accuracy Precision Recall F1-score

Top-1 2,327 0.8432 0.5329 0.7868 0.6354
Top-3 2,006 0.8636 0.5842 0.7437 0.6544

Top-5 1,862 0.8664 0.5977 0.7062 0.6475
Top-10 1,621 0.8705 0.6237 0.6415 0.6325

Table 7: The misleading icons detection results of IconSeer

Settings

#Real

Discrepancies

#Real

Misleading Icons

#Wrong Text

Top-1 1,240 508 (40.97%) 732 (59.03%)
Top-3 1,172 482 (41.13%) 690 (58.87%)
Top-5 1,113 459 (41.24%) 654 (58.76%)
Top-10 1,011 421 (41.64%) 590 (58.36%)

IconSeer for detecting the semantic inconsistencies between icons
and three text properties.

IconSeer leverages DenseNet161 as the base model for open-set
icon classification. An icon’s true label may not be the class with
the highest output score of OpenMax, but can be one of the top
several predicted classes. To reduce false positives, we configure
the classifier to return more than one label for an icon, and then the
icon’s intention set is constructed by computing the union of the
intentions corresponding to all returned labels. In our experiments,
the number of returned labels (numRtnCls) of the classifier was
set to 1, 3, 5, and 10, separately. We compared the discrepancy
detection performances of IconSeer under these different settings
of numRtnCls. The results are shown in Table 65. When numRtnCls

is set to 3, the best F1-score, 0.6544, can be achieved. The best
accuracy is 0.8705 when numRtnCls is set to 10.

Answer to RQ3: IconSeer can achieve the best performance (in
terms of F1-score) of detecting discrepancies when its open-set
classifier is configured to output three predicted classes.

5.4 RQ4: Misleading Icon Detection of IconSeer

To answer RQ4, wemanually checked the discrepancies successfully
identified by IconSeer to verify whether the icon is indeed mislead-
ing or not. The results are given in Table 7. As we can see, under
different settings of numRtnCls, we found different numbers of real
misleading icons from the detected discrepancies. When numRtnCls

was set to one, IconSeer detected the largest number (508) of real
misleading icons, accounting for 40.97% of all the detected 1,240
discrepancies. When numRtnCls was set to larger numbers, the
number of detected real misleading icons slightly decreased. This is
because when numRtnCls gets larger, the number of inferred inten-
tions for an icon under test also gets larger, and then the identified
discrepancies will be fewer (with more intentions, the probability
that the three text properties semantically match the intentions
gets higher). Another observation is that many discrepancies are in
fact not caused by misleading icons. The reason is that developers

5The metrics in the table are standard ones for evaluating the performance of binary
classifications [30].

have specified inaccurate or wrong text properties (the statistics
are provided in the last column of Table 7).

Answer to RQ4: IconSeer can successfully detect real mislead-
ing icons. Over 40% detected discrepancies are caused by mis-
leading icons. This shows that IconSeer has good potential to
help Android developers or app companies to find misleading
icons in their apps.

6 DISCUSSIONS AND FUTUREWORK

Misleading icons identification. In the pilot study, we used icon
widgets’ text properties, which typically describe the widgets’ func-
tionality, to pinpoint misleading icons. With this process, we may
miss some real misleading icons, which do not have text properties.
We chose to use text properties because: (1) we found that 89% icon
widgets contain non-empty text properties; (2) many commercial
apps adopt code obfuscation/hardening techniques for intellectual
property protection, it is hard to precisely analyze the functionality
of icon widgets for such apps via code analysis. In other words, it is
hard to obtain the perfect ground truth for a large set of commercial
apps but leveraging text properties is a feasible way to achieve the
goal. In the future, we will combine automatic and manual analysis,
to construct a better misleading icons dataset.
Dynamically icon extraction. Dynamic analysis only worked
on partial apps during data collection of the pilot study. The main
reasons are as follows: (1) the top commercial apps often adopt
well-developed mechanisms for code protection and emulator pre-
vention; (2) many apps have a login page that requires the username
and password, which could not be skipped by the dynamic analysis
tool. However, if IconSeer is used by developers during testing,
they can provide unprotected test versions of their apps and help
IconSeer log into the apps. In such scenarios, the success rate of
icon extraction can be largely improved.
False positives and negatives of IconSeer. We observed three
causes of false positives and negatives. First, some developers may
not specify precise text properties of icons, bringing false posi-
tives. Besides, not all icons have the text properties, resulting in
false negatives. In the future, we plan to consider more features
(e.g., code-level features such as API calls and permissions) of icon
widgets and address the technical challenges of leveraging such
features to improve IconSeer. Second, the icon-intentions mapping
we constructed is incomplete. In some situations, icon widgets may
have very specific functionalities. If such functionalities are not cov-
ered by our mapping, IconSeer may report false positives. Besides,
given a rarely used icon, IconSeer may not be able to find similar
ones from our constructed icon classes. In such cases, IconSeer
may fail to detect real misleading icons (i.e., false negatives). In the
future, we plan to further improve our mapping. Third, open-set
classification is a challenging problem and currently there are no
perfect algorithms. IconSeer may report false positives if an “un-
know” icon is wrongly classified by our adopted open-set classifier
to a known class. Whereas, an icon of a known class being wrongly
classified as “unknown” will cause false negatives. In the future, we
will try more state-of-the-art open-set algorithms.
The reported issues are identified manually. The purpose of
our pilot study is to investigate the feasibility of our approach and

547

What You See Is What You Get? It Is Not the Case! Detecting Misleading Icons for Mobile Applications ISSTA ’23, July 17–21, 2023, Seattle, WA, USA

build a dataset with ground truth to evaluate our tool. Although the
reported issues are identified manually, many of them can indeed
be detected by our tool. In our future work, we will apply IconSeer
to a wider range of apps to further evaluate its detection capability.
Practical usefulness of IconSeer. In Section 3, we studied de-
velopers’ actions to misleading icons. We found that the majority
of our detected misleading icons have not been fixed. One possi-
ble reason is that developers are not aware of such issues. This
is understandable because spotting misleading icons during app
testing may not be an easy task. It requires testers to have a good
understanding of the commonly perceived intentions of each icon
and the actual functionality of the icon widget. Due to the variety
and multiple intentions of icons, it can be hard for testers to get a
complete picture of the common intentions of icons (in our dataset,
many icons have more than 10 common intentions). This might
be a reason why misleading icons are widespread in real-world
apps. IconSeer can be used by developers/testers to help identify
the misleading icons in their apps during testing. It can also be
used by app markets to assess the UI design of apps and supervise
developers to improve their products. In order to have a deeper
understanding of the usefulness of IconSeer, in the future, we
plan to conduct surveys and interviews to further investigate the
testers’ practices, difficulties of identifying misleading icons, and
their perceptions on misleading icon detection tools.

7 RELATEDWORK

Icon semantics inference.Many works have been made for in-
ferring the underlining semantics of icons in mobile apps’ GUIs.
Auto-Icon [29] (and its extended version Auto-Icon+ [28]) applies
computer vision methods to generate typeface font for an icon and
generates descriptive labels for it with CNN. Their work simplifies
UI development by reducing manual effort in app prototyping. Liu
et al. [39] also adopts text properties, like resource ID, to denote
the intentions of icons. Chen et al. [26] developed LabelDroid, a
CNN- and RNN-based model, to predict missing text labels for icons.
These labels can be used by screen readers to improve accessibil-
ity for visually impaired users. Mehralian et al. [42] re-evaluated
LabelDroid and found that its effectiveness heavily relies on the
imbalanced dataset, which introduces a bias in predicting labels
for uncommon icons. They proposed to consider more sources of
information for predicting context-aware icon labels. The seman-
tics of icons can also raise security concerns. For instance, Xiao et
al. proposed IconIntent [54] to detect mismatches between eight
icon categories that demand sensitive data and their required per-
missions. Unlike IconIntent’s mapping-based icon classification,
DeepIntent [53] uses deep neural networks for classifying icons
and performs the same task as IconIntent. IconChecker [35] can
detect unusual network traffic resulting from button clicks that
do not match the user’s intention due to the button’s icon. It can
identify such malicious behaviors from eight classes of non-traffic-
triggering icons. In IconSeer’s framework, we constructed 179 icon
classes based on 40 classes from Auto-Icon [29] and the 80 most
frequent classes from [39].
Icon design analysis. Researchers have studied icon design factors
that affect app users’ experiences. Lu et al. [40] discovered that icon
lightness impacts users’ visual de-confusion. Similarly, Smythwood

et al. [47] showed that the visual complexity, compared to aesthetic
appeal, of icons is a primary factor that affects user’s icon search
speed on the GUI. Luo et al. [41] found two factors of icon shape
that affect visual cognition and created a formula to measure visual
complexity in icons. There were also studies investigated how icons
affect user preference towards the app. Wang et al. [50] found
that icon appearance can influence user’s download decision on
Android market. Lin et al. [37] also explored how different icon
compositions and backgrounds combinations could affect users’
preference levels. Through controlled user experiment, they found
that the best mode is plane-composed icon displaying on negative
background. The above studies mostly focus on the impact of design
on apps and aimed to give suggestions to app developers and UI
designers. Considering that misleading icons can cause poor user
experiences, we proposed IconSeer to detect such bad designs.
UI design violation detection. Bad GUI design and implementa-
tion not only appear on interactive widgets, but also on the whole
layouts. Yang et al. [55] built a gallery with real-world bad UI de-
signs against the don’t-guidelines provided by Material Design.
Also, they proposed a detector, UIS-Hunter, to validate multi-modal
UI information (metadata, typography, color, etc.) and detect the
violation of these design guidelines. Zhao et al. [56] proposed an
unsupervised and CV-based adversarial autoencoder to detect the
violations of ten GUI animations design guidelines. Besides, app de-
velopers often implement their GUI programs according to a static
image depicting the layout and style of widgets. However, there
may be gaps between the GUI design and its real implementation.
To address this problem, Moran et al. [43] introduced an automated
approach that compares GUI-related information from an imple-
mented apps and the initial design image to verify whether the
GUI of the app was implemented according to the intended design.
These studies aim to detect the bad design and implementation
of UI elements based on the certain guidelines. IconSeer, how-
ever, concerns whether an icon’s commonly perceived intentions
mismatch the actual functionality of its belonging widget.

8 CONCLUSION

In this paper, we studied the misleading icon issues in Android
apps. We found that these issues are prevalent in popular apps. We
further proposed the first framework, IconSeer, to automatically
detect misleading icon issues by using deep learning and natural
language processing techniques. Experiments on real-world apps
show that the framework can achieve good performance.

9 DATA AVAILABILITY

We have released our mapping, experiment data, source code and
models at our project website [15].

ACKNOWLEDGMENTS

The authors would like to thank ISSTA 2023 reviewers. This work
is supported by the Guangdong Basic and Applied Basic Research
Fund (Grant No. 2021A1515011562), the National Natural Science
Foundation of China (Grant Nos. 61932021, 62141210, 61802164),
the Natural Science Foundation of Guangdong Province (Grant No.
2023A1515011959), and the Fundamental Research Funds for the
Central Universities (Grant No. N2217005).

548

ISSTA ’23, July 17–21, 2023, Seattle, WA, USA Linlin Li, Ruifeng Wang, Xian Zhan, Ying Wang, Cuiyun Gao, Sinan Wang, and Yepang Liu

REFERENCES

[1] 2019. Android Accessibility Guideline. https://developer.android.com/guide/
[2] 2022. 10times. https://play.google.com/store/apps/details?id=com.tentimes
[3] 2022. ABC. https://play.google.com/store/apps/details?id=com.disney.datg.

videoplatforms.android.abc
[4] 2022. Accessibility. https://developer.android.com/guide/topics/ui/accessibility/

apps
[5] 2022. Android Styles and Themes. https://developer.android.com/develop/ui/

views/theming/themes
[6] 2022. AntennaPod. https://play.google.com/store/apps/details?id=de.danoeh.

antennapod
[7] 2022. BabyCam. https://play.google.com/store/apps/details?id=com.

arjonasoftware.babycam
[8] 2022. Canny edge detector. https://en.wikipedia.org/wiki/Canny_edge_detector
[9] 2022. Content Labels. https://support.google.com/accessibility/android/answer/

7158690
[10] 2022. Cool DJ Club Theme. https://play.google.com/store/apps/details?id=com.

ikeyboard.theme.cool.dj.club
[11] 2022. Cross-entropy loss. https://pytorch.org/docs/stable/generated/torch.nn.

CrossEntropyLoss.html
[12] 2022. HD Wallpapers. https://play.google.com/store/apps/details?id=info.

androidstation.hdwallpaper
[13] 2022. HP Print Service Plugin. https://play.google.com/store/apps/details?id=

com.hp.android.printservice
[14] 2022. IconFont. https://www.iconfont.cn//
[15] 2022. IconSeer. https://sites.google.com/view/iconseer
[16] 2022. Layouts. https://developer.android.com/develop/ui/views/layout/

declaring-layout
[17] 2022. nltk. https://www.nltk.org/
[18] 2022. PaddleOCR. https://github.com/PaddlePaddle/PaddleOCR
[19] 2022. Paint and Drawing Fun. https://play.google.com/store/apps/details?id=

com.kidspaint.kaushalmehra.drawingfun
[20] 2022. Speak and Translate Languages. https://play.google.com/store/apps/

details?id=com.speakandtranslate.voicetranslator.alllanguages
[21] 2022. wordninja. https://github.com/keredson/wordninja
[22] Ian Alexander. 2000. An introduction to qualitative research. Eur. J. Inf. Syst. 9, 2

(2000), 127–128. https://doi.org/10.1057/palgrave.ejis.3000350
[23] Abdulaziz Alshayban, Iftekhar Ahmed, and Sam Malek. 2020. Accessibility

Issues in Android Apps: State of Affairs, Sentiments, and Ways Forward. In
2020 IEEE/ACM 42nd International Conference on Software Engineering (ICSE).
1323–1334.

[24] Abhijit Bendale and Terrance E. Boult. 2016. Towards Open Set Deep Networks.
In 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016,

Las Vegas, NV, USA, June 27-30, 2016. IEEE Computer Society, 1563–1572. https:
//doi.org/10.1109/CVPR.2016.173

[25] Chunyang Chen, Ting Su, Guozhu Meng, Zhenchang Xing, and Yang Liu. 2018.
From UI design image to GUI skeleton: a neural machine translator to bootstrap
mobile GUI implementation. In Proceedings of the 40th International Conference

on Software Engineering, ICSE 2018, Gothenburg, Sweden, May 27 - June 03, 2018,
Michel Chaudron, Ivica Crnkovic, Marsha Chechik, and Mark Harman (Eds.).
ACM, 665–676. https://doi.org/10.1145/3180155.3180240

[26] Jieshan Chen, Chunyang Chen, Zhenchang Xing, Xiwei Xu, Liming Zhu, Guo-
qiang Li, and Jinshui Wang. 2020. Unblind your apps: predicting natural-
language labels for mobile GUI components by deep learning. In ICSE ’20: 42nd

International Conference on Software Engineering, Seoul, South Korea, 27 June

- 19 July, 2020, Gregg Rothermel and Doo-Hwan Bae (Eds.). ACM, 322–334.
https://doi.org/10.1145/3377811.3380327

[27] Sen Chen, ChunyangChen, Lingling Fan,Mingming Fan, Xian Zhan, and Yang Liu.
2021. Accessible or Not An Empirical Investigation of Android App Accessibility.
IEEE Transactions on Software Engineering (2021), 1–1. https://doi.org/10.1109/
TSE.2021.3108162

[28] Sidong Feng, Minmin Jiang, Tingting Zhou, Yankun Zhen, and Chunyang Chen.
2022. Auto-Icon+: An Automated End-to-End Code Generation Tool for Icon
Designs in UI Development. ACM Trans. Interact. Intell. Syst. (apr 2022). https:
//doi.org/10.1145/3531065 Just Accepted.

[29] Sidong Feng, SuyuMa, Jinzhong Yu, Chunyang Chen, Tingting Zhou, and Yankun
Zhen. 2021. Auto-Icon: An Automated Code Generation Tool for Icon Designs
Assisting in UI Development. In IUI ’21: 26th International Conference on Intelligent
User Interfaces, College Station, TX, USA, April 13-17, 2021, Tracy Hammond,
Katrien Verbert, Dennis Parra, Bart P. Knijnenburg, John O’Donovan, and Paul
Teale (Eds.). ACM, 59–69. https://doi.org/10.1145/3397481.3450671

[30] Margherita Grandini, Enrico Bagli, and Giorgio Visani. 2020. Metrics for Multi-
Class Classification: an Overview. CoRR abs/2008.05756 (2020). arXiv:2008.05756
https://arxiv.org/abs/2008.05756

[31] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual
Learning for Image Recognition. In 2016 IEEE Conference on Computer Vision

and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016. IEEE
Computer Society, 770–778. https://doi.org/10.1109/CVPR.2016.90

[32] Gao Huang, Zhuang Liu, and Kilian Q. Weinberger. 2016. Densely Connected
Convolutional Networks. CoRR abs/1608.06993 (2016). arXiv:1608.06993 http:
//arxiv.org/abs/1608.06993

[33] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-
mization. In 3rd International Conference on Learning Representations, ICLR 2015,

San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, Yoshua Bengio
and Yann LeCun (Eds.). http://arxiv.org/abs/1412.6980

[34] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. ImageNet
Classification with Deep Convolutional Neural Networks. In Advances in

Neural Information Processing Systems 25: 26th Annual Conference on Neural

Information Processing Systems 2012. Proceedings of a meeting held Decem-

ber 3-6, 2012, Lake Tahoe, Nevada, United States, Peter L. Bartlett, Fernando
C. N. Pereira, Christopher J. C. Burges, Léon Bottou, and Kilian Q. Wein-
berger (Eds.). 1106–1114. https://proceedings.neurips.cc/paper/2012/hash/
c399862d3b9d6b76c8436e924a68c45b-Abstract.html

[35] Yuxuan Li, Ruitao Feng, Sen Chen, Qianyu Guo, Lingling Fan, and Xiaohong Li.
2021. IconChecker: Anomaly Detection of Icon-Behaviors for Android Apps. In
2021 28th Asia-Pacific Software Engineering Conference (APSEC). 202–212. https:
//doi.org/10.1109/APSEC53868.2021.00028

[36] Yuanchun Li, Ziyue Yang, Yao Guo, and Xiangqun Chen. 2017. DroidBot: a
lightweight UI-guided test input generator for Android. In Proceedings of the

39th International Conference on Software Engineering, ICSE 2017, Buenos Aires,

Argentina, May 20-28, 2017 - Companion Volume, Sebastián Uchitel, Alessandro
Orso, and Martin P. Robillard (Eds.). IEEE Computer Society, 23–26. https:
//doi.org/10.1109/ICSE-C.2017.8

[37] Hsuan Lin, Yu-Chen Hsieh, and Wei Lin. 2016. A Preliminary Study on How the
Icon Composition and Background of Graphical Icons Affect Users’ Preference
Levels. In Human Aspects of IT for the Aged Population. Design for Aging - Second

International Conference, ITAP 2016, Held as Part of HCI International 2016, Toronto,

ON, Canada, July 17-22, 2016, Proceedings, Part I (Lecture Notes in Computer

Science, Vol. 9754), Jia Zhou and Gavriel Salvendy (Eds.). Springer, 360–370. https:
//doi.org/10.1007/978-3-319-39943-0_35

[38] Hsuan Lin, Yu-Chen Hsieh, and Wei Lin. 2017. Shape Design and Exploration
of 2D and 3D Graphical Icons. In Human Aspects of IT for the Aged Population.

Applications, Services and Contexts - Third International Conference, ITAP 2017,

Held as Part of HCI International 2017, Vancouver, BC, Canada, July 9-14, 2017,

Proceedings, Part II (Lecture Notes in Computer Science, Vol. 10298), Jia Zhou and
Gavriel Salvendy (Eds.). Springer, 79–91. https://doi.org/10.1007/978-3-319-
58536-9_7

[39] Thomas F. Liu, Mark Craft, Jason Situ, Ersin Yumer, Radomir Mech, and Ranjitha
Kumar. 2018. Learning Design Semantics for Mobile Apps. In The 31st Annual

ACM Symposium on User Interface Software and Technology (Berlin, Germany)
(UIST ’18). ACM, New York, NY, USA, 569–579. https://doi.org/10.1145/3242587.
3242650

[40] Aiguo Lu and Chengqi Xue. 2020. A Study on Search Performance and Threshold
Range of Icons. In Engineering Psychology and Cognitive Ergonomics. Mental

Workload, Human Physiology, and Human Energy - 17th International Conference,

EPCE 2020, Held as Part of the 22nd HCI International Conference, HCII 2020,

Copenhagen, Denmark, July 19-24, 2020, Proceedings, Part I (Lecture Notes in

Computer Science, Vol. 12186), Don Harris and Wen-Chin Li (Eds.). Springer,
62–68. https://doi.org/10.1007/978-3-030-49044-7_6

[41] Zijing Luo, Chengqi Xue, Yafeng Niu, Xinyue Wang, Bingzheng Shi, Lingcun
Qiu, and Yi Xie. 2019. An Evaluation Method of the Influence of Icon Shape
Complexity on Visual Search Based on Eye Tracking. In Design, User Experience,

and Usability. User Experience in Advanced Technological Environments - 8th

International Conference, DUXU 2019, Held as Part of the 21st HCI International

Conference, HCII 2019, Orlando, FL, USA, July 26-31, 2019, Proceedings, Part II

(Lecture Notes in Computer Science, Vol. 11584), Aaron Marcus and Wentao Wang
(Eds.). Springer, 44–55. https://doi.org/10.1007/978-3-030-23541-3_4

[42] Forough Mehralian, Navid Salehnamadi, and Sam Malek. 2021. Data-Driven
Accessibility Repair Revisited: On the Effectiveness of Generating Labels for
Icons in Android Apps. In Proc. ESEC/FSE (Athens, Greece) (ESEC/FSE 2021).
Association for Computing Machinery, New York, NY, USA, 107â€“118. https:
//doi.org/10.1145/3468264.3468604

[43] Kevin Moran, Boyang Li, Carlos Bernal-Cárdenas, Dan Jelf, and Denys Poshy-
vanyk. 2018. Automated reporting of GUI design violations for mobile apps.
In Proceedings of the 40th International Conference on Software Engineering,

ICSE 2018, Gothenburg, Sweden, May 27 - June 03, 2018, Michel Chaudron,
Ivica Crnkovic, Marsha Chechik, and Mark Harman (Eds.). ACM, 165–175.
https://doi.org/10.1145/3180155.3180246

[44] Simone Mutti, Yanick Fratantonio, Antonio Bianchi, Luca Invernizzi, Jacopo Cor-
betta, Dhilung Kirat, Christopher Kruegel, and Giovanni Vigna. 2015. Baredroid:
Large-scale analysis of android apps on real devices. In Proceedings of the 31st

Annual Computer Security Applications Conference. 71–80.
[45] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. Glove:

Global Vectors for Word Representation. In Proceedings of the 2014 Conference on

Empirical Methods in Natural Language Processing, EMNLP 2014, October 25-29,

2014, Doha, Qatar, A meeting of SIGDAT, a Special Interest Group of the ACL,

549

https://developer.android.com/guide/
https://play.google.com/store/apps/details?id=com.tentimes
https://play.google.com/store/apps/details?id=com.disney.datg.videoplatforms.android.abc
https://play.google.com/store/apps/details?id=com.disney.datg.videoplatforms.android.abc
https://developer.android.com/guide/topics/ui/accessibility/apps
https://developer.android.com/guide/topics/ui/accessibility/apps
https://developer.android.com/develop/ui/views/theming/themes
https://developer.android.com/develop/ui/views/theming/themes
https://play.google.com/store/apps/details?id=de.danoeh.antennapod
https://play.google.com/store/apps/details?id=de.danoeh.antennapod
https://play.google.com/store/apps/details?id=com.arjonasoftware.babycam
https://play.google.com/store/apps/details?id=com.arjonasoftware.babycam
https://en.wikipedia.org/wiki/Canny_edge_detector
https://support.google.com/accessibility/android/answer/7158690
https://support.google.com/accessibility/android/answer/7158690
https://play.google.com/store/apps/details?id=com.ikeyboard.theme.cool.dj.club
https://play.google.com/store/apps/details?id=com.ikeyboard.theme.cool.dj.club
https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
https://play.google.com/store/apps/details?id=info.androidstation.hdwallpaper
https://play.google.com/store/apps/details?id=info.androidstation.hdwallpaper
https://play.google.com/store/apps/details?id=com.hp.android.printservice
https://play.google.com/store/apps/details?id=com.hp.android.printservice
https://www.iconfont.cn//
https://sites.google.com/view/iconseer
https://developer.android.com/develop/ui/views/layout/declaring-layout
https://developer.android.com/develop/ui/views/layout/declaring-layout
https://www.nltk.org/
https://github.com/PaddlePaddle/PaddleOCR
https://play.google.com/store/apps/details?id=com.kidspaint.kaushalmehra.drawingfun
https://play.google.com/store/apps/details?id=com.kidspaint.kaushalmehra.drawingfun
https://play.google.com/store/apps/details?id=com.speakandtranslate.voicetranslator.alllanguages
https://play.google.com/store/apps/details?id=com.speakandtranslate.voicetranslator.alllanguages
https://github.com/keredson/wordninja
https://doi.org/10.1057/palgrave.ejis.3000350
https://doi.org/10.1109/CVPR.2016.173
https://doi.org/10.1109/CVPR.2016.173
https://doi.org/10.1145/3180155.3180240
https://doi.org/10.1145/3377811.3380327
https://doi.org/10.1109/TSE.2021.3108162
https://doi.org/10.1109/TSE.2021.3108162
https://doi.org/10.1145/3531065
https://doi.org/10.1145/3531065
https://doi.org/10.1145/3397481.3450671
https://arxiv.org/abs/2008.05756
https://arxiv.org/abs/2008.05756
https://doi.org/10.1109/CVPR.2016.90
https://arxiv.org/abs/1608.06993
http://arxiv.org/abs/1608.06993
http://arxiv.org/abs/1608.06993
http://arxiv.org/abs/1412.6980
https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://doi.org/10.1109/APSEC53868.2021.00028
https://doi.org/10.1109/APSEC53868.2021.00028
https://doi.org/10.1109/ICSE-C.2017.8
https://doi.org/10.1109/ICSE-C.2017.8
https://doi.org/10.1007/978-3-319-39943-0_35
https://doi.org/10.1007/978-3-319-39943-0_35
https://doi.org/10.1007/978-3-319-58536-9_7
https://doi.org/10.1007/978-3-319-58536-9_7
https://doi.org/10.1145/3242587.3242650
https://doi.org/10.1145/3242587.3242650
https://doi.org/10.1007/978-3-030-49044-7_6
https://doi.org/10.1007/978-3-030-23541-3_4
https://doi.org/10.1145/3468264.3468604
https://doi.org/10.1145/3468264.3468604
https://doi.org/10.1145/3180155.3180246

What You See Is What You Get? It Is Not the Case! Detecting Misleading Icons for Mobile Applications ISSTA ’23, July 17–21, 2023, Seattle, WA, USA

Alessandro Moschitti, Bo Pang, and Walter Daelemans (Eds.). ACL, 1532–1543.
https://doi.org/10.3115/v1/d14-1162

[46] Karen Simonyan and Andrew Zisserman. 2015. Very Deep Convolutional Net-
works for Large-Scale Image Recognition. In 3rd International Conference on Learn-
ing Representations, ICLR 2015, SanDiego, CA, USA,May 7-9, 2015, Conference Track

Proceedings, Yoshua Bengio and Yann LeCun (Eds.). http://arxiv.org/abs/1409.1556
[47] Mick Smythwood, Siné McDougall, and Mirsad Hadzikadic. 2019. Search-Efficacy

of Modern Icons Varying in Appeal and Visual Complexity. In Design, User

Experience, and Usability. User Experience in Advanced Technological Environments

- 8th International Conference, DUXU 2019, Held as Part of the 21st HCI International

Conference, HCII 2019, Orlando, FL, USA, July 26-31, 2019, Proceedings, Part II

(Lecture Notes in Computer Science, Vol. 11584), Aaron Marcus and Wentao Wang
(Eds.). Springer, 94–104. https://doi.org/10.1007/978-3-030-23541-3_8

[48] Niko Sünderhauf, Oliver Brock, Walter J. Scheirer, Raia Hadsell, Dieter Fox,
Jürgen Leitner, Ben Upcroft, Pieter Abbeel, Wolfram Burgard, Michael Milford,
and Peter Corke. 2018. The Limits and Potentials of Deep Learning for Robotics.
CoRR abs/1804.06557 (2018). arXiv:1804.06557 http://arxiv.org/abs/1804.06557

[49] Mingxing Tan and Quoc V. Le. 2019. EfficientNet: Rethinking Model Scaling
for Convolutional Neural Networks. In Proceedings of the 36th International

Conference onMachine Learning, ICML 2019, 9-15 June 2019, Long Beach, California,

USA (Proceedings of Machine Learning Research, Vol. 97), Kamalika Chaudhuri and
Ruslan Salakhutdinov (Eds.). PMLR, 6105–6114. http://proceedings.mlr.press/
v97/tan19a.html

[50] Mengyue Wang and Xin Li. 2017. Effects of the aesthetic design of icons on app
downloads: evidence from an android market. Electron. Commer. Res. 17, 1 (2017),
83–102. https://doi.org/10.1007/s10660-016-9245-4

[51] Zhou Wang, Alan C. Bovik, Hamid R. Sheikh, and Eero P. Simoncelli. 2004. Image
quality assessment: from error visibility to structural similarity. IEEE Trans. Image

Process. 13, 4 (2004), 600–612. https://doi.org/10.1109/TIP.2003.819861
[52] Michael J. Wilber, Walter J. Scheirer, Phil Leitner, Brian Heflin, James Zott, Daniel

Reinke, David K. Delaney, and Terrance E. Boult. 2013. Animal recognition in

the Mojave Desert: Vision tools for field biologists. In 2013 IEEE Workshop on

Applications of Computer Vision, WACV 2013, Clearwater Beach, FL, USA, January

15-17, 2013. IEEE Computer Society, 206–213. https://doi.org/10.1109/WACV.
2013.6475020

[53] Shengqu Xi, Shao Yang, Xusheng Xiao, Yuan Yao, Yayuan Xiong, Fengyuan Xu,
Haoyu Wang, Peng Gao, Zhuotao Liu, Feng Xu, and Jian Lu. 2019. DeepIntent:
Deep Icon-Behavior Learning for Detecting Intention-Behavior Discrepancy in
Mobile Apps. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and

Communications Security, CCS 2019, London, UK, November 11-15, 2019, Lorenzo
Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz (Eds.). ACM,
2421–2436. https://doi.org/10.1145/3319535.3363193

[54] Xusheng Xiao, Xiaoyin Wang, Zhihao Cao, Hanlin Wang, and Peng Gao. 2019.
IconIntent: automatic identification of sensitive UI widgets based on icon classi-
fication for Android apps. In Proceedings of the 41st International Conference

on Software Engineering, ICSE 2019, Montreal, QC, Canada, May 25-31, 2019,
Joanne M. Atlee, Tevfik Bultan, and Jon Whittle (Eds.). IEEE / ACM, 257–268.
https://doi.org/10.1109/ICSE.2019.00041

[55] Bo Yang, Zhenchang Xing, Xin Xia, Chunyang Chen, Deheng Ye, and Shanping
Li. 2021. Don’t Do That! Hunting Down Visual Design Smells in Complex
UIs against Design Guidelines. In 43rd IEEE/ACM International Conference on

Software Engineering, ICSE 2021, Madrid, Spain, 22-30 May 2021. IEEE, 761–772.
https://doi.org/10.1109/ICSE43902.2021.00075

[56] Dehai Zhao, Zhenchang Xing, Chunyang Chen, Xiwei Xu, Liming Zhu, Guo-
qiang Li, and Jinshui Wang. 2020. Seenomaly: vision-based linting of GUI
animation effects against design-don’t guidelines. In ICSE ’20: 42nd Interna-

tional Conference on Software Engineering, Seoul, South Korea, 27 June - 19 July,

2020, Gregg Rothermel and Doo-Hwan Bae (Eds.). ACM, 1286–1297. https:
//doi.org/10.1145/3377811.3380411

Received 2023-02-16; accepted 2023-05-03

550

https://doi.org/10.3115/v1/d14-1162
http://arxiv.org/abs/1409.1556
https://doi.org/10.1007/978-3-030-23541-3_8
https://arxiv.org/abs/1804.06557
http://arxiv.org/abs/1804.06557
http://proceedings.mlr.press/v97/tan19a.html
http://proceedings.mlr.press/v97/tan19a.html
https://doi.org/10.1007/s10660-016-9245-4
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1109/WACV.2013.6475020
https://doi.org/10.1109/WACV.2013.6475020
https://doi.org/10.1145/3319535.3363193
https://doi.org/10.1109/ICSE.2019.00041
https://doi.org/10.1109/ICSE43902.2021.00075
https://doi.org/10.1145/3377811.3380411
https://doi.org/10.1145/3377811.3380411

	Abstract
	1 Introduction
	2 Background
	3 Pilot Study
	4 Methodology
	4.1 Icon-Intentions Mapping Construction
	4.2 Misleading Icons Detection

	5 Evaluation
	5.1 RQ1: Classifier Performance
	5.2 RQ2: Mapping Comprehensiveness
	5.3 RQ3: Discrepancy Detection of IconSeer
	5.4 RQ4: Misleading Icon Detection of IconSeer

	6 Discussions and Future Work
	7 Related Work
	8 conclusion
	9 Data Availability
	Acknowledgments
	References

