
Large Language Models Can Connect the Dots: Exploring Model
Optimization Bugs with Domain Knowledge-Aware Prompts

Hao Guan∗

University of Queensland
Brisbane, Australia

Southern University of Science and
Technology

Shenzhen, China
hao.guan@uq.edu.au

Guangdong Bai†

University of Queensland
Brisbane, Australia
g.bai@uq.edu.au

Yepang Liu†‡

Southern University of Science and
Technology

Shenzhen, China
liuyp1@sustech.edu.cn

Abstract

Model optimization, such as pruning and quantization, has become

the de facto pre-deployment phase when deploying deep learn-

ing (DL) models on resource-constrained platforms. However, the

complexity of DL models often leads to non-trivial bugs in model

optimizers, known asmodel optimization bugs (MOBs). These MOBs

are characterized by involving complex data types and layer struc-

tures inherent to DLmodels, causing signi�cant hurdles in detecting

them through traditional static analysis and dynamic testing tech-

niques. In this work, we leverage Large Language Models (LLMs)

with prompting techniques to generate test cases for MOB detec-

tion. We explore how LLMs can draw an understanding of the MOB

domain from scattered bug instances and generalize to detect new

ones, a paradigm we term as concentration and di�usion. We ex-

tract MOB domain knowledge from the artifacts of known MOBs,

such as their issue reports and �xes, and design knowledge-aware

prompts to guide LLMs in generating e�ective test cases. The do-

main knowledge of code structure and error description provides

precise in-depth depictions of the problem domain, i.e., the concen-

tration, and heuristic directions to generate innovative test cases,

i.e., the di�usion. Our approach is implemented as a tool named

YanHui and benchmarked against existing few-shot LLM-based

fuzzing techniques. Test cases generated by YanHui demonstrate

enhanced capability to �nd relevant API and data combinations

for exposing MOBs, leading to an 11.4% increase in generating syn-

tactically valid code and a 22.3% increase in generating on-target

code speci�c to model optimization. YanHui detects 17 MOBs, and

among them, �ve are deep MOBs that are di�cult to reveal without

our prompting technique.

∗Hao Guan is under the UQ-SUSTech Joint PhD Program.
†The corresponding authors are Yepang Liu and Guangdong Bai.
‡Yepang Liu is a�liated with the Research Institute of Trustworthy Autonomous
Systems and Department of Computer Science and Engineering at Southern University
of Science and Technology.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.

ISSTA ’24, September 16–20, 2024, Vienna, Austria

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0612-7/24/09
https://doi.org/10.1145/3650212.3680383

CCS Concepts

• Software and its engineering→ Software libraries and repos-

itories; Software testing and debugging.

Keywords

Model Optimization, Library Testing, Large Language Model

ACM Reference Format:

Hao Guan, Guangdong Bai, and Yepang Liu. 2024. Large Language Models

Can Connect the Dots: Exploring Model Optimization Bugs with Domain

Knowledge-Aware Prompts. In Proceedings of the 33rd ACM SIGSOFT In-

ternational Symposium on Software Testing and Analysis (ISSTA ’24), Sep-

tember 16–20, 2024, Vienna, Austria. ACM, New York, NY, USA, 13 pages.

https://doi.org/10.1145/3650212.3680383

1 Introduction

Deep learning models have been extensively applied in various

domains, such as autonomous driving [26] and medical diagno-

sis [2, 37], owing to their remarkable capabilities in classi�cation

and generation. To tackle complex tasks and achieve a high level

of accuracy, these models are often trained with a large number

of parameters and layers. For example, a popular large language

model, LLaMA [1] by Meta, contains up to 32 layers and 65 billion

parameters. This practice, however, hinders the deployment of mod-

els on resource-constrained platforms such as mobile devices and

Internet-of-Things (IoT) nodes. As a result, optimization techniques,

typically pruning [18, 48, 61] and quantization [3, 25], have to be

engaged to reduce the model size and complexity to facilitate model

deployment. These techniques have been incorporated by popular

DL frameworks, such as TensorFlow and PyTorch, as a module

called model optimizer.

In contrast to model training and inference stages, where models

are operated on in a holistic manner, model optimization entails

direct alterations to the model parameters, necessitating careful

consideration of the intricate connections among these parame-

ters. This complexity is particularly noteworthy when dealing with

realistic models featuring complex architecture or uncommon struc-

tures. Consequently, model optimization can become error-prone,

giving rise to the model optimization bugs (MOBs) [16]. MOBs can

signi�cantly undermine model reliability or even hinder the de-

ployment of deep learning applications on end devices, leading to

adverse e�ects on user experience or �nancial loss [7, 15, 22].

Detecting MOBs is a complex task due to various obstacles stem-

ming from the characteristics of model optmizers [9, 16]. The use

of hybrid programming languages and diverse hardware/platform

1579

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://orcid.org/0000-0002-5533-4433
https://orcid.org/0000-0002-6390-9890
https://orcid.org/0000-0001-8147-8126
https://doi.org/10.1145/3650212.3680383
https://doi.org/10.1145/3650212.3680383
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3650212.3680383&domain=pdf&date_stamp=2024-09-11

ISSTA ’24, September 16–20, 2024, Vienna, Austria Hao Guan, Guangdong Bai, and Yepang Liu

orientation present signi�cant challenges for approaches based on

traditional static analysis [30, 31]. Dynamic testing shows promise

as a widely used method for bug detection, but the unique nature

of models, i.e., the input to model optimizers, impairs the test case

generation. Indeed, existing approaches for testing DL libraries

primarily focus on either fuzzing DL models [17, 19, 49, 57, 59] or

evaluating the usability of library APIs [11, 13, 27, 42]. The research

problem of addressing the involvement of deep learning models as

input and complex APIs as con�guration in detecting MOBs remains

largely underexplored.

Ourwork. In this work, we leverage Large LanguageModels (LLMs)

to enhance dynamic MOB detection. LLMs have been shown e�ec-

tive in automatically testing DL libraries by recent studies [9, 10, 53],

owing to their exceptional capacity for understanding and mem-

orizing the correct syntax and semantics of the code bases they

have seen in their massive training data. Our focus is to re�ne the

capabilities of LLMs, which are initially trained on massive general

texts, to tackle domain-speci�c tasks e�ectively. To this end, two

primary obstacles need to be addressed, as elaborated below.

Obstacle #1. Knowledge gap in model optimization. One sig-

ni�cant obstacle in leveraging LLMs lies in their limited knowledge

of speci�c domains, such as model optimization in our work. Model

optimization is a relatively newer and smaller component within

DL frameworks compared with the mature modules of model train-

ing and inference. To illustrate, PyTorch and TensorFlow, the most

popular DL frameworks, only introduced their model optimizers

in 2020, with PyTorch v1.3 and TensorFlow v2. Within their code

repositories, model optimizers are notably sparse in the distribu-

tion of code (3.5% in PyTorch and 1.8% in TensorFlow) and test

cases (2.2% in PyTorch and 4.0% in TensorFlow). Even though LLMs

may have these DL frameworks in their training datasets, the code

of model optimizers is a minor portion. As a result, the test code

generated by LLMs tends to be biased towards the APIs of model

training or inference, which is not our desired target for testing

MOBs. Furthermore, due to the limited exposure to model opti-

mization concepts, the generated code may not be accurate. This

can lead to misuse of APIs or compatibility issues during testing,

reducing the overall e�ciency of the testing process.

Obstacle #2. Lack of guidance in test space exploration. Test-

ing with LLM-generated code is essentially a fuzzing process [10],

where e�cient exploration of the test space poses a common chal-

lenge. A valid piece of test code typically consists of several ele-

ments, such as model de�nition, model input data, and optimization

API invocation. The intricate nature of these elements and their

various combinations can lead to the explosion of the search space.

Without proper guidance, the generated test code may be gradually

trapped in repetitive or irrelevant patterns [23]. Addressing this

obstacle requires LLMs to enhance the diversity of their generated

test code, ensuring an expansive exploration of the test space.

We propose a new prompting paradigm termed concentration

and di�usion to overcome these two obstacles. The concentration is

designed to transition the capabilities of LLMs from a broad scope

to the speci�c domain of MOBs (for Obstacle #1). Initially, we

incorporate domain knowledge distilled from the documentation of

model optimizers into the prompts given to LLMs, providing LLMs

with a precise and in-depth depiction of model optimization. Within

the domain of model optimization, we further design a knowledge

concentration strategy that considers the taxonomy of MOBs [16].

This strategy enables �exible prompting by controlling the degree

of MOB knowledge concentration.

The di�usion boosts innovation and diversity within the MOB

domain (for Obstacle #2). This process applies code mutation on

historical bugs, a strategy that has been found e�ective for detecting

additional bugs [10, 60]. We enumerate e�ective and actionable

mutation rules grounded in the domain knowledge of MOBs [16].

These mutation rules are embedded as instructions in the prompts,

facilitating LLMs to make meaningful modi�cations and produce

innovative test cases, rather than over-imitating existing examples.

We implement our approach as YanHui1, and compare it with the

state-of-the-art LLM-based fuzzing technique FuzzGPT [10]. Our

approach shows the signi�cantly enhanced quality of the generated

test code.With our prompts, there is an 11.4% increase in generating

syntactically valid code and a 22.3% increase in generating relevant

code on model optimization. Within the same iterations of test code

generation as FuzzGPT, YanHui can detect 17 more bugs. After

reviewing the bugs, we �nd that our approach can detect not only

the common model API bugs, but also exclusive types of MOBs

involving language features and illogical code, which cannot be

found by the baseline.

Contributions. This work makes the following main contributions.

• A novel prompting paradigm for domain-speci�c tasks.

Our work underscores the importance of domain knowledge

when using LLMs for complex tasks such as generating code for

MOB detection. We propose a paradigm of concentration and

di�usion to direct the focus of LLMs into speci�c domains while

retaining their generation capabilities within those domains.

• A step forward in MOB detection. We develop YanHui, a

practical framework that implements the concentration and

di�usion prompting paradigm. YanHui represents a valuable

step toward MOB detection, an essential but underexplored

problem. It is shown to be cost-e�ective for addressing such a

complex problem.

• A practical study on real-world model optimizers and

previously unknown MOBs detected. We apply YanHui

on model optimizers from prominent DL libraries. The results

demonstrate its superiority over state-of-the-art LLM-based DL

testers. Notably, YanHui identi�es 17 MOBs, including �ve deep

MOBs that are di�cult to detect.

Availability and Ethical Consideration. We open-source Yan-

Hui and the associated MOB artifacts [58], to facilitate further re-

search of MOB detection and the exploration of domain knowledge-

aware prompts in other scopes. All identi�ed MOBs have been

responsibly disclosed to the respective developers. At the time of

submitting the camera-ready version of this paper, eleven MOBs

have been con�rmed, while discussions are ongoing for the remain-

ing six.

Paper Organization. The rest of this paper is organized as follows.

Section 2 reviews the background of model optimization bugs and

large language models. Next, Section 3 presents our method with

domain knowledge-aware prompts applied in this study. Then in

Section 4, we show the detailed evaluation results, and compare

1Yan Hui is the favorite disciple of Confucius, earning praise from Confucius that
“when he learns one thing, he gets to understand ten more things”.

1580

Large Language Models Can Connect the Dots: Exploring Model Optimization Bugs with ... ISSTA ’24, September 16–20, 2024, Vienna, Austria

@torch.jit.script

@dataclass(frozen=True)

class Info:

 def __init__(self):

 ...

class Model(torch.nn.Module):

 def __init__(self, info: Tuple[Info]):

 self.infos = [i for i in info]

 def forward(self, x):

 return self.infos

script_model = torch.jit.script(Model(Info()))

input_tensor = torch.randn(1, 10)

output = script_model(input_tensor)

>>> OSError: Can't get source for <function...

Model definition

Input data

Model optimization API

Fails to handle

Figure 1: An Example of Model Optimization Bug

our method with the state of the art. In Section 5, we discuss the

limitation of this study. Finally, Section 6 surveys related research

and Section 7 concludes our work.

2 Preliminaries

In this section, we present a running example of aMOB and the back-

ground knowledge to facilitate the understanding of our method.

2.1 Model Optimization Bugs (MOBs)

Contemporary machine learning models, particularly deep neural

networks, are designed for tackling complex real-world problems.

They typically contain a vast number of parameters and demand

signi�cant storage and computational power, exceeding the capac-

ity of resource-constrained devices. Model optimization techniques

are crucial for tailoring these pre-trained models before deployment.

There are two typical types of model optimization techniques, i.e.,

Pruning [18, 61] that identi�es insigni�cant neural network layers

and zeros out the weights to increase the sparsity of models, and

Quantization [20] that converts model parameters into values of

lower precision, such as 16-bit �oats to 8-bit integers. Both Py-

Torch [14] and TensorFlow [21] provide a similar set of APIs in

their optimizers.

A typical model optimization program contains three major

components.

a) Model de�nition. The model de�nition represents the core

information of the DL model, including the type of layers, structure

and training functions. It determines how the input tensor will be

converted to the output.

b) Optimization API invocation. The invocation of optimiza-

tion APIs will apply speci�c operationswith options and parameters

on the de�ned model.

c) Input data. This component de�nes the input tensor that �ts

the model requirements. During the execution of the inputs, the

operations of the model are recorded. Optimization may rely on

the information of the data and operations.

Figure 1 shows a typical program of model optimization for

PyTorch. It de�nes a model by subclassing torch.nn.Module. The

calculation in forward involves a custom type of data called Info,

API: foo

Title: fails in torch.internal_

(code...)

API: bar

Bug description: model parsing failure

(code...)

API: target_api

Title: <infill>

Figure 2: An Example of Chain-of-Thought Prompts that

Contain Steps and Examples

which is optimized with torch.jit.script. Finally, the model

after the script accepts a tensor as input.

MOBs occur when model optimizers modify pre-trained models,

including data types, layers operations and metadata. For instance,

the original model in Figure 1 can work well, but an OSError will

occur when applying optimization on the model because the frame-

work fails to handle the dataclass decorator.

2.2 LLMs and Chain-of-Thought Prompting

Various powerful Large Language Models (LLMs) [12, 32, 36, 43–45]

have been trained with a large amount of text to accomplish natural

language processing, such as text classi�cation, summary and gen-

eration. They have demonstrated strong capabilities on these tasks

and are evolving rapidly by accepting extensive data, with billions

of parameters. Some variants of LLMs have been introduced to

accomplish code-speci�c tasks. Typical code-speci�c LLMs include

CodeT5 [47], Codex [6], and CodeLlama [39]. The variant models

can be produced by adding code as training data, or �ne-tuning the

original model with code-related contexts.

LLMs accomplish tasks provided in the form of prompts [38, 52],

in a �exible manner that can avoid model retraining. To enhance

the reasoning capability of LLMs, various prompting techniques

have been proposed. The chain-of-thought [51] represents one of

the prominent prompting techniques. Its core idea is to describe

a complex task with small steps, and prompts are separated into

several intermediate segments that include the reasoning process.

Such prompts have been demonstrated to be processed more accu-

rately by LLMs [8, 10, 24, 46, 56]. For example, the segments may

include the instructions on how to process the previous results, or

what formats or restrictions should be satis�ed when generating

the proceeding contents. LLMs can follow this pattern and pro-

duce similar instructions or constraints during the generation. As a

result, the �nal outputs are more likely to meet the expectations.

In general, chain-of-thought prompting is applied with few-shot

examples to accomplish tasks of code generation. For instance,

FuzzGPT [10] provides the information of API, bug description, and

�nally code snippet as the steps of thought. The core generation

process is demonstrated in Figure 2. The prompts �rst include

several examples with the format of API, bug description, and code

snippet. Then the targeted API is mentioned, and LLMs will in�ll

the remaining part of the bug description and code snippet. LLMs

will complete the remaining parts.

Given the e�cacy of the chain-of-thought prompting, YanHui

applies it for the construction of prompts. YanHui incorporates do-

main knowledge of model optimization and MOBs into the prompts,

to provide reasoning information based on the characteristics of

1581

ISSTA ’24, September 16–20, 2024, Vienna, Austria Hao Guan, Guangdong Bai, and Yepang Liu

3.4 - Issue clustering3.2 - Code decomposition

GitHub
issues

3.5 - Code mutation

Test code

def pass_through(a, b):
 return (a, b)

class JitClass: ...

torch.jit.script...

3.3 - Text summarization

· Program output error …

· Tuple doesn't work when …

· Exception is thrown from …

Human comments

Code snippet

③ Chain-of-Thought prompting

pass_through

torch.jit.script

a, b of int

Code structure characteristics

Model layer:

API:

Data:

Exception:

Location:

Reason:

RuntimeError

jit.frontend.ir

tuple in class attr

Error description characteristics

……

D(Issue 1, Issue 2) < 6

D(Issue 1, Issue 3) < 6

……

Cat → (Layer vs Layer) → 0

Loc → (JIT vs QAT) → 1

Exc → (Type vs Key) → 1

D(Issue 1, Issue 2) = 0 + 1 + 1 = 2

Study on
MOBs

Error-prone components

① Concentration - produces knowledge

② Diffusion - produces instructions

Compare characteristics

Find issues with small difference

Form groups of similar issues

· Conv2D, ReLu and Softmax layers

· JIT module contains script and trace

· Extremely large or small floats

· Change model layer to linear

· Use another API of trace
· Mutate input data with float

· Trigger a RuntimeError

· When processing IR

· Caused by class attributes

Mutation rules

· ……

· ……

· ……

A bug of PyTorch

Model layer: pass_thr

API: torch.jit.script

Data: a, b of int

Triggered: RuntimeError

From: jit.frontend.ir

Reason: unpacking tuple

(Code ...)

A similar bug

A similar bug

Write a test case that

<infill>

Knowledge + instructions

LLM

Figure 3: Overview of YanHui

the buggy code snippets, including API, exception, data type, and

error reason. This is further detailed in Section 3.

3 Methodology

YanHui takes advantage of domain knowledge to generate e�ective

test cases for detecting MOBs. In this section, we detail its approach.

We start with an overview of its chain-of-thought prompting with

the concentration and di�usion paradigm (Section 3.1), and then

present each of its internal components (Section 3.2 to 3.5).

3.1 Overview

Figure 3 demonstrates the overall work�ow of YanHui, using our

example (Figure 1) as an illustration. YanHui takes the artifacts of

historical MOBs as input and applies the concentration and di�u-

sion paradigm to produce prompts that mainly consist of knowledge

and instructions. The knowledge distilled by concentration (the

box ➀ in Figure 3) provides LLMs with accurate and concise do-

main knowledge to facilitate LLMs in generating valid and relevant

code on model optimization. The instructions constructed by dif-

fusion (the box ➁ of Figure 3) provide LLMs with an e�ective and

speci�c guide to make LLMs generate tests targeting error-prone

components. Both the knowledge and instructions are formatted

as speci�c steps so that LLMs can generate e�ective test code after

chain-of-thought prompting (the box ➂ of Figure 3). The generated

code is then tested with model optimizers for MOB detection.

Concentration. In the concentration process, YanHui targets to

group similar MOB instances so as to enhance the speci�city of

the distilled knowledge and reduce irrelevant contexts. To measure

this similarity, we use six features to characterize a MOB. They

are derived based on the optimization program paradigm (see Sec-

tion 2.1) and the MOB taxonomy from an existing study [16]. They

are organized with the following two aspects.

• Code structure. Code can be a summary of the functionality

of the machine learning program, and can facilitate LLMs in

understanding code. The features in this aspect are the model

optimization components discussed in Section 2.1, including

– model de�nition, which describes what layers and operations

are included,

– optimization API invocation, which represents the optimiza-

tion technique that modi�es the model, and

– input data, which speci�es the type and value passed to the

model.

• Error description. Error description contains the textual data

in relation toMOBs, and it has been shown e�ective in analyzing

the root cause of MOBs [16]. The features that are included by

error description include

– exception type, which is the type of error that arises when

running the code,

– error location, which is the location of the buggy code in

terms of the �le and line inside optimizers, and

– error reason, which contains developers’ or programmers’

explanation of the triggering condition and the root cause

of the bug.

YanHui identi�es these features from each bug issue of historical

MOBs. The artifacts are processed using di�erent strategies due to

the various formats. For structured code snippets, YanHui applies

decomposition (Section 3.2), and for unstructured natural language,

YanHui applies summarization (Section 3.3). With the identi�ed

features, historical MOBs can be clustered to control YanHui’s

concentration degree. The similarity among the issues is measured

with the di�erence in MOB category, API and data type, which are

detailed in Section 3.4.

Di�usion. As has been shown in recent studies [41, 54], code

generated by LLMs can easily fall into the trap of repeating the given

samples and their patterns without proper guidance. Therefore, in

the di�usion process, YanHui provides explicit instructions so that

LLMs can mutate the code of given examples in meaningful ways

and generate innovative and diversi�ed code that involves new

1582

Large Language Models Can Connect the Dots: Exploring Model Optimization Bugs with ... ISSTA ’24, September 16–20, 2024, Vienna, Austria

APIs and data, for example, the code containing uncommon model

types (e.g., @dataclass in Figure 1) and optimization APIs (e.g.,

torch.jit.script).

In addition, Guan et al. [16] have revealed that the error-prone

components and poorly tested modules of model optimizers are

highly likely to lead to MOBs. For instance, an extremely large or

small �oating-point number has a high risk of error. A model may

cause a crash if it contains a complex data structure instead of a

simple scalar. Therefore, we design the mutation rules based on

these heuristics to instruct LLMs to di�use towards error-prone

modules inside model optimizers (Section 3.5).

3.2 Code Decomposition

The code snippets are usually well structured in bug issues, making

them easily recognizable. However, there is a lack of techniques

that split a code snippet into semantical �ne-grained steps that

chain-of-thought prompting demands. To address this, we develop a

decomposition method. We use the paradigm of model optimization

programs presented in Section 2.1 and Figure 1. YanHui matches

the code with API keywords and syntactic structures to retrieve

the program components automatically, as briefed below.

a) Model de�nition. A model can be de�ned with either class

API or functional API [14, 21]. In PyTorch and TensorFlow, the

model can be recognized from the following patterns.

• PyTorch

– Class models: inherit from torch.nn.Module and contain

the method of forward.

– Functionalmodels: use theAPI from torch.nn.functional.

• TensorFlow

– Classmodels: inherit from tf.keras.Model and de�ne call

method.

– Functional models: use the API from tf.keras.layers.

Inside the model de�nition statements, YanHui matches the

layer APIs from the library documentation. Finally, it produces a

formatted model description, i.e., the type and parameters of input,

processing layers, and output.

b) Input data. PyTorch accepts torch.Tensor as the input,

whereas TensorFlow models accept tf.Tensor. The input data

can be identi�ed by �nding the tensor object that is passed as the

argument to the model.

c) Model optimization API . Both PyTorch and TensorFlow put

the optimization APIs into separated modules and name the mod-

ules after the optimization techniques [21, 34]. YanHui identi�es

the APIs that are provided by the following library modules:

• PyTorch

– torch.quantization

– torch.nn.utils.prune

– torch.jit

• TensorFlow

– tensorflow_model_optimization

– tfmot

With these patterns, the three components of the model opti-

mization program are extracted, and the API used in each part is

also identi�ed. The formatted parts are the core of model optimiza-

tion, and can describe the functionalities of the code clearly, which

would facilitate LLMs to parse the example code. They are also

Manually

label

Exception message
Error location
Human comments

Documentaton API explanation
Function signature
Sample code

Web

crawl

Prompt
Examples

Samples

Other
issues Summarization

LLM generation

Figure 4: The Process of Text Summarization

the templates of code to generate new test cases from historical

bugs (to be discussed soon in Section 3.5).

MOB-speci�c code pool of YanHui. YanHui maintains a pool

of MOB-speci�c code collected from the GitHub repositories of

PyTorch and TensorFlow, the most popular DL frameworks. We

follow the �ltering queries of Guan et al. [16] to select the issues

or pull requests that are in the scope of model optimization. From

the collected issues or pull requests, we fetch runnable code from

the markdown code blocks. Overall, YanHui has collected 392 code

snippets.

3.3 Text Summarization

Besides code snippets, the issues and pull requests contain natural

language texts, including titles, developer comments, commit mes-

sages, and other metadata. YanHui mines the three types of error

features from these texts, including exception type, error location

and error reason (Section 3.1), and uses them as heuristic steps

that direct LLMs to comprehend the MOB and produce targeted

test code [10]. Figure 4 presents the overall process of the text

summarization.

It is challenging to extract such features automatically because

the error description can be expressed in various ways. This re-

quires precise comprehension of natural language and su�cient

background knowledge of model optimization. We thus apply a

semi-automated process assisted by LLMs.We �rst sample 20 issues,

four from each of the following �ve MOB categories, i.e., wrong

type, unexpected shapes, missing supporting data types, missing

supporting layer operations, and metadata conversion errors. These

take up 5.1% of the total MOB issues we have collected. Then, we

apply the summarization with the following steps.

a) Exception and location from errormessages. We �rst manu-

ally review the errormessages from the exceptions raised by Python,

which usually contain some type of RuntimeError, �le and line

number, or Traceback data. Rich information about the MOB can

be found in the error message. For instance, the error reason is

placed after the exception name. With the �le and line number, the

module and function can be retrieved. Figure 5 demonstrates an

example of extracted features.

In addition to the error messages collected from bug issues, we

execute the code snippets to enrich the error information. Although

the error messages are generally structured, they may include irrel-

evant exceptions and backtraces. In this process, manual e�ort is

involved to select relevant errors and extract concise information.

Overall, we have collected the error features of 392 historical MOBs.

b) Error reasons from comments From the natural language

texts in the issues, we extract the errors and root causes. We search

keywords representing symptoms such as “crash” and “error”, root

causes such as “typing” and “missing supporting”, Python exceptions

1583

ISSTA ’24, September 16–20, 2024, Vienna, Austria Hao Guan, Guangdong Bai, and Yepang Liu

Traceback (most recent call last):

 File "pytorch.py", line 17, in <module>

 traced_script_module = torch.jit.trace(model, example)

 File "/..#/torch/jit/__init__.py", line 955, in trace

 File "/..#/torch/jit/__init__.py", line 443, in clone_input

 v = a.detach().clone(memory_format=torch.preserve_format)

 .requires_grad_(a.requires_grad)

RuntimeError: unsupported memory format option Preserve

Exception Error reason

Call stackPublic API

Internal API

Figure 5: Features Extracted from Error Messages

 1 # Title: REGR: Accessing dict in JITed code in 1.11

 2 # Exception: KeyError: meta_y_hat

 3 # Trace: File "test.py", line 36, in forward

 4 # x, meta = self.activation(x, meta)

 5 # Version: PyTorch version: 1.11.0+cu102

 6 # Labels: oncall:jit

 7 # PR Title: [JIT] fix common_expression_hoisting

 8 (code...)

 9 # Exception: KeyError on model with custom activation

10 # Location: TorchScript in JIT module

11 # Reason: accessing dict the property of Dict using

 torch.jit.script

Figure 6: Sample Labeling of Pytorch#74056

such as TypeError and AssertionError, and the APIs listed in

PyTorch documentation [14]. In addition, DL framework developers

and maintainers usually mark issues with labels after they triage

the problems. Therefore, we can extract the location information

if the label mentions the module inside the optimizers. For the

resolved issues, one or more pull requests can be cross-referenced

to the issue. If a pull request is referenced by the issue, we extract

the error reasons or reproducing situations by rephrasing the patch

title and the contents after “�x” in the commit message.

Then, LLMs are involved in generating the summarization for the

rest of the issues in our dataset. As the example shown in Figure 6,

the comments above the code (title, exception, error reason, API

call stack, version, labels, and pull requests) are the automatically

extracted features. The comments under the code (API and error

description) are summarized manually based on the characteriza-

tion of MOBs. The labeled error description reveals the root cause

of this bug, which cannot be directly found from the code and trace

information. Instead, it should be mined from the title, pull request

and the deeper implementation of code.

With a small set of human-labeled examples, we construct a

context for labeling the code snippets automatically. An unlabeled

issue information and code snippet are placed after the examples.

Then, the LLMs are prompted to complete the text with API and

error descriptions. Speci�cally, for a collected issue like Figure 6,

the contents are masked after Line 8, and we use LLMs to �ll in the

remaining contents. LLMs can follow the patterns of summarizing

the API and error description from the provided information step

by step, producing more accurate results.

As this contains both manual e�ort and LLM generation, we in-

volve a cross-validation process to control the quality in Section 5.1.

3.4 Issue Clustering

We develop a measurement of the similarity between MOBs based

on the categories of MOBs [16], and the structure of optimizers [21,

34]. Given two MOBs, we denote their features with a vector � .

Let 8 be the issues, �%� ,)~? represent the API and data type

extracted from the code information, and �0C be the exceptions

and error category of the MOB. The feature vector is de�ned

as �8 = ⟨�0C,�%�1, · · · , �%�=,)~?1, · · · ,)~?<⟩. The distance be-

tween two MOBs 0 and 1 is measured as �0,1 =

∑
|�0 −�1 |, where

the distance in each feature is de�ned with the following rules.

• Category ranges from the �ve root causes of MOB [16]. If

the root causes are the same, the di�erence is 0, otherwise the

di�erence is 1.

• API is the function called in the Python code, including the lay-

ers in the model and the optimization techniques. Each API has

its module hierarchy inside the code base. For example, script

and trace are both in torch.jit, whereas quantization is

directly under torch.quantization. The distance is measured

using the directory distance of the �le that de�nes the API. For

example, given two �les fake_quantize.py and quantized.py,

we compare the di�erence on the full paths of these two �les,

i.e., torch/ao/quantization/experimental and torch/jit.

There are 3 levels of di�erence after torch, therefore the dis-

tance between the two APIs is 3.

• Type is the Python class of data or exception. The types have

a hierarchy of subclass inheritance, such as ArithmeticError

contains ZeroDivisionError and Dtype contains bool and

float. For the same type, the distance is 0. If the types are

di�erent, the distance will be added by 1, and the types of their

parent classes will be compared recursively. The comparison

repeats until there is no parent for either type.

With a smaller distance threshold for the clusters, the code would

be more centralized, but there would be fewer examples inside each

cluster. After evaluating our dataset, we choose 6 as the distance

threshold which can include 2-5 examples in each cluster. The quan-

tity of examples is neither too few for chain-of-thought prompting

nor so abundant that it exceeds the context size of LLMs. Overall,

YanHui produces 198 clusters from 392 issues.

3.5 Mutation Rules

To guide the generation of testing code, we apply di�usion by

providing instructions in the prompt. Each instruction speci�es a

mutation rule, which is associated with the knowledge summarized

in the previous sections. These mutation rules are designed based

on the error-prone or untested APIs, types and values, which are

aligned with the root causes of MOBs [16].

1) Model de�nition. A deep learning model is usually constructed

with a model class, which de�nes the layers and functions. The

instruction explicitly asks the model to change the layer from the

given sample code, for example, to replace the Linear layer with

other layers supported by the tested optimizer. As a result, the

generated code includes models with various layers so as to test

the wrong type and metadata conversion errors in depth.

2) Optimization API. The instruction explicitly asks the model

to use an alternative API to optimize the model, for example, to

switch the conversion method from script to trace. Di�erent

1584

Large Language Models Can Connect the Dots: Exploring Model Optimization Bugs with ... ISSTA ’24, September 16–20, 2024, Vienna, Austria

APIs can vary in con�guration and operation, which can increase

the combinations of the optimization process. The misalignment of

model and API can commonly trigger MOBs of missing supporting

layer operations [16].

3) Input data. Input data is used during the tracing process of

deep learning models. The computational graph can be constructed

from the tracing results. However, some data with special values

or types may trigger edge cases, and the results cannot represent

the original model. Mutating input data based on historical bugs,

such as very large values or list formats, can help expose MOBs of

unexpected shapes or missing supporting data types [16].

4) Triggered exception. The exception can usually clearly repre-

sent a bug. For example, IndexError can be caused by accessing the

list elements, and KeyError can be caused by dict operations. By

enumerating the exception types of Python, LLMs can be directed

to explore the di�erent components in the code and detect potential

bugs after scanning the list, dictionary, class or other parts.

5) Bug location. The location in historical bugs can reveal a com-

mon failure during the model optimization process. Since the opti-

mization may be implemented di�erently for each operation and

platform, a historical missing supporting bug [16] may still exist

in another similar part of the code base. Enumerating the place

of mistakes may improve the probability of �nding such potential

problems.

6) Bug reason. In historical bugs, the information on the root cause

can point out the direction to generate new test cases. The bug

reason may mention some data type, API and language features.

We do not directly mutate the reason content but ask LLMs to

generate tests that may trigger problems in a similar way. The

reason can make LLM generate code that re�ects a deeper analysis

of the bug.

An example of a complete prompt with both knowledge and

instructions is shown in the box ➂ of Figure 3. In the prompt, code

from historical bugs is included, and the knowledgeable descrip-

tion is organized systematically. Following the examples, explicit

instructions are given to guide the generation process. Then LLMs

continue to complete the text and ful�ll the mutation as expected,

which will run for testing crash.

Among the 198 clusters, all of them are mutated in model def-

inition and input data. 126 clusters are suitable for mutating the

optimization API according to the documentation. Furthermore, 73

clusters show variations in exceptions or locations amenable to mu-

tation. In total, mutating each factor once results in the generation

of 595 test cases.

4 Evaluation

In this section, we evaluate the e�ectiveness of our prompting

strategy. We analyze our approach by answering the following

three main research questions.

• RQ1: DoesYanHui outperform the state-of-the-art approach

of LLM code generation in testing MOBs? This RQ aims to

investigate the quality of the testing code generated with Yan-

Hui. In the comparison, we take the few-shot version of Fuz-

zGPT [10] as the baseline.

• RQ2: Is the knowledge-aware prompting useful to �nd bugs

in model optimization? This RQ focuses on the MOBs found

Table 1: LLMs evaluated in YanHui

Model Context Size Generation Speed Cost

gpt-4-0125 128k 16.988 token/s 2 $0.13/it
starcoder2-7b 16k 14.098 token/s N/A
codellama-python-7b 16k 18.116 token/s N/A

2 GPT-4 can only be accessed via paid online API. The generation speed is
measured by the average duration of network requests.

with the knowledge-aware prompting technique, and reveals

the advantages of using LLM generation for MOB detection.

• RQ3: Can YanHui generalize to di�erent LLMs? How do

the steps of concentration and di�usion contribute to the

improvement of code generation? This RQ investigates the

generalizability of YanHui’s prompting paradigm and conducts

an ablation study of each prompting component, which aims to

understand how MOB domain knowledge a�ects YanHui’s test

code generation.

4.1 Experiment Design

Experiment Platform. The experiments are executed on a work-

station with the following technical speci�cations.

• OS: Ubuntu 22.04.4 LTS x86_64

• CPU: AMD Ryzen Threadripper PRO 5965WX

• GPU: NVIDIA RTX A6000 × 2

• Memory: 256GB

Large Language Models. To investigate the generalization of

YanHui’s prompting paradigm, we have involved three popular

LLMs for bug reasoning and code generation.

• GPT-4 [32]: an advanced iteration of LLM developed by Ope-

nAI, which has demonstrated its exceptional performance in

generating contextually appropriate texts in various domains

such as programming and math [33].

• CodeLlama [39]: an emerging model in the �eld of automated

code generation by Meta, which is a �ne-tuned version of

Llama2.

• StarCoder [28]: a sophisticated code generation model that

incorporates enhanced attention mechanisms to improve its

understanding and manipulation of complex coding structures.

The speci�cations of LLMs used in our evaluation are listed in

Table 1.

4.2 RQ1: E�ectiveness of YanHui’s Prompts

Baseline approach. The baseline experiments are adapted from

the few-shot prompting approach from the state-of-the-art Fuz-

zGPT [10]. Since the artifacts of FuzzGPT are not available at the

time of our evaluation, we reproduce the few-shot approach by

ourselves following its paper, which is referred to as FuzzGPT-FS

hereafter.

We randomly select the samples from our labeled code snippets

to construct a prompt. The information of the code snippets given to

the LLM includes only API and issue titles. For each generation, four

examples (average number of examples in the clusters of YanHui)

are provided to the LLM. The format of prompts follows the chain-

of-thought prompts demonstrated in Figure 2.

1585

ISSTA ’24, September 16–20, 2024, Vienna, Austria Hao Guan, Guangdong Bai, and Yepang Liu

Table 2: Generation Quality with Di�erent Approaches

FuzzGPT-FS YanHui

Model Outputs Valid Relevant MOB Outputs Valid Relevant MOB

gpt-4-0125 632 192 (30.4%) 78 (12.3%) 6 595 246 (41.3%, 10.9%↑) 214 (36.0%, 23.7%↑) 14
starcoder2-7b 708 156 (22.0%) 73 (10.3%) 2 595 208 (35.0%, 13.0%↑) 188 (31.6%, 21.3%↑) 9
codellama-py-7b 653 134 (20.5%) 52 (8.1%) 0 595 183 (30.8%, 10.3%↑) 179 (30.1%, 22.0%↑) 6

PyTorch Dataloader with shuffle=True

the following fails with TypeError: `type' object
is not iterable on dataloader.__iter__()

class MyDataset(torch.utils.data.dataset):
...
dataset = MyDataset(456789)
dataloader = torch.utils.data.DataLoader(dataset,
 batch_size=32,
 shuffle=True)

API: torch.jit.trace
Title: String handling is not supported by JIT
(code...)

API: torch.jit.script
Title: Unknown type name 'a.Type'
(code...)

API: <infill>

Prompts

Generation

· Different API

· Varied errors

· Wrong code

· Irrelevant API

Figure 7: Invalid Code Generated by FuzzGPT-FS

Evaluation metrics. We de�ne the following metrics to evaluate

the performance of YanHui.

• Valid outputs. The generated code is valid Python codewith no

syntax errors. We �lter out invalid outputs by actually running

generated code and excluding those cases that produce excep-

tions of NameError, SyntaxError and ModuleNotFoundError.

• Relevant outputs. The valid code that is testing the model

optimizers inside the deep learning frameworks. The generated

code is decomposedwith the steps introduced in Section 3.2. The

relevant outputs are selected by checking whether the model

and input are created, and whether the API of optimization is

applied to the model.

• Real MOBs. During the testing, we keep the test cases that

produce runtime errors, as they represent particular failures

during model optimization. We manually review the errors to

�nd real bugs that conform to the root causes of MOBs listed

in Section 3.3.

Results of e�ectiveness. To ensure the fairness of the compari-

son, we conduct the same iterations of generation (595) for the two

approaches. In the prompts of FuzzGPT-FS, we include four exam-

ples for one iteration, which is the average number of examples

of YanHui’s prompts. Table 2 presents the quality of the test cases

generated with di�erent approaches. The valid outputs and real

MOBs are highlighted in the table. There is an improvement of up

to 13.0% on the valid outputs. The ratio of relevant outputs has a

JIT does not support the **kwargs syntax
class MyModel(nn.Module):
 def __init__(self, a=1):
 ...

 def forward(self, x, **kwargs):
 return x + 1

m = MyModel()
scripted = torch.jit.script(m)
scripted(torch.tensor([2]))

Here is a bug of PyTorch
Model: nn.Module
API: torch.jit.script
Data: "abcd"
Triggered: RuntimeError
From: torch.jit.frontend
Reason: desugar of str is not handled in JIT
(code …)

And a similar bug of PyTorch
Model: nn.Module
API: torch.jit.script
Data: **{ "hello": None }
Triggered: RuntimeError
From: torch.jit.frontend
Reason: expanding dictionary is not handled
(code …)

......

Write a similar test case of PyTorch that contains
the unhandled part of models.

Prompts

Generation

Similar API and

code structure

Valid model and API use

Innovated mutation

Figure 8: E�ective Code Generated by YanHui

more signi�cant improvement of up to 23.7%. YanHui can also �nd

more real MOBs.

Case study. We investigate the reason for the quality improve-

ment of code generation by explaining two examples from the two

approaches.

Figure 7 shows an invalid testing code generated by the baseline

approach. After examining the context, we notice that the examples

in the prompts are not centralized enough. The types and modules

of APIs are in low similarity (tinted red), which provide incon-

sistent API usages to LLMs. As a result, the generation may be

negatively a�ected by the examples and produce invalid code - sub-

classing torch.utils.data.dataset does not construct a valid

deep learning model. Besides, the prompts include examples of var-

ied errors (tinted blue). The similarity of error locations between

“sanity check” and “unknown type name” is also low, which caused

the generated code not relevant to testing MOBs - instead, it is

about the dataset API DataLoader.

1586

Large Language Models Can Connect the Dots: Exploring Model Optimization Bugs with ... ISSTA ’24, September 16–20, 2024, Vienna, Austria

Table 3: Real MOBs Found by LLM Generated Code

Approach API Desugar Illogical

FuzzGPT-FS 8 0 0

YanHui 12 3 2

In contrast, the code generated with centralized examples se-

lected using the concentration strategy of YanHui can test op-

timizers e�ectively, which is shown in Figure 8. The examples

are focusing on the same API (torch.jit.script) and location

(torch.jit.frontend), similarmodels (from nn.Module) and prob-

lems (unsupported expressions of Python code). As a result, the

generation result is an expected code snippet that tests the speci�c

API by exploring more syntax features. After code generation, it

detects a problem with the compatibility of kwargs syntax feature

in PyTorch, which is a known issue (#29637). This is an e�ective test

because Issue #29637 is not included in our dataset due to the lack of

full reproducible code. YanHui shows its ability to �nd real-world

MOBs by learning from similar examples and exploring new APIs.

Answer to RQ1. Compared with the state-of-art approach

FuzzGPT-FS, YanHui can generate higher-quality test cases

in terms of both validity (+11.4% on average) and relevance

(+22.3% on average). The higher e�ciency of code generation

reduces the disambiguation steps for �nding real MOBs, and

improves the e�ciency of testing.

4.3 RQ2: Usefulness for Finding MOBs

Patterns of MOB-triggering code. To analyze the characteristics

of the useful test cases generated by YanHui, we review the gener-

ated code and categorize the patterns of the code that can trigger

MOBs. We �nd that YanHui can generate code in three ways that

are e�ective in �nding MOBs.

• API that has not been handled properly by the optimizer. For

example, the layer DynamicQuantizedLinear has unsupported

operation issues for quantization (PyTorch #110515).

• Desugaring speci�c language features of Python during opti-

mization may cause failures. For example, the in operator for

str will be expanded to a special abstract syntax tree which

the optimizers fail to handle (PyTorch #46682).

• Illogical code that is not logically meaningful but syntacti-

cally correct, for example, a custom layer that simply raises an

exception instead of calculating data (PyTorch #12118).

MOBs found with LLMs. We compare the number of MOBs found

with FuzzGPT-FS and YanHui in Table 3. Both approaches can

detect MOBs by exploring new APIs, and YanHui detects more

with the guidance of error-prone parts of optimizers. YanHui can

further detect MOBs by generating test cases of desugaring and

illogical code, which FuzzGPT-FS do not involve.

Examples of found bugs. We explain the usefulness of YanHui

in �nding MOBs with two illustrative examples.

Listing 1 shows an example of the missing supporting types [16]

in the PyTorch JIT module. In this test case, PyTorch is trying to

parse and process a dataclass, which is introduced in Python 3.7.

The script method of PyTorch does not process the @dataclass

decorator properly and throws an error when trying to access the

code implementation of dataclass.

By checking the input prompts, none of the examples includes

the usage of dataclass, while they are all related to the API called

torch.jit.script. Therefore, the generated code is mutated to

test new Python features without breaking the structure of the

code snippet. Such kind of test cases are categorized as Desugar in

Table 3. This bug is con�rmed and discussed in PyTorch #66017.

1 @torch.jit.script

2 @dataclass(frozen=True)

3 class Info:

4 # ...

5 pass

6 class Model:

7 def __init__(self , info: Tuple[Info]):

8 self.infos = [i for i in info] # error here

9 def forward(self , x):

10 return self.infos

Listing 1: An OSError found by fuzzing the dataclass feature

of Python

Listing 2 lists an example of missing supporting operations [16]

bug when scripting a model. This test case reveals a problem that

PyTorch cannot compile a function that tries to access the property

fc1 in self. PyTorch library fails to get the full de�nition of the

model, and the initialization of fc1 is not captured. Therefore, the

model cannot be compiled into optimized code.

This example is a typical test of illogical code, because scripting

the forward method of the model is not common and should not

take e�ect. Such cases are not easy to �nd with traditional code

generation approaches. They are categorized as Illogical in Table 3.

1 class Model(tnn.Module):

2 def __init__(self , h: int = 16) -> None:

3 super (). __init__ ()

4 self.fc1 = tnn.Linear(h, h)

5

6 @torch.jit.script

7 def forward(self , x: torch.Tensor):

8 return torch.tanh(self.fc1(x))

9 m = Model (42)

10 y = m(torch.randn(3, 5))

Listing 2: A RuntimeError found by accessing properties in

self

Answer to RQ2. YanHui is useful for �nding MOBs by

fuzzing the API and models. Based on the examples from

historical issues, LLMs can generate innovative code for test-

ing the model optimizers in depth. The knowledge can help

the generation process to focus on the relevant part and mu-

tate with untested API or syntax and write uncommon code.

Apart from API bugs, YanHui shows the ability to �nd MOBs

that occur during desugaring Python language features and

handling illogical code.

4.4 RQ3: Generalization and Ablation Study

To �gure out how YanHui takes advantage of domain knowledge,

we �rst investigate whether the concentration and di�usion prompt-

ing paradigm can generalize to di�erent LLMs, then choose one

model to conduct ablation studies.

1587

ISSTA ’24, September 16–20, 2024, Vienna, Austria Hao Guan, Guangdong Bai, and Yepang Liu

6 2
3

1

1 0

4

GPT-4
Starcoder2

CodeLlama

Figure 9: MOBs found by YanHui with di�erent LLMs

Table 4: YanHui with or without Code Structure

Components Outputs Valid Relevant MOB

With code structure 595 208 (35.0%) 188 (31.6%) 9
Without code structure 595 144 (24.2%) 67 (11.3%) 5

Table 5: YanHui with or without Error Description

Components Outputs Valid Relevant MOB

With error description 595 208 (35.0%) 188 (31.6%) 9
Without error description 595 201 (33.8%) 102 (17.1%) 4

Generalization. Figure 9 shows the number of detected MOBs

when using di�erent LLMs for YanHui. It shows that 8 out of

17 MOBs overlap among di�erent LLMs, which means the high-

quality prompts derived from concentration and di�usion can be

generalized to di�erent models.

Next, we use the locally reproducible Starcoder2 model for the

ablation studies, which remove each component of prompts, i.e.,

code structure, error description and mutation rules.

In�uence of code structure. Table 4 presents the quality of gen-

erated code and detected MOBs with or without the component of

code structure.

The comparison shows that the code structure mainly in�uences

the ratio of valid and relevant code generated by LLMs. The detected

MOBs are also a�ected due to the lack of e�ective code for testing.

Among the metrics, the code structure shows a signi�cant impact

on the relevant code, which can be explained by the format of the

code. By mentioning each step of the model optimization program,

LLMs are more likely to generate the expected code after chain-of-

thought.

In�uence of error description. Table 5 presents the metrics of

generated code when involving or not involving error description.

The metric di�erences imply that the error description com-

ponent can also a�ect the relevant code and detected MOBs in a

similar way of the code structure. The characteristics of error may

highlight the code that has problems. Therefore, such information

can enhance the generation quality.

In�uence of mutation rules. Table 6 presents the metrics of

generated code by YanHui with or without mutation rules.

Table 6: YanHui with or without Mutation Rules

Components Outputs Valid Relevant MOB

With mutation rules 595 208 (35.0%) 188 (31.6%) 9
Without mutation rules 634 201 (31.7%) 149 (23.5%) 2

The results are highlighted by the signi�cant drop in detected

MOBs, which indicates that the directions are e�ective in exploring

the error-prone part of the framework.

Answer to RQ3. YanHui can be generalized to work with

di�erent LLMs. All of the three components of YanHui con-

tribute to the improvement of code quality and detected MOBs.

The code structure is especially important to relevant code,

and mutation rules are e�ective in generating bug-triggering

cases. YanHui achieves the best performance with all compo-

nents included.

5 Discussions

5.1 Quality of Text Summarization

The step of text summarization in Section 3.3 may contain errors

due to human work or LLM generation. To control the quality of

summarization, we involve another author to validate the results.

The processes of labeling MOBs [16] are followed - two authors

summarize the issues independently, and then discuss until all the

inconsistencies of results are resolved. Among the summarization

by LLMs, 92% of the generation satis�es the format of error charac-

terization. Although the description may not be perfect, it can still

provide e�ective steps of error reasoning for the chain-of-thought

prompting as shown in Section 4.4.

5.2 Limitations

Our study focuses on the test generation of model optimization

bugs, which is a new and speci�c scope of deep learning software

testing. As an early attempt at this problem, our study still has limi-

tations, which we plan to resolve in our future work. The collected

MOB examples are still small, because we focus on the quality of

the issues, and only choose the closed issues which have been �xed

by pull requests. Although the chosen issues are e�ective in mining

information, a number of other issues can be considered to improve

the variety of the example MOBs signi�cantly. We plan to keep

improving the model for labeling to achieve automatic MOB sum-

marization from open issues. With more examples for the prompts,

LLMs can generate code to test deeper in the library and cover more

functionalities of model optimization.

5.3 Threats to Validity

The potential threats to the validity of our study are the stability

of the LLM outputs and the testing environment of the generated

code. To mitigate the unstable LLM outputs, we use a �xed setup

of parameters and random seed. However, the outputs of GPT-4

cannot be controlled because it is a black-box online service. Our

testing environment contains only Nvidia GPU, therefore, some

code snippets requiring other platforms will cause a failure on the

testing machine, which is a false positive. In our experiments, we

1588

Large Language Models Can Connect the Dots: Exploring Model Optimization Bugs with ... ISSTA ’24, September 16–20, 2024, Vienna, Austria

exclude such false positives by recognizing the clear name of the

speci�c platform, such as MKL-DNN for Intel, and MPS for Apple.

6 Related Work

Testing deep learning libraries. Researchers have extensively

studied the bugs and testing in deep learning libraries, especially

the training and inference parts. To understand the characteristics

of bugs, a great deal of literature [4, 5, 7, 16, 22, 40] has analyzed the

symptoms and root causes of various deep learning framework bugs,

including common program bugs, performance bugs, deployment

bugs, compiler bugs, and the emerging optimization bugs.

To test with deep learning models, CRADLE [35] introduces

an e�ective test oracle for deep learning libraries, which adopts

di�erential testing [29] for deep learning models. The framework

bugs are exposed when the model outputs have any inconsistency.

Based on the test oracle, Audee [17] focuses on fuzzing Deep Neural

Network (DNN) models for testing. It uses existing popular DNN

models as seeds, and mutates the input and weight to generate new

models for testing. LEMON [49] proposes an e�ective approach to

generating models by introducing heuristic rules to guide the mu-

tation and increase the probability of exposing bugs. NNSmith [27]

leverages SMT solvers to generate various DNN models that satisfy

the constraints in the computation graph.

Apart from the inputs and models, API is also an aspect of test-

ing. FreeFuzz [50] collects API calls from open-source code. By

identifying the parameters in the function calls, it can fuzz deep

learning libraries by mutating the parameters to generate new test

cases. DocTer [55] aims to fuzz the API functions by mining the

documentation from the deep learning libraries.

Fuzzing deep learning libraries with LLMs. Recently, with the

emergence of Large Language Models, researchers are adopting

this powerful utility for software testing. TitanFuzz [9] �rst intro-

duces LLMs to fuzzing DL libraries. It generates a seed input with

prompts mentioning API, and mutates the input by masking some

parts of the code and asks LLMs to �ll in the masks. FuzzGPT [10]

applies few-shot prompts with examples of code and descriptions

to generate testing code.

7 Conclusion

In this paper, we propose YanHui, an e�ective approach for �nding

Model Optimization Bugs (MOBs) via the test code generated by

Large Language Models (LLMs). The generation is prompted with

chain-of-thought and contains informative knowledge and instruc-

tions after concentration and di�usion. This paradigm produces

high-quality prompts, which focus on the scope of testing MOBs.

Our experiments show that the ratio of valid/relevant code can be

improved by 11.4%/22.3%. With the 595 generated testing cases, 17

real bugs can be found, including �ve deep MOBs associated with

uncommon code, which are typically di�cult to detect. Our anal-

ysis on the detected bugs reveals that the mutation rules derived

from domain knowledge can help LLMs generate more specialized

tests to expose bugs. YanHui showcases the potential of LLMs in

software testing and explores a practical way to detect speci�c

types of bugs.

Acknowledgment

We thank our anonymous reviewers for their constructive com-

ments and insightful suggestions on the paper. This work is partially

supported by the National Natural Science Foundation of China

(Grant No. 61932021) and the Australian Research Council Discov-

ery Projects (DP230101196, DP240103068).

References
[1] Meta AI. 2023. Llama 2. https://ai.meta.com/llama/. Accessed: 2023-09-22.
[2] Mihalj Bakator and Dragica Radosav. 2018. Deep learning and medical diagnosis:

A review of literature. Multimodal Technologies and Interaction 2, 3 (2018), 47.
[3] Zhaowei Cai, Xiaodong He, Jian Sun, and Nuno Vasconcelos. 2017. Deep Learning

with Low Precision by Half-Wave Gaussian Quantization. In 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). Institute of Electrical and
Electronics Engineers, 5406–5414. https://doi.org/10.1109/CVPR.2017.574

[4] Junming Cao, Bihuan Chen, Chao Sun, Longjie Hu, Shuaihong Wu, and Xin
Peng. 2022. Understanding performance problems in deep learning systems. In
Proceedings of the 30th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (Singapore, Singapore)
(ESEC/FSE 2022). Association for Computing Machinery, New York, NY, USA,
357–369. https://doi.org/10.1145/3540250.3549123

[5] Junjie Chen, Yihua Liang, Qingchao Shen, Jiajun Jiang, and Shuochuan Li. 2023.
Toward Understanding Deep Learning Framework Bugs. ACM Trans. Softw. Eng.
Methodol. 32, 6, Article 135 (sep 2023), 31 pages. https://doi.org/10.1145/3587155

[6] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de
Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf,
Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail
Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex
Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shan-
tanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh
Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario Amodei,
Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. 2021. Evaluating Large
Language Models Trained on Code. arXiv:2107.03374 [cs.LG]

[7] Zhenpeng Chen, Huihan Yao, Yiling Lou, Yanbin Cao, Yuanqiang Liu, Haoyu
Wang, and Xuanzhe Liu. 2021. An Empirical Study on Deployment Faults of
Deep Learning Based Mobile Applications. In Proceedings of the 43rd International
Conference on Software Engineering (Madrid, Spain) (ICSE ’21). IEEE Press, 674–685.
https://doi.org/10.1109/ICSE43902.2021.00068

[8] Gelei Deng, Yi Liu, Víctor Mayoral-Vilches, Peng Liu, Yuekang Li, Yuan Xu,
Tianwei Zhang, Yang Liu, Martin Pinzger, and Stefan Rass. 2024. PentestGPT: An
LLM-empowered Automatic Penetration Testing Tool. arXiv:2308.06782 [cs.SE]
https://arxiv.org/abs/2308.06782

[9] Yinlin Deng, Chunqiu Steven Xia, Haoran Peng, Chenyuan Yang, and Lingming
Zhang. 2023. Large Language Models Are Zero-Shot Fuzzers: Fuzzing Deep-
Learning Libraries via Large Language Models. In Proceedings of the 32nd ACM
SIGSOFT International Symposium on Software Testing and Analysis (Seattle, WA,
USA) (ISSTA 2023). Association for Computing Machinery, New York, NY, USA,
423–435. https://doi.org/10.1145/3597926.3598067

[10] Yinlin Deng, Chunqiu Steven Xia, Chenyuan Yang, Shizhuo Dylan Zhang, Shu-
jing Yang, and Lingming Zhang. 2024. Large Language Models are Edge-Case
Generators: Crafting Unusual Programs for Fuzzing Deep Learning Libraries. In
Proceedings of the IEEE/ACM 46th International Conference on Software Engineer-
ing (Lisbon, Portugal) (ICSE ’24). Association for Computing Machinery, New
York, NY, USA, Article 70, 13 pages. https://doi.org/10.1145/3597503.3623343

[11] Yinlin Deng, Chenyuan Yang, Anjiang Wei, and Lingming Zhang. 2022. Fuzzing
Deep-Learning Libraries via Automated Relational API Inference. In Proceedings
of the 30th ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (Singapore, Singapore) (ESEC/FSE
2022). Association for Computing Machinery, New York, NY, USA, 44–56. https:
//doi.org/10.1145/3540250.3549085

[12] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language Technologies, NAACL-HLT
2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), Jill
Burstein, Christy Doran, and Thamar Solorio (Eds.). Association for Computa-
tional Linguistics, 4171–4186. https://doi.org/10.18653/v1/n19-1423

[13] Anurag Dwarakanath, Manish Ahuja, Samarth Sikand, Raghotham M. Rao, R. P.
Jagadeesh Chandra Bose, Neville Dubash, and Sanjay Podder. 2018. Identify-
ing implementation bugs in machine learning based image classi�ers using

1589

https://ai.meta.com/llama/
https://doi.org/10.1109/CVPR.2017.574
https://doi.org/10.1145/3540250.3549123
https://doi.org/10.1145/3587155
https://arxiv.org/abs/2107.03374
https://doi.org/10.1109/ICSE43902.2021.00068
https://arxiv.org/abs/2308.06782
https://arxiv.org/abs/2308.06782
https://doi.org/10.1145/3597926.3598067
https://doi.org/10.1145/3597503.3623343
https://doi.org/10.1145/3540250.3549085
https://doi.org/10.1145/3540250.3549085
https://doi.org/10.18653/v1/n19-1423

ISSTA ’24, September 16–20, 2024, Vienna, Austria Hao Guan, Guangdong Bai, and Yepang Liu

metamorphic testing. In Proceedings of the 27th ACM SIGSOFT International
Symposium on Software Testing and Analysis (Amsterdam, Netherlands) (ISSTA
2018). Association for Computing Machinery, New York, NY, USA, 118–128.
https://doi.org/10.1145/3213846.3213858

[14] The Linux Foundation. 2022. PyTorch. https://pytorch.org. Accessed: 2022-08-14.
[15] Zhipeng Gao. 2021. When deep learning meets smart contracts. In Proceedings of

the 35th IEEE/ACM International Conference on Automated Software Engineering
(Virtual Event, Australia) (ASE ’20). Association for Computing Machinery, New
York, NY, USA, 1400–1402. https://doi.org/10.1145/3324884.3418918

[16] Hao Guan, Ying Xiao, Jiaying Li, Yepang Liu, and Guangdong Bai. 2023. A
Comprehensive Study of Real-World Bugs in Machine Learning Model Op-
timization. In 2023 IEEE/ACM 45th International Conference on Software En-
gineering (ICSE). Institute of Electrical and Electronics Engineers, 147–158.
https://doi.org/10.1109/ICSE48619.2023.00024

[17] Qianyu Guo, Xiaofei Xie, Yi Li, Xiaoyu Zhang, Yang Liu, Xiaohong Li, and Chao
Shen. 2021. Audee: automated testing for deep learning frameworks. In Pro-
ceedings of the 35th IEEE/ACM International Conference on Automated Software
Engineering (Virtual Event, Australia) (ASE ’20). Association for Computing Ma-
chinery, New York, NY, USA, 486–498. https://doi.org/10.1145/3324884.3416571

[18] Torsten Hoe�er, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and Alexandra Peste.
2021. Sparsity in deep learning: Pruning and growth for e�cient inference and
training in neural networks. Journal of Machine Learning Research 22, 241 (2021),
1–124.

[19] Qiang Hu, Lei Ma, Xiaofei Xie, Bing Yu, Yang Liu, and Jianjun Zhao. 2019. Deep-
Mutation++: A Mutation Testing Framework for Deep Learning Systems. In 2019
34th IEEE/ACM International Conference on Automated Software Engineering (ASE).
1158–1161. https://doi.org/10.1109/ASE.2019.00126

[20] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua
Bengio. 2017. Quantized neural networks: Training neural networks with low
precision weights and activations. The Journal of Machine Learning Research 18,
1 (2017), 6869–6898.

[21] Google Inc. 2022. TensorFlow. https://www.tensor�ow.org. Accessed: 2022-08-14.
[22] Li Jia, Hao Zhong, Xiaoyin Wang, Linpeng Huang, and Xuansheng Lu. 2020.

An empirical study on bugs inside tensor�ow. In International Conference on
Database Systems for Advanced Applications. Springer, 604–620.

[23] Majeed Kazemitabaar, Xinying Hou, Austin Henley, Barbara Jane Ericson, David
Weintrop, and Tovi Grossman. 2023. How novices use LLM-based code generators
to solve CS1 coding tasks in a self-paced learning environment. In Proceedings of
the 23rd Koli Calling International Conference on Computing Education Research.
1–12.

[24] Jia Li, Ge Li, Yongmin Li, and Zhi Jin. 2023. Structured chain-of-thought prompt-
ing for code generation. arXiv preprint arXiv:2305.06599 (2023).

[25] Darryl Lin, Sachin Talathi, and Sreekanth Annapureddy. 2016. Fixed point quan-
tization of deep convolutional networks. In International conference on machine
learning. PMLR, 2849–2858.

[26] Geert Litjens, Clara I Sánchez, Nadya Timofeeva, Meyke Hermsen, Iris Nagtegaal,
Iringo Kovacs, Christina Hulsbergen-Van De Kaa, Peter Bult, Bram Van Ginneken,
and Jeroen Van Der Laak. 2016. Deep learning as a tool for increased accuracy
and e�ciency of histopathological diagnosis. Scienti�c reports 6, 1 (2016), 1–11.

[27] Jiawei Liu, Jinkun Lin, Fabian Ru�y, Cheng Tan, Jinyang Li, Aurojit Panda, and
Lingming Zhang. 2023. NNSmith: Generating Diverse and Valid Test Cases for
Deep Learning Compilers. In Proceedings of the 28th ACM International Confer-
ence on Architectural Support for Programming Languages and Operating Systems,
Volume 2 (Vancouver, BC, Canada) (ASPLOS 2023). Association for ComputingMa-
chinery, New York, NY, USA, 530–543. https://doi.org/10.1145/3575693.3575707

[28] Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-
Poirier, Nouamane Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei,
et al. 2024. StarCoder 2 and The Stack v2: The Next Generation. arXiv preprint
arXiv:2402.19173 (2024).

[29] William M McKeeman. 1998. Di�erential testing for software. Digital Technical
Journal 10, 1 (1998), 100–107.

[30] Raphaël Monat, Abdelraouf Ouadjaout, and Antoine Miné. 2021. A multilanguage
static analysis of python programs with native C extensions. In International
Static Analysis Symposium. Springer, 323–345.

[31] Bence Nagy, Tibor Brunner, and Zoltán Porkoláb. 2021. Unambiguity of Python
Language Elements for Static Analysis. In 2021 IEEE 21st International Working
Conference on Source Code Analysis and Manipulation (SCAM). IEEE, 70–75.

[32] OpenAI. 2023. GPT-4 Technical Report. arXiv:2303.08774 [cs.CL]
[33] OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge

Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam
Altman, Shyamal Anadkat, Red Avila, Igor Babuschkin, Suchir Balaji, Valerie Bal-
com, Paul Baltescu, Haiming Bao, Mohammad Bavarian, Je� Belgum, Irwan Bello,
Jake Berdine, Gabriel Bernadett-Shapiro, Christopher Berner, Lenny Bogdono�,
Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brockman, Tim Brooks,
Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann, Brit-
tany Carey, Chelsea Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis
Chantzis, Derek Chen, Sully Chen, Ruby Chen, Jason Chen, Mark Chen, Ben
Chess, Chester Cho, Casey Chu, Hyung Won Chung, Dave Cummings, Jeremiah

Currier, Yunxing Dai, Cory Decareaux, Thomas Degry, Noah Deutsch, Damien
Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila Dunning, Adrien Eco�et,
Atty Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix, Simón Posada
Fishman, Juston Forte, Isabella Fulford, Leo Gao, Elie Georges, Christian Gibson,
Vik Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-Lopes, Jonathan Gor-
don, Morgan Grafstein, Scott Gray, Ryan Greene, Joshua Gross, Shixiang Shane
Gu, Yufei Guo, Chris Hallacy, Jesse Han, Je� Harris, Yuchen He, Mike Heaton,
Johannes Heidecke, Chris Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele,
Brandon Houghton, Kenny Hsu, Shengli Hu, Xin Hu, Joost Huizinga, Shantanu
Jain, and Shawn Jain et al. 2024. GPT-4 Technical Report. arXiv:2303.08774 [cs.CL]
https://arxiv.org/abs/2303.08774

[34] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
Pytorch: An imperative style, high-performance deep learning library. Advances
in neural information processing systems 32 (2019).

[35] Hung Viet Pham, Thibaud Lutellier, Weizhen Qi, and Lin Tan. 2019. CRADLE:
Cross-Backend Validation to Detect and Localize Bugs in Deep Learning Libraries.
In 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE).
1027–1038. https://doi.org/10.1109/ICSE.2019.00107

[36] Colin Ra�el, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. 2023. Exploring
the Limits of Transfer Learning with a Uni�ed Text-to-Text Transformer.
arXiv:1910.10683 [cs.LG]

[37] Sebastian Ramos, Stefan Gehrig, Peter Pinggera, Uwe Franke, and Carsten Rother.
2017. Detecting unexpected obstacles for self-driving cars: Fusing deep learning
and geometric modeling. In 2017 IEEE Intelligent Vehicles Symposium (IV). IEEE,
1025–1032.

[38] Laria Reynolds and Kyle McDonell. 2021. Prompt Programming for Large Lan-
guage Models: Beyond the Few-Shot Paradigm. In Extended Abstracts of the 2021
CHI Conference on Human Factors in Computing Systems (Yokohama, Japan) (CHI
EA ’21). Association for Computing Machinery, New York, NY, USA, Article 314,
7 pages. https://doi.org/10.1145/3411763.3451760

[39] Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xi-
aoqing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom
Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton Fer-
rer, Aaron Gratta�ori, Wenhan Xiong, Alexandre Défossez, Jade Copet, Faisal
Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, and
Gabriel Synnaeve. 2023. Code Llama: Open Foundation Models for Code.
arXiv:2308.12950 [cs.CL]

[40] Qingchao Shen, Haoyang Ma, Junjie Chen, Yongqiang Tian, Shing-Chi Cheung,
and Xiang Chen. 2021. A comprehensive study of deep learning compiler bugs.
In Proceedings of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE).
968–980.

[41] Freda Shi, Xinyun Chen, Kanishka Misra, Nathan Scales, David Dohan, Ed H Chi,
Nathanael Schärli, and Denny Zhou. 2023. Large language models can be easily
distracted by irrelevant context. In International Conference on Machine Learning.
PMLR, 31210–31227.

[42] Jingyi Shi, Yang Xiao, Yuekang Li, Yeting Li, Dongsong Yu, Chendong Yu, Hui
Su, Yufeng Chen, and Wei Huo. 2023. Acetest: Automated constraint extraction
for testing deep learning operators. In Proceedings of the 32nd ACM SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA). 690–702.

[43] Irene Solaiman, Miles Brundage, Jack Clark, Amanda Askell, Ariel Herbert-
Voss, Je� Wu, Alec Radford, Gretchen Krueger, Jong Wook Kim, Sarah Kreps,
Miles McCain, Alex Newhouse, Jason Blazakis, Kris McGu�e, and Jasmine
Wang. 2019. Release Strategies and the Social Impacts of Language Models.
arXiv:1908.09203 [cs.CL]

[44] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, and Guil-
laume Lample. 2023. LLaMA: Open and E�cient Foundation Language Models.
arXiv:2302.13971 [cs.CL]

[45] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yas-
mine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhos-
ale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucu-
rull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia
Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini,
Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut
Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet,
Todor Mihaylov, Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton,
Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva,
Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh Tang, Ross
Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov,
Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom. 2023. Llama 2:
Open Foundation and Fine-Tuned Chat Models. arXiv:2307.09288 [cs.CL]

1590

https://doi.org/10.1145/3213846.3213858
https://pytorch.org
https://doi.org/10.1145/3324884.3418918
https://doi.org/10.1109/ICSE48619.2023.00024
https://doi.org/10.1145/3324884.3416571
https://doi.org/10.1109/ASE.2019.00126
https://www.tensorflow.org
https://doi.org/10.1145/3575693.3575707
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://doi.org/10.1109/ICSE.2019.00107
https://arxiv.org/abs/1910.10683
https://doi.org/10.1145/3411763.3451760
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/1908.09203
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2307.09288

Large Language Models Can Connect the Dots: Exploring Model Optimization Bugs with ... ISSTA ’24, September 16–20, 2024, Vienna, Austria

[46] Guanyu Wang, Yuekang Li, Yi Liu, Gelei Deng, Tianlin Li, Guosheng Xu, Yang
Liu, Haoyu Wang, and Kailong Wang. 2024. MeTMaP: Metamorphic Testing for
Detecting False Vector Matching Problems in LLM Augmented Generation. In
Proceedings of the 2024 IEEE/ACM First International Conference on AI Foundation
Models and Software Engineering. 12–23.

[47] Yue Wang, Weishi Wang, Sha�q Joty, and Steven C.H. Hoi. 2021. CodeT5:
Identi�er-aware Uni�ed Pre-trained Encoder-Decoder Models for Code Under-
standing and Generation. In EMNLP.

[48] Zihan Wang, Zhongkui Ma, Xinguo Feng, Ruoxi Sun, Hu Wang, Minhui Xue,
and Guangdong Bai. 2024. CoreLocker: Neuron-level Usage Control. In 2024
IEEE Symposium on Security and Privacy (SP). IEEE Computer Society. https:
//doi.org/10.1109/SP54263.2024.00233

[49] Zan Wang, Ming Yan, Junjie Chen, Shuang Liu, and Dongdi Zhang. 2020. Deep
Learning Library Testing via E�ectiveModel Generation. In Proceedings of the 28th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (ESEC/FSE). 788–799.

[50] Anjiang Wei, Yinlin Deng, Chenyuan Yang, and Lingming Zhang. 2022. Free
lunch for testing: Fuzzing deep-learning libraries from open source. In Proceedings
of the 44th International Conference on Software Engineering. 995–1007.

[51] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei
Xia, Ed H. Chi, Quoc V. Le, and Denny Zhou. 2024. Chain-of-thought prompting
elicits reasoning in large language models. In Proceedings of the 36th International
Conference on Neural Information Processing Systems (New Orleans, LA, USA)
(NIPS ’22). Curran Associates Inc., Red Hook, NY, USA, Article 1800, 14 pages.

[52] TongshuangWu, Michael Terry, and Carrie Jun Cai. 2022. AI Chains: Transparent
and Controllable Human-AI Interaction by Chaining Large Language Model
Prompts. In Proceedings of the 2022 CHI Conference on Human Factors in Computing
Systems (NewOrleans, LA, USA) (CHI ’22). Association for Computing Machinery,
New York, NY, USA, Article 385, 22 pages. https://doi.org/10.1145/3491102.
3517582

[53] Chunqiu Steven Xia, Matteo Paltenghi, Jia Le Tian, Michael Pradel, and Lingming
Zhang. 2024. Fuzz4All: Universal Fuzzing with Large Language Models. In
Proceedings of the IEEE/ACM 46th International Conference on Software Engineering
(Lisbon, Portugal) (ICSE ’24). Association for Computing Machinery, New York,

NY, USA, Article 126, 13 pages. https://doi.org/10.1145/3597503.3639121
[54] Chunqiu Steven Xia and Lingming Zhang. 2023. Keep the Conversation Go-

ing: Fixing 162 out of 337 bugs for $0.42 each using ChatGPT. arXiv preprint
arXiv:2304.00385 (2023).

[55] Danning Xie, Yitong Li, Mijung Kim, Hung Viet Pham, Lin Tan, Xiangyu Zhang,
and Michael W Godfrey. 2022. DocTer: documentation-guided fuzzing for testing
deep learning API functions. In Proceedings of the 31st ACM SIGSOFT International
Symposium on Software Testing and Analysis. 176–188.

[56] Chuan Yan, Mark Huasong Meng, Fuman Xie, and Guangdong Bai. 2024. Investi-
gating Documented Privacy Changes in Android OS. Proc. ACM Softw. Eng. 1,
FSE, Article 119 (jul 2024), 24 pages. https://doi.org/10.1145/3660826

[57] Ming Yan, Junjie Chen, Xiangyu Zhang, Lin Tan, Gan Wang, and Zan Wang.
2021. Exposing numerical bugs in deep learning via gradient back-propagation.
In Proceedings of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (Athens,
Greece) (ESEC/FSE 2021). Association for Computing Machinery, New York, NY,
USA, 627–638. https://doi.org/10.1145/3468264.3468612

[58] YanHui-2024. 2024. YanHui-2024/YanHui: 2024-07-05. https://doi.org/10.5281/
zenodo.12671638

[59] Xiaoyu Zhang, Juan Zhai, Shiqing Ma, and Chao Shen. 2021. AutoTrainer: An
Automatic DNN Training Problem Detection and Repair System. In Proceedings
of the 43rd International Conference on Software Engineering (Madrid, Spain) (ICSE
’21). IEEE Press, 359–371. https://doi.org/10.1109/ICSE43902.2021.00043

[60] Hao Zhong. 2023. Enriching Compiler Testing with Real Program from Bug
Report. In Proceedings of the 37th IEEE/ACM International Conference on Au-
tomated Software Engineering (Rochester, MI, USA) (ASE ’22). Association for
Computing Machinery, New York, NY, USA, Article 40, 12 pages. https:
//doi.org/10.1145/3551349.3556894

[61] Michael Zhu and Suyog Gupta. 2017. To prune, or not to prune: exploring
the e�cacy of pruning for model compression. arXiv:1710.01878 [stat.ML]
https://arxiv.org/abs/1710.01878

Received 2024-04-12; accepted 2024-07-03

1591

https://doi.org/10.1109/SP54263.2024.00233
https://doi.org/10.1109/SP54263.2024.00233
https://doi.org/10.1145/3491102.3517582
https://doi.org/10.1145/3491102.3517582
https://doi.org/10.1145/3597503.3639121
https://doi.org/10.1145/3660826
https://doi.org/10.1145/3468264.3468612
https://doi.org/10.5281/zenodo.12671638
https://doi.org/10.5281/zenodo.12671638
https://doi.org/10.1109/ICSE43902.2021.00043
https://doi.org/10.1145/3551349.3556894
https://doi.org/10.1145/3551349.3556894
https://arxiv.org/abs/1710.01878
https://arxiv.org/abs/1710.01878

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Model Optimization Bugs (MOBs)
	2.2 LLMs and Chain-of-Thought Prompting

	3 Methodology
	3.1 Overview
	3.2 Code Decomposition
	3.3 Text Summarization
	3.4 Issue Clustering
	3.5 Mutation Rules

	4 Evaluation
	4.1 Experiment Design
	4.2 RQ1: Effectiveness of YanHui's Prompts
	4.3 RQ2: Usefulness for Finding MOBs
	4.4 RQ3: Generalization and Ablation Study

	5 Discussions
	5.1 Quality of Text Summarization
	5.2 Limitations
	5.3 Threats to Validity

	6 Related Work
	7 Conclusion
	References

