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Abstract

Model optimization, such as pruning and quantization, has become

the de facto pre-deployment phase when deploying deep learn-

ing (DL) models on resource-constrained platforms. However, the

complexity of DL models often leads to non-trivial bugs in model

optimizers, known asmodel optimization bugs (MOBs). These MOBs

are characterized by involving complex data types and layer struc-

tures inherent to DLmodels, causing signi�cant hurdles in detecting

them through traditional static analysis and dynamic testing tech-

niques. In this work, we leverage Large Language Models (LLMs)

with prompting techniques to generate test cases for MOB detec-

tion. We explore how LLMs can draw an understanding of the MOB

domain from scattered bug instances and generalize to detect new

ones, a paradigm we term as concentration and di�usion. We ex-

tract MOB domain knowledge from the artifacts of known MOBs,

such as their issue reports and �xes, and design knowledge-aware

prompts to guide LLMs in generating e�ective test cases. The do-

main knowledge of code structure and error description provides

precise in-depth depictions of the problem domain, i.e., the concen-

tration, and heuristic directions to generate innovative test cases,

i.e., the di�usion. Our approach is implemented as a tool named

YanHui and benchmarked against existing few-shot LLM-based

fuzzing techniques. Test cases generated by YanHui demonstrate

enhanced capability to �nd relevant API and data combinations

for exposing MOBs, leading to an 11.4% increase in generating syn-

tactically valid code and a 22.3% increase in generating on-target

code speci�c to model optimization. YanHui detects 17 MOBs, and

among them, �ve are deep MOBs that are di�cult to reveal without

our prompting technique.
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1 Introduction

Deep learning models have been extensively applied in various

domains, such as autonomous driving [26] and medical diagno-

sis [2, 37], owing to their remarkable capabilities in classi�cation

and generation. To tackle complex tasks and achieve a high level

of accuracy, these models are often trained with a large number

of parameters and layers. For example, a popular large language

model, LLaMA [1] by Meta, contains up to 32 layers and 65 billion

parameters. This practice, however, hinders the deployment of mod-

els on resource-constrained platforms such as mobile devices and

Internet-of-Things (IoT) nodes. As a result, optimization techniques,

typically pruning [18, 48, 61] and quantization [3, 25], have to be

engaged to reduce the model size and complexity to facilitate model

deployment. These techniques have been incorporated by popular

DL frameworks, such as TensorFlow and PyTorch, as a module

called model optimizer.

In contrast to model training and inference stages, where models

are operated on in a holistic manner, model optimization entails

direct alterations to the model parameters, necessitating careful

consideration of the intricate connections among these parame-

ters. This complexity is particularly noteworthy when dealing with

realistic models featuring complex architecture or uncommon struc-

tures. Consequently, model optimization can become error-prone,

giving rise to the model optimization bugs (MOBs) [16]. MOBs can

signi�cantly undermine model reliability or even hinder the de-

ployment of deep learning applications on end devices, leading to

adverse e�ects on user experience or �nancial loss [7, 15, 22].

Detecting MOBs is a complex task due to various obstacles stem-

ming from the characteristics of model optmizers [9, 16]. The use

of hybrid programming languages and diverse hardware/platform
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orientation present signi�cant challenges for approaches based on

traditional static analysis [30, 31]. Dynamic testing shows promise

as a widely used method for bug detection, but the unique nature

of models, i.e., the input to model optimizers, impairs the test case

generation. Indeed, existing approaches for testing DL libraries

primarily focus on either fuzzing DL models [17, 19, 49, 57, 59] or

evaluating the usability of library APIs [11, 13, 27, 42]. The research

problem of addressing the involvement of deep learning models as

input and complex APIs as con�guration in detecting MOBs remains

largely underexplored.

Ourwork. In this work, we leverage Large LanguageModels (LLMs)

to enhance dynamic MOB detection. LLMs have been shown e�ec-

tive in automatically testing DL libraries by recent studies [9, 10, 53],

owing to their exceptional capacity for understanding and mem-

orizing the correct syntax and semantics of the code bases they

have seen in their massive training data. Our focus is to re�ne the

capabilities of LLMs, which are initially trained on massive general

texts, to tackle domain-speci�c tasks e�ectively. To this end, two

primary obstacles need to be addressed, as elaborated below.

Obstacle #1. Knowledge gap in model optimization. One sig-

ni�cant obstacle in leveraging LLMs lies in their limited knowledge

of speci�c domains, such as model optimization in our work. Model

optimization is a relatively newer and smaller component within

DL frameworks compared with the mature modules of model train-

ing and inference. To illustrate, PyTorch and TensorFlow, the most

popular DL frameworks, only introduced their model optimizers

in 2020, with PyTorch v1.3 and TensorFlow v2. Within their code

repositories, model optimizers are notably sparse in the distribu-

tion of code (3.5% in PyTorch and 1.8% in TensorFlow) and test

cases (2.2% in PyTorch and 4.0% in TensorFlow). Even though LLMs

may have these DL frameworks in their training datasets, the code

of model optimizers is a minor portion. As a result, the test code

generated by LLMs tends to be biased towards the APIs of model

training or inference, which is not our desired target for testing

MOBs. Furthermore, due to the limited exposure to model opti-

mization concepts, the generated code may not be accurate. This

can lead to misuse of APIs or compatibility issues during testing,

reducing the overall e�ciency of the testing process.

Obstacle #2. Lack of guidance in test space exploration. Test-

ing with LLM-generated code is essentially a fuzzing process [10],

where e�cient exploration of the test space poses a common chal-

lenge. A valid piece of test code typically consists of several ele-

ments, such as model de�nition, model input data, and optimization

API invocation. The intricate nature of these elements and their

various combinations can lead to the explosion of the search space.

Without proper guidance, the generated test code may be gradually

trapped in repetitive or irrelevant patterns [23]. Addressing this

obstacle requires LLMs to enhance the diversity of their generated

test code, ensuring an expansive exploration of the test space.

We propose a new prompting paradigm termed concentration

and di�usion to overcome these two obstacles. The concentration is

designed to transition the capabilities of LLMs from a broad scope

to the speci�c domain of MOBs (for Obstacle #1). Initially, we

incorporate domain knowledge distilled from the documentation of

model optimizers into the prompts given to LLMs, providing LLMs

with a precise and in-depth depiction of model optimization. Within

the domain of model optimization, we further design a knowledge

concentration strategy that considers the taxonomy of MOBs [16].

This strategy enables �exible prompting by controlling the degree

of MOB knowledge concentration.

The di�usion boosts innovation and diversity within the MOB

domain (for Obstacle #2). This process applies code mutation on

historical bugs, a strategy that has been found e�ective for detecting

additional bugs [10, 60]. We enumerate e�ective and actionable

mutation rules grounded in the domain knowledge of MOBs [16].

These mutation rules are embedded as instructions in the prompts,

facilitating LLMs to make meaningful modi�cations and produce

innovative test cases, rather than over-imitating existing examples.

We implement our approach as YanHui1, and compare it with the

state-of-the-art LLM-based fuzzing technique FuzzGPT [10]. Our

approach shows the signi�cantly enhanced quality of the generated

test code.With our prompts, there is an 11.4% increase in generating

syntactically valid code and a 22.3% increase in generating relevant

code on model optimization. Within the same iterations of test code

generation as FuzzGPT, YanHui can detect 17 more bugs. After

reviewing the bugs, we �nd that our approach can detect not only

the common model API bugs, but also exclusive types of MOBs

involving language features and illogical code, which cannot be

found by the baseline.

Contributions. This work makes the following main contributions.

• A novel prompting paradigm for domain-speci�c tasks.

Our work underscores the importance of domain knowledge

when using LLMs for complex tasks such as generating code for

MOB detection. We propose a paradigm of concentration and

di�usion to direct the focus of LLMs into speci�c domains while

retaining their generation capabilities within those domains.

• A step forward in MOB detection. We develop YanHui, a

practical framework that implements the concentration and

di�usion prompting paradigm. YanHui represents a valuable

step toward MOB detection, an essential but underexplored

problem. It is shown to be cost-e�ective for addressing such a

complex problem.

• A practical study on real-world model optimizers and

previously unknown MOBs detected. We apply YanHui

on model optimizers from prominent DL libraries. The results

demonstrate its superiority over state-of-the-art LLM-based DL

testers. Notably, YanHui identi�es 17 MOBs, including �ve deep

MOBs that are di�cult to detect.

Availability and Ethical Consideration. We open-source Yan-

Hui and the associated MOB artifacts [58], to facilitate further re-

search of MOB detection and the exploration of domain knowledge-

aware prompts in other scopes. All identi�ed MOBs have been

responsibly disclosed to the respective developers. At the time of

submitting the camera-ready version of this paper, eleven MOBs

have been con�rmed, while discussions are ongoing for the remain-

ing six.

Paper Organization. The rest of this paper is organized as follows.

Section 2 reviews the background of model optimization bugs and

large language models. Next, Section 3 presents our method with

domain knowledge-aware prompts applied in this study. Then in

Section 4, we show the detailed evaluation results, and compare

1Yan Hui is the favorite disciple of Confucius, earning praise from Confucius that
“when he learns one thing, he gets to understand ten more things”.
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@torch.jit.script

@dataclass(frozen=True)

class Info:

    def __init__(self):

        ...

class Model(torch.nn.Module):

    def __init__(self, info: Tuple[Info]):

        self.infos = [i for i in info]

    def forward(self, x):

        return self.infos

script_model = torch.jit.script(Model(Info()))

input_tensor = torch.randn(1, 10)

output = script_model(input_tensor)

>>> OSError: Can't get source for <function...

Model definition

Input data

Model optimization API

Fails to handle

Figure 1: An Example of Model Optimization Bug

our method with the state of the art. In Section 5, we discuss the

limitation of this study. Finally, Section 6 surveys related research

and Section 7 concludes our work.

2 Preliminaries

In this section, we present a running example of aMOB and the back-

ground knowledge to facilitate the understanding of our method.

2.1 Model Optimization Bugs (MOBs)

Contemporary machine learning models, particularly deep neural

networks, are designed for tackling complex real-world problems.

They typically contain a vast number of parameters and demand

signi�cant storage and computational power, exceeding the capac-

ity of resource-constrained devices. Model optimization techniques

are crucial for tailoring these pre-trained models before deployment.

There are two typical types of model optimization techniques, i.e.,

Pruning [18, 61] that identi�es insigni�cant neural network layers

and zeros out the weights to increase the sparsity of models, and

Quantization [20] that converts model parameters into values of

lower precision, such as 16-bit �oats to 8-bit integers. Both Py-

Torch [14] and TensorFlow [21] provide a similar set of APIs in

their optimizers.

A typical model optimization program contains three major

components.

a) Model de�nition. The model de�nition represents the core

information of the DL model, including the type of layers, structure

and training functions. It determines how the input tensor will be

converted to the output.

b) Optimization API invocation. The invocation of optimiza-

tion APIs will apply speci�c operationswith options and parameters

on the de�ned model.

c) Input data. This component de�nes the input tensor that �ts

the model requirements. During the execution of the inputs, the

operations of the model are recorded. Optimization may rely on

the information of the data and operations.

Figure 1 shows a typical program of model optimization for

PyTorch. It de�nes a model by subclassing torch.nn.Module. The

calculation in forward involves a custom type of data called Info,

# API: foo

# Title: fails in torch.internal_

(code...)

# API: bar

# Bug description: model parsing failure

(code...)

# API: target_api

# Title: <infill>

Figure 2: An Example of Chain-of-Thought Prompts that

Contain Steps and Examples

which is optimized with torch.jit.script. Finally, the model

after the script accepts a tensor as input.

MOBs occur when model optimizers modify pre-trained models,

including data types, layers operations and metadata. For instance,

the original model in Figure 1 can work well, but an OSError will

occur when applying optimization on the model because the frame-

work fails to handle the dataclass decorator.

2.2 LLMs and Chain-of-Thought Prompting

Various powerful Large Language Models (LLMs) [12, 32, 36, 43–45]

have been trained with a large amount of text to accomplish natural

language processing, such as text classi�cation, summary and gen-

eration. They have demonstrated strong capabilities on these tasks

and are evolving rapidly by accepting extensive data, with billions

of parameters. Some variants of LLMs have been introduced to

accomplish code-speci�c tasks. Typical code-speci�c LLMs include

CodeT5 [47], Codex [6], and CodeLlama [39]. The variant models

can be produced by adding code as training data, or �ne-tuning the

original model with code-related contexts.

LLMs accomplish tasks provided in the form of prompts [38, 52],

in a �exible manner that can avoid model retraining. To enhance

the reasoning capability of LLMs, various prompting techniques

have been proposed. The chain-of-thought [51] represents one of

the prominent prompting techniques. Its core idea is to describe

a complex task with small steps, and prompts are separated into

several intermediate segments that include the reasoning process.

Such prompts have been demonstrated to be processed more accu-

rately by LLMs [8, 10, 24, 46, 56]. For example, the segments may

include the instructions on how to process the previous results, or

what formats or restrictions should be satis�ed when generating

the proceeding contents. LLMs can follow this pattern and pro-

duce similar instructions or constraints during the generation. As a

result, the �nal outputs are more likely to meet the expectations.

In general, chain-of-thought prompting is applied with few-shot

examples to accomplish tasks of code generation. For instance,

FuzzGPT [10] provides the information of API, bug description, and

�nally code snippet as the steps of thought. The core generation

process is demonstrated in Figure 2. The prompts �rst include

several examples with the format of API, bug description, and code

snippet. Then the targeted API is mentioned, and LLMs will in�ll

the remaining part of the bug description and code snippet. LLMs

will complete the remaining parts.

Given the e�cacy of the chain-of-thought prompting, YanHui

applies it for the construction of prompts. YanHui incorporates do-

main knowledge of model optimization and MOBs into the prompts,

to provide reasoning information based on the characteristics of
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3.4 - Issue clustering3.2 - Code decomposition

GitHub
issues

3.5 - Code mutation

Test code

def pass_through(a, b):
    return (a, b)

class JitClass: ...

torch.jit.script...

3.3 - Text summarization

· Program output error …

· Tuple doesn't work when …

· Exception is thrown from …

Human comments

Code snippet

③ Chain-of-Thought prompting

pass_through

torch.jit.script

a, b of int

Code structure characteristics

Model layer:

API:

Data:

Exception:

Location:

Reason:

RuntimeError

jit.frontend.ir 

tuple in class attr

Error description characteristics

……

D(Issue 1, Issue 2) < 6

D(Issue 1, Issue 3) < 6

……

Cat → (Layer vs Layer) → 0

Loc → (JIT vs QAT) → 1

Exc → (Type vs Key) → 1

D(Issue 1, Issue 2) = 0 + 1 + 1 = 2

Study on 
MOBs

Error-prone components

① Concentration - produces knowledge

② Diffusion - produces instructions

Compare characteristics

Find issues with small difference

Form groups of similar issues

· Conv2D, ReLu and Softmax layers  

· JIT module contains script and trace 

· Extremely large or small floats

· Change model layer to linear

· Use another API of trace
· Mutate input data with float

· Trigger a RuntimeError

· When processing IR

· Caused by class attributes

Mutation rules

· ……

· …… 

· ……

# A bug of PyTorch

# Model layer: pass_thr

# API: torch.jit.script

# Data: a, b of int

# Triggered: RuntimeError

# From: jit.frontend.ir

# Reason: unpacking tuple

(Code ...)

# A similar bug ......

# A similar bug ......

# Write a test case that

# ______________________

<infill>

Knowledge + instructions

LLM

Figure 3: Overview of YanHui

the buggy code snippets, including API, exception, data type, and

error reason. This is further detailed in Section 3.

3 Methodology

YanHui takes advantage of domain knowledge to generate e�ective

test cases for detecting MOBs. In this section, we detail its approach.

We start with an overview of its chain-of-thought prompting with

the concentration and di�usion paradigm (Section 3.1), and then

present each of its internal components (Section 3.2 to 3.5).

3.1 Overview

Figure 3 demonstrates the overall work�ow of YanHui, using our

example (Figure 1) as an illustration. YanHui takes the artifacts of

historical MOBs as input and applies the concentration and di�u-

sion paradigm to produce prompts that mainly consist of knowledge

and instructions. The knowledge distilled by concentration (the

box ➀ in Figure 3) provides LLMs with accurate and concise do-

main knowledge to facilitate LLMs in generating valid and relevant

code on model optimization. The instructions constructed by dif-

fusion (the box ➁ of Figure 3) provide LLMs with an e�ective and

speci�c guide to make LLMs generate tests targeting error-prone

components. Both the knowledge and instructions are formatted

as speci�c steps so that LLMs can generate e�ective test code after

chain-of-thought prompting (the box ➂ of Figure 3). The generated

code is then tested with model optimizers for MOB detection.

Concentration. In the concentration process, YanHui targets to

group similar MOB instances so as to enhance the speci�city of

the distilled knowledge and reduce irrelevant contexts. To measure

this similarity, we use six features to characterize a MOB. They

are derived based on the optimization program paradigm (see Sec-

tion 2.1) and the MOB taxonomy from an existing study [16]. They

are organized with the following two aspects.

• Code structure. Code can be a summary of the functionality

of the machine learning program, and can facilitate LLMs in

understanding code. The features in this aspect are the model

optimization components discussed in Section 2.1, including

– model de�nition, which describes what layers and operations

are included,

– optimization API invocation, which represents the optimiza-

tion technique that modi�es the model, and

– input data, which speci�es the type and value passed to the

model.

• Error description. Error description contains the textual data

in relation toMOBs, and it has been shown e�ective in analyzing

the root cause of MOBs [16]. The features that are included by

error description include

– exception type, which is the type of error that arises when

running the code,

– error location, which is the location of the buggy code in

terms of the �le and line inside optimizers, and

– error reason, which contains developers’ or programmers’

explanation of the triggering condition and the root cause

of the bug.

YanHui identi�es these features from each bug issue of historical

MOBs. The artifacts are processed using di�erent strategies due to

the various formats. For structured code snippets, YanHui applies

decomposition (Section 3.2), and for unstructured natural language,

YanHui applies summarization (Section 3.3). With the identi�ed

features, historical MOBs can be clustered to control YanHui’s

concentration degree. The similarity among the issues is measured

with the di�erence in MOB category, API and data type, which are

detailed in Section 3.4.

Di�usion. As has been shown in recent studies [41, 54], code

generated by LLMs can easily fall into the trap of repeating the given

samples and their patterns without proper guidance. Therefore, in

the di�usion process, YanHui provides explicit instructions so that

LLMs can mutate the code of given examples in meaningful ways

and generate innovative and diversi�ed code that involves new
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APIs and data, for example, the code containing uncommon model

types (e.g., @dataclass in Figure 1) and optimization APIs (e.g.,

torch.jit.script).

In addition, Guan et al. [16] have revealed that the error-prone

components and poorly tested modules of model optimizers are

highly likely to lead to MOBs. For instance, an extremely large or

small �oating-point number has a high risk of error. A model may

cause a crash if it contains a complex data structure instead of a

simple scalar. Therefore, we design the mutation rules based on

these heuristics to instruct LLMs to di�use towards error-prone

modules inside model optimizers (Section 3.5).

3.2 Code Decomposition

The code snippets are usually well structured in bug issues, making

them easily recognizable. However, there is a lack of techniques

that split a code snippet into semantical �ne-grained steps that

chain-of-thought prompting demands. To address this, we develop a

decomposition method. We use the paradigm of model optimization

programs presented in Section 2.1 and Figure 1. YanHui matches

the code with API keywords and syntactic structures to retrieve

the program components automatically, as briefed below.

a) Model de�nition. A model can be de�ned with either class

API or functional API [14, 21]. In PyTorch and TensorFlow, the

model can be recognized from the following patterns.

• PyTorch

– Class models: inherit from torch.nn.Module and contain

the method of forward.

– Functionalmodels: use theAPI from torch.nn.functional.

• TensorFlow

– Classmodels: inherit from tf.keras.Model and de�ne call

method.

– Functional models: use the API from tf.keras.layers.

Inside the model de�nition statements, YanHui matches the

layer APIs from the library documentation. Finally, it produces a

formatted model description, i.e., the type and parameters of input,

processing layers, and output.

b) Input data. PyTorch accepts torch.Tensor as the input,

whereas TensorFlow models accept tf.Tensor. The input data

can be identi�ed by �nding the tensor object that is passed as the

argument to the model.

c) Model optimization API . Both PyTorch and TensorFlow put

the optimization APIs into separated modules and name the mod-

ules after the optimization techniques [21, 34]. YanHui identi�es

the APIs that are provided by the following library modules:

• PyTorch

– torch.quantization

– torch.nn.utils.prune

– torch.jit

• TensorFlow

– tensorflow_model_optimization

– tfmot

With these patterns, the three components of the model opti-

mization program are extracted, and the API used in each part is

also identi�ed. The formatted parts are the core of model optimiza-

tion, and can describe the functionalities of the code clearly, which

would facilitate LLMs to parse the example code. They are also

Manually

label

Exception message
Error location
Human comments

Documentaton API explanation
Function signature
Sample code

Web

crawl

Prompt
Examples

Samples

Other
issues Summarization

LLM generation

Figure 4: The Process of Text Summarization

the templates of code to generate new test cases from historical

bugs (to be discussed soon in Section 3.5).

MOB-speci�c code pool of YanHui. YanHui maintains a pool

of MOB-speci�c code collected from the GitHub repositories of

PyTorch and TensorFlow, the most popular DL frameworks. We

follow the �ltering queries of Guan et al. [16] to select the issues

or pull requests that are in the scope of model optimization. From

the collected issues or pull requests, we fetch runnable code from

the markdown code blocks. Overall, YanHui has collected 392 code

snippets.

3.3 Text Summarization

Besides code snippets, the issues and pull requests contain natural

language texts, including titles, developer comments, commit mes-

sages, and other metadata. YanHui mines the three types of error

features from these texts, including exception type, error location

and error reason (Section 3.1), and uses them as heuristic steps

that direct LLMs to comprehend the MOB and produce targeted

test code [10]. Figure 4 presents the overall process of the text

summarization.

It is challenging to extract such features automatically because

the error description can be expressed in various ways. This re-

quires precise comprehension of natural language and su�cient

background knowledge of model optimization. We thus apply a

semi-automated process assisted by LLMs.We �rst sample 20 issues,

four from each of the following �ve MOB categories, i.e., wrong

type, unexpected shapes, missing supporting data types, missing

supporting layer operations, and metadata conversion errors. These

take up 5.1% of the total MOB issues we have collected. Then, we

apply the summarization with the following steps.

a) Exception and location from errormessages. We �rst manu-

ally review the errormessages from the exceptions raised by Python,

which usually contain some type of RuntimeError, �le and line

number, or Traceback data. Rich information about the MOB can

be found in the error message. For instance, the error reason is

placed after the exception name. With the �le and line number, the

module and function can be retrieved. Figure 5 demonstrates an

example of extracted features.

In addition to the error messages collected from bug issues, we

execute the code snippets to enrich the error information. Although

the error messages are generally structured, they may include irrel-

evant exceptions and backtraces. In this process, manual e�ort is

involved to select relevant errors and extract concise information.

Overall, we have collected the error features of 392 historical MOBs.

b) Error reasons from comments From the natural language

texts in the issues, we extract the errors and root causes. We search

keywords representing symptoms such as “crash” and “error”, root

causes such as “typing” and “missing supporting”, Python exceptions
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Traceback (most recent call last):

  File "pytorch.py", line 17, in <module>

    traced_script_module = torch.jit.trace(model, example)

  File "/..#/torch/jit/__init__.py", line 955, in trace

    ......

  File "/..#/torch/jit/__init__.py", line 443, in clone_input

    v = a.detach().clone(memory_format=torch.preserve_format)

                  .requires_grad_(a.requires_grad)

RuntimeError: unsupported memory format option Preserve

Exception Error reason

Call stackPublic API

Internal API

Figure 5: Features Extracted from Error Messages

 1  # Title: REGR: Accessing dict in JITed code in 1.11

 2  # Exception: KeyError: meta_y_hat

 3  # Trace: File "test.py", line 36, in forward

 4  # x, meta = self.activation(x, meta)

 5  # Version: PyTorch version: 1.11.0+cu102

 6  # Labels: oncall:jit

 7  # PR Title: [JIT] fix common_expression_hoisting

 8  (code...)

 9  # Exception: KeyError on model with custom activation

10  # Location: TorchScript in JIT module

11  # Reason: accessing dict the property of Dict using

              torch.jit.script

Figure 6: Sample Labeling of Pytorch#74056

such as TypeError and AssertionError, and the APIs listed in

PyTorch documentation [14]. In addition, DL framework developers

and maintainers usually mark issues with labels after they triage

the problems. Therefore, we can extract the location information

if the label mentions the module inside the optimizers. For the

resolved issues, one or more pull requests can be cross-referenced

to the issue. If a pull request is referenced by the issue, we extract

the error reasons or reproducing situations by rephrasing the patch

title and the contents after “�x” in the commit message.

Then, LLMs are involved in generating the summarization for the

rest of the issues in our dataset. As the example shown in Figure 6,

the comments above the code (title, exception, error reason, API

call stack, version, labels, and pull requests) are the automatically

extracted features. The comments under the code (API and error

description) are summarized manually based on the characteriza-

tion of MOBs. The labeled error description reveals the root cause

of this bug, which cannot be directly found from the code and trace

information. Instead, it should be mined from the title, pull request

and the deeper implementation of code.

With a small set of human-labeled examples, we construct a

context for labeling the code snippets automatically. An unlabeled

issue information and code snippet are placed after the examples.

Then, the LLMs are prompted to complete the text with API and

error descriptions. Speci�cally, for a collected issue like Figure 6,

the contents are masked after Line 8, and we use LLMs to �ll in the

remaining contents. LLMs can follow the patterns of summarizing

the API and error description from the provided information step

by step, producing more accurate results.

As this contains both manual e�ort and LLM generation, we in-

volve a cross-validation process to control the quality in Section 5.1.

3.4 Issue Clustering

We develop a measurement of the similarity between MOBs based

on the categories of MOBs [16], and the structure of optimizers [21,

34]. Given two MOBs, we denote their features with a vector � .

Let 8 be the issues, �%� , )~? represent the API and data type

extracted from the code information, and �0C be the exceptions

and error category of the MOB. The feature vector is de�ned

as �8 = ⟨�0C,�%�1, · · · , �%�=,)~?1, · · · ,)~?<⟩. The distance be-

tween two MOBs 0 and 1 is measured as �0,1 =

∑
|�0 −�1 |, where

the distance in each feature is de�ned with the following rules.

• Category ranges from the �ve root causes of MOB [16]. If

the root causes are the same, the di�erence is 0, otherwise the

di�erence is 1.

• API is the function called in the Python code, including the lay-

ers in the model and the optimization techniques. Each API has

its module hierarchy inside the code base. For example, script

and trace are both in torch.jit, whereas quantization is

directly under torch.quantization. The distance is measured

using the directory distance of the �le that de�nes the API. For

example, given two �les fake_quantize.py and quantized.py,

we compare the di�erence on the full paths of these two �les,

i.e., torch/ao/quantization/experimental and torch/jit.

There are 3 levels of di�erence after torch, therefore the dis-

tance between the two APIs is 3.

• Type is the Python class of data or exception. The types have

a hierarchy of subclass inheritance, such as ArithmeticError

contains ZeroDivisionError and Dtype contains bool and

float. For the same type, the distance is 0. If the types are

di�erent, the distance will be added by 1, and the types of their

parent classes will be compared recursively. The comparison

repeats until there is no parent for either type.

With a smaller distance threshold for the clusters, the code would

be more centralized, but there would be fewer examples inside each

cluster. After evaluating our dataset, we choose 6 as the distance

threshold which can include 2-5 examples in each cluster. The quan-

tity of examples is neither too few for chain-of-thought prompting

nor so abundant that it exceeds the context size of LLMs. Overall,

YanHui produces 198 clusters from 392 issues.

3.5 Mutation Rules

To guide the generation of testing code, we apply di�usion by

providing instructions in the prompt. Each instruction speci�es a

mutation rule, which is associated with the knowledge summarized

in the previous sections. These mutation rules are designed based

on the error-prone or untested APIs, types and values, which are

aligned with the root causes of MOBs [16].

1) Model de�nition. A deep learning model is usually constructed

with a model class, which de�nes the layers and functions. The

instruction explicitly asks the model to change the layer from the

given sample code, for example, to replace the Linear layer with

other layers supported by the tested optimizer. As a result, the

generated code includes models with various layers so as to test

the wrong type and metadata conversion errors in depth.

2) Optimization API. The instruction explicitly asks the model

to use an alternative API to optimize the model, for example, to

switch the conversion method from script to trace. Di�erent
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APIs can vary in con�guration and operation, which can increase

the combinations of the optimization process. The misalignment of

model and API can commonly trigger MOBs of missing supporting

layer operations [16].

3) Input data. Input data is used during the tracing process of

deep learning models. The computational graph can be constructed

from the tracing results. However, some data with special values

or types may trigger edge cases, and the results cannot represent

the original model. Mutating input data based on historical bugs,

such as very large values or list formats, can help expose MOBs of

unexpected shapes or missing supporting data types [16].

4) Triggered exception. The exception can usually clearly repre-

sent a bug. For example, IndexError can be caused by accessing the

list elements, and KeyError can be caused by dict operations. By

enumerating the exception types of Python, LLMs can be directed

to explore the di�erent components in the code and detect potential

bugs after scanning the list, dictionary, class or other parts.

5) Bug location. The location in historical bugs can reveal a com-

mon failure during the model optimization process. Since the opti-

mization may be implemented di�erently for each operation and

platform, a historical missing supporting bug [16] may still exist

in another similar part of the code base. Enumerating the place

of mistakes may improve the probability of �nding such potential

problems.

6) Bug reason. In historical bugs, the information on the root cause

can point out the direction to generate new test cases. The bug

reason may mention some data type, API and language features.

We do not directly mutate the reason content but ask LLMs to

generate tests that may trigger problems in a similar way. The

reason can make LLM generate code that re�ects a deeper analysis

of the bug.

An example of a complete prompt with both knowledge and

instructions is shown in the box ➂ of Figure 3. In the prompt, code

from historical bugs is included, and the knowledgeable descrip-

tion is organized systematically. Following the examples, explicit

instructions are given to guide the generation process. Then LLMs

continue to complete the text and ful�ll the mutation as expected,

which will run for testing crash.

Among the 198 clusters, all of them are mutated in model def-

inition and input data. 126 clusters are suitable for mutating the

optimization API according to the documentation. Furthermore, 73

clusters show variations in exceptions or locations amenable to mu-

tation. In total, mutating each factor once results in the generation

of 595 test cases.

4 Evaluation

In this section, we evaluate the e�ectiveness of our prompting

strategy. We analyze our approach by answering the following

three main research questions.

• RQ1: DoesYanHui outperform the state-of-the-art approach

of LLM code generation in testing MOBs? This RQ aims to

investigate the quality of the testing code generated with Yan-

Hui. In the comparison, we take the few-shot version of Fuz-

zGPT [10] as the baseline.

• RQ2: Is the knowledge-aware prompting useful to �nd bugs

in model optimization? This RQ focuses on the MOBs found

Table 1: LLMs evaluated in YanHui

Model Context Size Generation Speed Cost

gpt-4-0125 128k 16.988 token/s 2 $0.13/it
starcoder2-7b 16k 14.098 token/s N/A
codellama-python-7b 16k 18.116 token/s N/A

2 GPT-4 can only be accessed via paid online API. The generation speed is
measured by the average duration of network requests.

with the knowledge-aware prompting technique, and reveals

the advantages of using LLM generation for MOB detection.

• RQ3: Can YanHui generalize to di�erent LLMs? How do

the steps of concentration and di�usion contribute to the

improvement of code generation? This RQ investigates the

generalizability of YanHui’s prompting paradigm and conducts

an ablation study of each prompting component, which aims to

understand how MOB domain knowledge a�ects YanHui’s test

code generation.

4.1 Experiment Design

Experiment Platform. The experiments are executed on a work-

station with the following technical speci�cations.

• OS: Ubuntu 22.04.4 LTS x86_64

• CPU: AMD Ryzen Threadripper PRO 5965WX

• GPU: NVIDIA RTX A6000 × 2

• Memory: 256GB

Large Language Models. To investigate the generalization of

YanHui’s prompting paradigm, we have involved three popular

LLMs for bug reasoning and code generation.

• GPT-4 [32]: an advanced iteration of LLM developed by Ope-

nAI, which has demonstrated its exceptional performance in

generating contextually appropriate texts in various domains

such as programming and math [33].

• CodeLlama [39]: an emerging model in the �eld of automated

code generation by Meta, which is a �ne-tuned version of

Llama2.

• StarCoder [28]: a sophisticated code generation model that

incorporates enhanced attention mechanisms to improve its

understanding and manipulation of complex coding structures.

The speci�cations of LLMs used in our evaluation are listed in

Table 1.

4.2 RQ1: E�ectiveness of YanHui’s Prompts

Baseline approach. The baseline experiments are adapted from

the few-shot prompting approach from the state-of-the-art Fuz-

zGPT [10]. Since the artifacts of FuzzGPT are not available at the

time of our evaluation, we reproduce the few-shot approach by

ourselves following its paper, which is referred to as FuzzGPT-FS

hereafter.

We randomly select the samples from our labeled code snippets

to construct a prompt. The information of the code snippets given to

the LLM includes only API and issue titles. For each generation, four

examples (average number of examples in the clusters of YanHui)

are provided to the LLM. The format of prompts follows the chain-

of-thought prompts demonstrated in Figure 2.
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Table 2: Generation Quality with Di�erent Approaches

FuzzGPT-FS YanHui

Model Outputs Valid Relevant MOB Outputs Valid Relevant MOB

gpt-4-0125 632 192 (30.4%) 78 (12.3%) 6 595 246 (41.3%, 10.9%↑) 214 (36.0%, 23.7%↑) 14
starcoder2-7b 708 156 (22.0%) 73 (10.3%) 2 595 208 (35.0%, 13.0%↑) 188 (31.6%, 21.3%↑) 9
codellama-py-7b 653 134 (20.5%) 52 (8.1%) 0 595 183 (30.8%, 10.3%↑) 179 (30.1%, 22.0%↑) 6

PyTorch Dataloader with shuffle=True

# the following fails with TypeError: `type' object
# is not iterable on dataloader.__iter__()

class MyDataset(torch.utils.data.dataset):
...
dataset = MyDataset(456789)
dataloader = torch.utils.data.DataLoader(dataset,
                                         batch_size=32,
                                         shuffle=True)

# API: torch.jit.trace
# Title: String handling is not supported by JIT
(code...)

# API: torch.jit.script
# Title: Unknown type name 'a.Type'
(code...)

# API: <infill>

Prompts

Generation

· Different API

· Varied errors

· Wrong code

· Irrelevant API

Figure 7: Invalid Code Generated by FuzzGPT-FS

Evaluation metrics. We de�ne the following metrics to evaluate

the performance of YanHui.

• Valid outputs. The generated code is valid Python codewith no

syntax errors. We �lter out invalid outputs by actually running

generated code and excluding those cases that produce excep-

tions of NameError, SyntaxError and ModuleNotFoundError.

• Relevant outputs. The valid code that is testing the model

optimizers inside the deep learning frameworks. The generated

code is decomposedwith the steps introduced in Section 3.2. The

relevant outputs are selected by checking whether the model

and input are created, and whether the API of optimization is

applied to the model.

• Real MOBs. During the testing, we keep the test cases that

produce runtime errors, as they represent particular failures

during model optimization. We manually review the errors to

�nd real bugs that conform to the root causes of MOBs listed

in Section 3.3.

Results of e�ectiveness. To ensure the fairness of the compari-

son, we conduct the same iterations of generation (595) for the two

approaches. In the prompts of FuzzGPT-FS, we include four exam-

ples for one iteration, which is the average number of examples

of YanHui’s prompts. Table 2 presents the quality of the test cases

generated with di�erent approaches. The valid outputs and real

MOBs are highlighted in the table. There is an improvement of up

to 13.0% on the valid outputs. The ratio of relevant outputs has a

# JIT does not support the **kwargs syntax
class MyModel(nn.Module):
    def __init__(self, a=1):
        ...
    
    def forward(self, x, **kwargs):
        return x + 1
        
m = MyModel()
scripted = torch.jit.script(m)
scripted(torch.tensor([2]))

# Here is a bug of PyTorch
# Model:       nn.Module
# API:         torch.jit.script
# Data:        "abcd"
# Triggered:   RuntimeError
# From:        torch.jit.frontend
# Reason:      desugar of str is not handled in JIT
(code …)

# And a similar bug of PyTorch
# Model:       nn.Module
# API:         torch.jit.script
# Data:        **{ "hello": None }
# Triggered:   RuntimeError
# From:        torch.jit.frontend
# Reason:      expanding dictionary is not handled
(code …)

......

# Write a similar test case of PyTorch that contains
# the unhandled part of models.

Prompts

Generation

Similar API and 

code structure

Valid model and API use

Innovated mutation

Figure 8: E�ective Code Generated by YanHui

more signi�cant improvement of up to 23.7%. YanHui can also �nd

more real MOBs.

Case study. We investigate the reason for the quality improve-

ment of code generation by explaining two examples from the two

approaches.

Figure 7 shows an invalid testing code generated by the baseline

approach. After examining the context, we notice that the examples

in the prompts are not centralized enough. The types and modules

of APIs are in low similarity (tinted red), which provide incon-

sistent API usages to LLMs. As a result, the generation may be

negatively a�ected by the examples and produce invalid code - sub-

classing torch.utils.data.dataset does not construct a valid

deep learning model. Besides, the prompts include examples of var-

ied errors (tinted blue). The similarity of error locations between

“sanity check” and “unknown type name” is also low, which caused

the generated code not relevant to testing MOBs - instead, it is

about the dataset API DataLoader.
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Table 3: Real MOBs Found by LLM Generated Code

Approach API Desugar Illogical

FuzzGPT-FS 8 0 0

YanHui 12 3 2

In contrast, the code generated with centralized examples se-

lected using the concentration strategy of YanHui can test op-

timizers e�ectively, which is shown in Figure 8. The examples

are focusing on the same API (torch.jit.script) and location

(torch.jit.frontend), similarmodels (from nn.Module) and prob-

lems (unsupported expressions of Python code). As a result, the

generation result is an expected code snippet that tests the speci�c

API by exploring more syntax features. After code generation, it

detects a problem with the compatibility of kwargs syntax feature

in PyTorch, which is a known issue (#29637). This is an e�ective test

because Issue #29637 is not included in our dataset due to the lack of

full reproducible code. YanHui shows its ability to �nd real-world

MOBs by learning from similar examples and exploring new APIs.

Answer to RQ1. Compared with the state-of-art approach

FuzzGPT-FS, YanHui can generate higher-quality test cases

in terms of both validity (+11.4% on average) and relevance

(+22.3% on average). The higher e�ciency of code generation

reduces the disambiguation steps for �nding real MOBs, and

improves the e�ciency of testing.

4.3 RQ2: Usefulness for Finding MOBs

Patterns of MOB-triggering code. To analyze the characteristics

of the useful test cases generated by YanHui, we review the gener-

ated code and categorize the patterns of the code that can trigger

MOBs. We �nd that YanHui can generate code in three ways that

are e�ective in �nding MOBs.

• API that has not been handled properly by the optimizer. For

example, the layer DynamicQuantizedLinear has unsupported

operation issues for quantization (PyTorch #110515).

• Desugaring speci�c language features of Python during opti-

mization may cause failures. For example, the in operator for

str will be expanded to a special abstract syntax tree which

the optimizers fail to handle (PyTorch #46682).

• Illogical code that is not logically meaningful but syntacti-

cally correct, for example, a custom layer that simply raises an

exception instead of calculating data (PyTorch #12118).

MOBs found with LLMs. We compare the number of MOBs found

with FuzzGPT-FS and YanHui in Table 3. Both approaches can

detect MOBs by exploring new APIs, and YanHui detects more

with the guidance of error-prone parts of optimizers. YanHui can

further detect MOBs by generating test cases of desugaring and

illogical code, which FuzzGPT-FS do not involve.

Examples of found bugs. We explain the usefulness of YanHui

in �nding MOBs with two illustrative examples.

Listing 1 shows an example of the missing supporting types [16]

in the PyTorch JIT module. In this test case, PyTorch is trying to

parse and process a dataclass, which is introduced in Python 3.7.

The script method of PyTorch does not process the @dataclass

decorator properly and throws an error when trying to access the

code implementation of dataclass.

By checking the input prompts, none of the examples includes

the usage of dataclass, while they are all related to the API called

torch.jit.script. Therefore, the generated code is mutated to

test new Python features without breaking the structure of the

code snippet. Such kind of test cases are categorized as Desugar in

Table 3. This bug is con�rmed and discussed in PyTorch #66017.

1 @torch.jit.script

2 @dataclass(frozen=True)

3 class Info:

4 # ...

5 pass

6 class Model:

7 def __init__(self , info: Tuple[Info ]):

8 self.infos = [i for i in info] # error here

9 def forward(self , x):

10 return self.infos

Listing 1: An OSError found by fuzzing the dataclass feature

of Python

Listing 2 lists an example of missing supporting operations [16]

bug when scripting a model. This test case reveals a problem that

PyTorch cannot compile a function that tries to access the property

fc1 in self. PyTorch library fails to get the full de�nition of the

model, and the initialization of fc1 is not captured. Therefore, the

model cannot be compiled into optimized code.

This example is a typical test of illogical code, because scripting

the forward method of the model is not common and should not

take e�ect. Such cases are not easy to �nd with traditional code

generation approaches. They are categorized as Illogical in Table 3.

1 class Model(tnn.Module ):

2 def __init__(self , h: int = 16) -> None:

3 super (). __init__ ()

4 self.fc1 = tnn.Linear(h, h)

5

6 @torch.jit.script

7 def forward(self , x: torch.Tensor ):

8 return torch.tanh(self.fc1(x))

9 m = Model (42)

10 y = m(torch.randn(3, 5))

Listing 2: A RuntimeError found by accessing properties in

self

Answer to RQ2. YanHui is useful for �nding MOBs by

fuzzing the API and models. Based on the examples from

historical issues, LLMs can generate innovative code for test-

ing the model optimizers in depth. The knowledge can help

the generation process to focus on the relevant part and mu-

tate with untested API or syntax and write uncommon code.

Apart from API bugs, YanHui shows the ability to �nd MOBs

that occur during desugaring Python language features and

handling illogical code.

4.4 RQ3: Generalization and Ablation Study

To �gure out how YanHui takes advantage of domain knowledge,

we �rst investigate whether the concentration and di�usion prompt-

ing paradigm can generalize to di�erent LLMs, then choose one

model to conduct ablation studies.
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Figure 9: MOBs found by YanHui with di�erent LLMs

Table 4: YanHui with or without Code Structure

Components Outputs Valid Relevant MOB

With code structure 595 208 (35.0%) 188 (31.6%) 9
Without code structure 595 144 (24.2%) 67 (11.3%) 5

Table 5: YanHui with or without Error Description

Components Outputs Valid Relevant MOB

With error description 595 208 (35.0%) 188 (31.6%) 9
Without error description 595 201 (33.8%) 102 (17.1%) 4

Generalization. Figure 9 shows the number of detected MOBs

when using di�erent LLMs for YanHui. It shows that 8 out of

17 MOBs overlap among di�erent LLMs, which means the high-

quality prompts derived from concentration and di�usion can be

generalized to di�erent models.

Next, we use the locally reproducible Starcoder2 model for the

ablation studies, which remove each component of prompts, i.e.,

code structure, error description and mutation rules.

In�uence of code structure. Table 4 presents the quality of gen-

erated code and detected MOBs with or without the component of

code structure.

The comparison shows that the code structure mainly in�uences

the ratio of valid and relevant code generated by LLMs. The detected

MOBs are also a�ected due to the lack of e�ective code for testing.

Among the metrics, the code structure shows a signi�cant impact

on the relevant code, which can be explained by the format of the

code. By mentioning each step of the model optimization program,

LLMs are more likely to generate the expected code after chain-of-

thought.

In�uence of error description. Table 5 presents the metrics of

generated code when involving or not involving error description.

The metric di�erences imply that the error description com-

ponent can also a�ect the relevant code and detected MOBs in a

similar way of the code structure. The characteristics of error may

highlight the code that has problems. Therefore, such information

can enhance the generation quality.

In�uence of mutation rules. Table 6 presents the metrics of

generated code by YanHui with or without mutation rules.

Table 6: YanHui with or without Mutation Rules

Components Outputs Valid Relevant MOB

With mutation rules 595 208 (35.0%) 188 (31.6%) 9
Without mutation rules 634 201 (31.7%) 149 (23.5%) 2

The results are highlighted by the signi�cant drop in detected

MOBs, which indicates that the directions are e�ective in exploring

the error-prone part of the framework.

Answer to RQ3. YanHui can be generalized to work with

di�erent LLMs. All of the three components of YanHui con-

tribute to the improvement of code quality and detected MOBs.

The code structure is especially important to relevant code,

and mutation rules are e�ective in generating bug-triggering

cases. YanHui achieves the best performance with all compo-

nents included.

5 Discussions

5.1 Quality of Text Summarization

The step of text summarization in Section 3.3 may contain errors

due to human work or LLM generation. To control the quality of

summarization, we involve another author to validate the results.

The processes of labeling MOBs [16] are followed - two authors

summarize the issues independently, and then discuss until all the

inconsistencies of results are resolved. Among the summarization

by LLMs, 92% of the generation satis�es the format of error charac-

terization. Although the description may not be perfect, it can still

provide e�ective steps of error reasoning for the chain-of-thought

prompting as shown in Section 4.4.

5.2 Limitations

Our study focuses on the test generation of model optimization

bugs, which is a new and speci�c scope of deep learning software

testing. As an early attempt at this problem, our study still has limi-

tations, which we plan to resolve in our future work. The collected

MOB examples are still small, because we focus on the quality of

the issues, and only choose the closed issues which have been �xed

by pull requests. Although the chosen issues are e�ective in mining

information, a number of other issues can be considered to improve

the variety of the example MOBs signi�cantly. We plan to keep

improving the model for labeling to achieve automatic MOB sum-

marization from open issues. With more examples for the prompts,

LLMs can generate code to test deeper in the library and cover more

functionalities of model optimization.

5.3 Threats to Validity

The potential threats to the validity of our study are the stability

of the LLM outputs and the testing environment of the generated

code. To mitigate the unstable LLM outputs, we use a �xed setup

of parameters and random seed. However, the outputs of GPT-4

cannot be controlled because it is a black-box online service. Our

testing environment contains only Nvidia GPU, therefore, some

code snippets requiring other platforms will cause a failure on the

testing machine, which is a false positive. In our experiments, we
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exclude such false positives by recognizing the clear name of the

speci�c platform, such as MKL-DNN for Intel, and MPS for Apple.

6 Related Work

Testing deep learning libraries. Researchers have extensively

studied the bugs and testing in deep learning libraries, especially

the training and inference parts. To understand the characteristics

of bugs, a great deal of literature [4, 5, 7, 16, 22, 40] has analyzed the

symptoms and root causes of various deep learning framework bugs,

including common program bugs, performance bugs, deployment

bugs, compiler bugs, and the emerging optimization bugs.

To test with deep learning models, CRADLE [35] introduces

an e�ective test oracle for deep learning libraries, which adopts

di�erential testing [29] for deep learning models. The framework

bugs are exposed when the model outputs have any inconsistency.

Based on the test oracle, Audee [17] focuses on fuzzing Deep Neural

Network (DNN) models for testing. It uses existing popular DNN

models as seeds, and mutates the input and weight to generate new

models for testing. LEMON [49] proposes an e�ective approach to

generating models by introducing heuristic rules to guide the mu-

tation and increase the probability of exposing bugs. NNSmith [27]

leverages SMT solvers to generate various DNN models that satisfy

the constraints in the computation graph.

Apart from the inputs and models, API is also an aspect of test-

ing. FreeFuzz [50] collects API calls from open-source code. By

identifying the parameters in the function calls, it can fuzz deep

learning libraries by mutating the parameters to generate new test

cases. DocTer [55] aims to fuzz the API functions by mining the

documentation from the deep learning libraries.

Fuzzing deep learning libraries with LLMs. Recently, with the

emergence of Large Language Models, researchers are adopting

this powerful utility for software testing. TitanFuzz [9] �rst intro-

duces LLMs to fuzzing DL libraries. It generates a seed input with

prompts mentioning API, and mutates the input by masking some

parts of the code and asks LLMs to �ll in the masks. FuzzGPT [10]

applies few-shot prompts with examples of code and descriptions

to generate testing code.

7 Conclusion

In this paper, we propose YanHui, an e�ective approach for �nding

Model Optimization Bugs (MOBs) via the test code generated by

Large Language Models (LLMs). The generation is prompted with

chain-of-thought and contains informative knowledge and instruc-

tions after concentration and di�usion. This paradigm produces

high-quality prompts, which focus on the scope of testing MOBs.

Our experiments show that the ratio of valid/relevant code can be

improved by 11.4%/22.3%. With the 595 generated testing cases, 17

real bugs can be found, including �ve deep MOBs associated with

uncommon code, which are typically di�cult to detect. Our anal-

ysis on the detected bugs reveals that the mutation rules derived

from domain knowledge can help LLMs generate more specialized

tests to expose bugs. YanHui showcases the potential of LLMs in

software testing and explores a practical way to detect speci�c

types of bugs.
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