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ABSTRACT
Popular Q&A sites like StackOverflow have collected nu-
merous code snippets. However, many of them do not have
complete type information, making them uncompilable and
inapplicable to various software engineering tasks. This paper
analyzes this problem, and proposes a technique CSnippEx
to automatically convert code snippets into compilable Java
source code files by resolving external dependencies, gener-
ating import declarations, and fixing syntactic errors. We
implemented CSnippEx as a plug-in for Eclipse and evalu-
ated it with 242,175 StackOverflow posts that contain code
snippets. CSnippEx successfully synthesized compilable
Java files for 40,410 of them. It was also able to effectively
recover import declarations for each post with a precision of
91.04% in a couple of seconds.

CCS Concepts
•Human-centered computing → Social networking
sites; •Software and its engineering → Source code
generation; Software libraries and repositories; Compilers;
Runtime environments;

Keywords
Crowd-generated snippets, developer social networks, pro-
gram synthesis

1. INTRODUCTION
Increasing number of software developers collaborate and

share experience over social networks. In particular, Ques-
tion & Answer websites (Q&A) [44], such as StackOverflow,
CodeRanch and CodeProject, are those frequently visited by
developers. On these Q&A websites, developers collaborate
by raising questions, sharing their solutions and rating re-
lated contents. Over time, these sites have collected large
volumes of crowd knowledge. For example, as of January
2016, StackOverflow had indexed 11 million questions and
18 million answers [6].

This crowd knowledge is useful to recent software develop-
ment practice [25] because many posts contain high quality
code snippets representing solutions of programming tasks,
bug fixes [15, 20, 27] or API usage examples [32, 33]. These
posts are continually rated, discussed and updated by the
crowd, providing valuable resources for code reuse and anal-
ysis [42]. For example, to boost productivity, developers
often reuse or draw inspiration from these code snippets [25].
Recent surveys reported that developers search for code snip-
pets in Q&A sites frequently and extensively [34, 40, 41, 42].
As a result, the popular Q&A site StackOverflow receives
∼500M views per month [5]. Besides code reuse, this large
volume of crowd-generated code snippets can be leveraged to
accomplish various software engineering goals. For example,
API library developers may leverage those snippets that use
their API to test their revised API implementation or to
collect possible usage profiles. Such profiles can be useful for
mining temporal specifications [26, 8]. Moreover, developers
may analyze these snippets for debugging [15, 27] or bug
fixing [20].

However, there is a major obstacle in reusing or analyzing
Q&A code snippets. The majority of Q&A posts (91.59% of
the 491,906 posts we collected from StackOverflow) contain
uncompilable code snippets [15, 45], indicating that they are
non-executable and semantically incomplete for precise static
analysis [26]. This phenomenon occurs because code snippets
on Q&A sites are written for illustrative purposes, where
compilability is not a concern. In fact, Q&A sites rarely check
the syntax of submitted snippets. The problem is further
exacerbated by the fact that submitted snippets are often
concisely written without implementation details in order to
convey solution ideas at high level [29]. Although the missing
implementation details could be synthesized manually, it
is tedious and often requires substantial familiarity with
various libraries. Such manual synthesis effort is, however,
not scalable for those crowd-based software engineering goals
that typically involve many code snippets [26, 15, 27, 20].

Analyzing the uncompilable snippets collected from 450,557
StackOverflow posts, we observed that the most common
compilation error (38%) is compiler.error.cant.resolve,
which is a consequence of missing declarations of program en-
tities (e.g., classes, variables and methods). This observation
is in line with Chen et al.’s finding [15].

Two technical challenges have to be addressed to automati-
cally resolve errors of this kind. First, it is difficult to resolve
external dependencies, e.g., inferring an appropriate type for
referred classes [46, 38, 18]. This is because the majority of
code snippets refer to library classes using simple names [18].
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Input

text text text text text
static C m1(B b) {

A a = new A();
C c = a.call(b);
return c;

}
text text text text text
text text text text text
System.out.println(m1(b));

+ import org.library1.A;
+ import org.library1.B;
+ import org.library1.sub.C;
+ public class Class {

static C m1(B b) {
A a = new A();
C c = a.call(b);
return c;

}
+ public static void main(String[] args) {
+ B b = null;

System.out.println(m1(b));
+ } }

Output

Figure 1: Example of a Q&A code snippet synthesis

Without fully qualified names (e.g., org.library1.sub.C),
naming ambiguities can easily arise, as many simple class
names across different libraries collide with one another [46,
38]. Recently, Subramanian et al. have attempted to address
this issue by leveraging fields, method signatures and scope
to recover the links between source code in Q&A sites and
API documentations [46]. However, the technique rarely
provides sufficient information to help users choose from
a set of candidates, since method name conflicts are also
common. For example, Dagenais et al. showed that 89% of
method names in widely-used libraries are ambiguous and on
average each method has name conflicts with 13 others [18].
Second, it is also hard to automatically partition multiple
code snippets in a post into an appropriate number of source
files. Simple heuristics such as always or never merging the
code snippets in a post into a single source file can hardly
cope with the complex real-world situations.

This paper presents a code snippet synthesis framework
CSnippEx (Code Snippet Extractor) and its implementa-
tion for the Java language. CSnippEx can automatically
synthesize a working context by converting the code snippets
extracted from a post into Java source files, properly includ-
ing library JARs in the build path, and generating import
declarations for referred classes. Once the working context
is set up, CSnippEx leverages Eclipse Quick Fix to correct
bad syntax, typos, and undeclared variables. CSnippEx
addresses the above-mentioned challenges as follows.

First, CSnippEx adopts a feedback-directed approach that
leverages compiler error messages to automatically infer how
to partition code snippets into multiple Java source files and
whether the dependency resolution is correct. Second, to
efficiently find the correct import combinations in a myriad of
candidate solutions, CSnippEx leverages a key observation
confirmed by analyzing ∼18 million real-world Java source
files. The observation, which we call clustering hypothesis,
is that the referred library classes in a Java source file often
come from the same libraries and hence their import declara-
tions tend to share common package names and form clusters
(e.g., A, B, C and their import declarations in Figure 1). The
hypothesis enabled us to design a linear time algorithm for
recovering import declarations for a code snippet.

We implemented CSnippEx as an Eclipse plug-in and
evaluated it with 242,175 StackOverflow posts that contain
code snippets. Given a short time budget, CSnippEx suc-
cessfully synthesized compilable Java files for 40,410 posts.
Code snippet merging and dependency resolution on average
only took 19 and 61 milliseconds. CSnippEx was also able
to effectively recover import declarations with a precision
of 91.04%, outperforming the existing API link recovering
technique that relies on the oracle of method signatures [46].

In summary, this paper makes four major contributions:

• A technique CSnippEx to automatically convert Q&A
site code snippets into compilable Java source code files
by fixing missing declarations of classes, methods and
variables.

• We implemented CSnippEx as an Eclipse plug-in and
evaluated it by extensive controlled experiments. The
results confirmed the effectiveness, efficiency of CSnippEx.

• We conducted statistical analysis on ∼18M real-world Java
source code files [19] to demonstrate that the clustering
hypothesis exploited by our technique is valid in practice.

• We release CSnippEx and our synthesized code snip-
pets [3]. Our tool and dataset can facilitate future research
on analyzing crowd-generated big data by various static
and dynamic code analysis techniques.

2. BACKGROUND AND MOTIVATION

2.1 Problem Formulation
The input of CSnippEx is a Q&A post (a unit of text)

that contains one or more code snippets, i.e., a collection
of Java source code lines. A Q&A post could contain de-
velopers’ communications in the form of natural language.
On popular Q&A sites, the code snippets are mostly en-
closed between dedicated HTML tags (e.g., <pre><code> on
StackOverflow), and thus can be unambiguously identified.

The output of CSnippEx is one or more compilation
units. A compilation unit (c-unit for short) is a legitimate
Java source code file, which can be accepted by standard
compilers. A c-unit declares Java reference types whose im-
plementation is given by the source code lines in the code
snippets (see Figure 1). Every c-unit and all its declared
types belong to a namespace or package. There are two ways
in which the code of a c-unit can refer to a Java type: by its
simple name (e.g., List), or by its fully qualified name (e.g.,
java.util.List), which is the concatenation of its package
name, a “.” token, and its simple name. Types in the same
package can refer to each other by simple names. To refer to
external types defined in other packages (e.g., a third-party
library), import declarations are needed to allow Java compil-
ers to unambiguously resolve the referred types. It is worth
mentioning that Java allows two kinds of (non-static) im-
port declarations: the single-type-import declaration, which
imports a single type into a c-unit by specifying its fully
qualified name (e.g., import java.util.List;), and the on-
demand-type-import declaration, which imports all the public
types of a package into a c-unit (e.g., import java.util.∗;).
A c-unit also has a name, which needs to be identical to the
name of its declared public class or interface type (if any).

We refer to the set of all c-units synthesized for a given
Q&A post as a compilation group (c-group for short).
Each c-group is associated with a build path, which contains
the declarations of external types referred by the c-units
(usually in the form of JAR archives). The build path needs to
be correctly configured because in a statically typed language
like Java, the declaration of each referred type has to be
available at compile time.

Our research problem is how to automatically convert
a Q&A post to a c-group that can be successfully compiled
by standard compilers without any errors.
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Not able to suggest 
import declarations 
if the right JAR is 
not in the buildpath

Quick Fix

Not able to reason how 
to merge code snippets

Figure 2: Quick suggestions of IDE like Eclipse.

2.2 Problem Analysis Based on StackOverflow
Achieving a successful conversion is challenging, as code

snippets are, by definition, incomplete fragments of code [46].
They might not be enclosed in methods or class declarations,
they might reference external types by simple names and
they might refer to undeclared variables (see Figure 1).

To understand the research problem and quantify to what
extent code snippets in Q&A sites are incomplete, we ana-
lyzed the Java code snippets in StackOverflow, which is the
most popular programming Q&A site [24]. Our goal is to de-
termine how many Q&A posts can be trivially converted into
compilable c-groups. To obtain these results, we constructed
a baseline synthesis technique described in the following.

Dataset. We conducted our analysis on the latest Stack-

Overflow data dump [7], which contains 907,226 questions
tagged with Java and 1,660,039 posts answering these ques-
tions. To select high quality code snippets (low quality ones
may be of less interest to real-world developers), we restricted
our analysis to 1,103,464 answer posts that are either ac-
cepted by the original questioner or have a score of at least
one. Among these posts, 44.58% (491,906) contain Java
code snippets. We identified them by extracting the text
between the code block HTML tags, i.e., <pre><code>.

Code wrapping. In a well-formed c-unit, no dangling
method declarations or statements are allowed. That is, they
must be enclosed in a class or interface declaration. Among
the 491,906 posts, we observed that only 22.87% (112,493)
contain class or interface declarations, 21.34% (104,983) con-
tain dangling method declarations, and the majority of posts
55.79% (274,430) contain dangling statements, which are not
embedded in any class or method declarations. To convert
each code snippet in a post into a well-formed c-unit, in the
baseline approach, we generate a synthetic public class to
embed dangling method declarations and statements (if any).
The dangling statements are first embedded into the main

method before being embedded into the synthesized class.
Baseline synthesis. From the 491,906 posts, we observed

that 35.71% (175,653) contain multiple code snippets like
the example in Figure 1. Following Subramanian et al.’s
work [45], which analysed Android code snippets in Stack-

Overflow, for the baseline synthesis we considered each code
snippet in a post as an individual c-unit. For each c-unit,
we also include all import declarations that are present in
the corresponding code snippet. Following the Java language
specification, we name each c-unit with the name of the
declared top level public type (if any). If such a public type

Table 1: Top 3 of the 3,905,444 compilation errors

Top@ Error code freq. %
compiler.err.cant.resolve

class 950,324 24.33%
Top 1 variable 484,035 12.39%

method 50,677 1.30%
others 590 0.02%

total 1,485,626 38.04%
Top 2 compiler.err.expected 1,188,663 30.44%
Top 3 compiler.err.not.stmt 256,926 6.58%

does not exist, we will give the c-unit an arbitrary name.
As we mentioned earlier, all such synthesized c-units for a
post will form a c-group. Then, we orgnize all c-units in a
c-group into the same package so that they can refer to each
other by simple names. The build path of each c-group is
initialized to include Java JDK 1.7 and Android-20 SDK.
If a c-unit contains import declarations, we automatically
query the Maven Central Repository [1] to download and
include necessary library JARs in the build path, which can
be unambiguously identified due to Java package naming
conventions [9] being widely adopted. In case the library
JARs have multiple versions, we select the latest one, since
libraries usually guarantee backward compatibility [12].

Results. From the 491,906 posts, we obtained 764,258
c-units, which in total contain 10,701,347 (non-blank) lines
of code (LOC). On average, each c-group has 1.55 c-units
(median is 1) and 21.75 LOC (median is 15). We then com-
piled the obtained 491,906 c-groups into bytecode class files
using the javac tool [21]. We observed that only 8.41%
(41,349) can be successfully compiled without any errors. We
analyzed the 3,905,444 compilation errors reported by the
javac diagnostic tool. Table 1 lists the top three most com-
mon errors grouped by error code prefix. The most common
error (38%) is compiler.error.cant.resolve, which is a
consequence of missing declarations. We further classified
these errors according to the types of the symbols, of which
the declarations are missing. Table 1 provides the breakdown.
We can see that in many cases, the compilers failed to resolve
the types of clasess (24.33%) and variables (12.39%). This
classification is partially performed by the javac diagnostic,
using heuristics. For example, if the symbol A cannot be
resolved in A a;, the javac diagnostic considers A as a class,
while in case of A.a, the symbol A can be either a class or
a variable. For the latter ambiguous case, we use the Java
naming conventions [9]. For example, if a symbol name con-
tains an “ ” or it starts with a lower case char, we consider
it as a variable. The second and third most common errors
are generic ones that likely result from broken code snippets
(e.g., those containing natural language, pseudo-code, place
holders). These errors can hardly be automatically fixed.

Our research scope. In light of these findings, we narrow
the scope of our research problem on the most common error
type, i.e., missing declaration errors.

2.3 Limitations of IDE Quick Fix Tools
Modern Integrated Development Environments (IDE) (e.g.,

Eclipse, IntelliJ IDEA) offer full-fledged and sophisticated
techniques (Quick Fix ) that offer suggestions and automated
fixes to correct bad syntax, complete partial expressions,
suggest and insert import declarations. Unfortunately, these
techniques cannot effectively recover missing type informa-
tion in Q&A code snippets. Let us use the example in
Figure 1 to illustrate the limitations of Quick Fix tools.
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package a

imports …..

public class

Input Compilation Units

no 
errors

Output

c-unit1 
merge
c-unit2

Q&A post

package a

import …..

public class

C-Unit 
Inference

compilation 
errors

import org..

Quick Fix

Code
Completer

Dependencies
Resolver

<pre><code>
int a = 0;

a++;
</code></pre>

Baseline
Synthesis Compiler

Figure 3: Overview of CSnippEx

The Input column of Figure 1 shows an example post
containing two Java code snippets without class (i.e., A, B,
and C in first code snippet) and variable (i.e., b in the second
code snippet) declarations. The Output column of Figure 1
gives the corresponding compilable Java code. Here, let us
assume the three concerned classes A, B and C are defined
by some external sources (e.g., in a library JAR). Despite
wrapping the code snippets in class and method declarations,
their compilation leads to cannot.resolve errors.

1) Cannot find symbol classes A, B and C. Quick Fix tools
fail to suggest the right import declarations if the appropriate
JAR is not in the build path. Figure 2 shows the suggestions
of Eclipse Quick Fix for the code snippet in Figure 1. The
code completions that it suggests are to create an empty
class, interface or enum with that name. This will resolve
the compilation error but mock declarative completeness,
compromising the usefulness of the synthesized code. Even
if the right JAR is included in the build path, due to name
ambiguity problems of class names [46], there could be many
candidate import declarations with the same class name.
Quick Fix cannot help decide which one to generate.

2) Identifier b cannot be resolved to a variable. Quick
Fix can automatically generate the missing declaration of
variables, for example line 21 in Figure 2. However, without
knowledge of the type of variable b, it ends up creating a
generic type java.lang.Object.

3) The method m1(Object) is undefined. To fix this bug,
the two code snippets should be merged in the same class.
Such a resolution is not supported by Quick Fix, which leaves
the decision of how to construct a c-unit to developers. The
code completion that it suggests is again to mock declarative
completeness by creating method m1.

2.4 Challenges
Addressing the above-mentioned compilation errors auto-

matically is challenging.
First, although creating synthetic class and method dec-

larations is trivial, it is hard to automatically infer whether
the multiple code snippets in a post should be merged to the
same c-unit/class. A strategy that always synthesizes each
code snippet as an individual c-unit can lead to compilation
errors as occurred at line 22 in Figure 2. On the other hand,
a strategy that always merges code snippets in a post to one
c-unit might lead to already.defined errors.

Second, it is often difficult to automatically identify which
libraries a Q&A post refers to [46, 38, 45]. This is because the
majority of code snippets refer to library classes using simple
names. We found that only 6.88% (33,833) of the posts
we extracted contain import declarations. A simple name
provides insufficient information to link it to the correct fully
qualified type name [46] as a unqualified name can match
many fully qualified type names in different libraries [46, 38].
Identifying the right external dependencies in the absence
of fully qualified names is a major challenge for correct code
snippet synthesis.

3. CSNIPPEX OVERVIEW
CSnippEx is designed and built to synthesize compilable

Java source code files from Q&A code snippets. Figure 3
gives an overview of CSnippEx. First, it obtains a c-group
by applying the baseline synthesis (as explained in Section
2.2) to a given Q&A post. Then it iteratively refines the
c-group within a given time budget until the c-group can
be successfully compiled. In a nutshell, CSnippEx adopts a
feedback-directed approach that guides the synthesis of code
snippets based on the feedbacks returned from the Java com-
piler, in the form of compilation error messages. In each
iteration, it refines the c-group based on the compilation
errors returned in the previous iteration. It then compiles
the refined version of the c-group and the resulting compi-
lation errors, if any, will be an input for the next iteration.
Specifically, CSnippEx comprises three components to infer
c-units, recover dependencies and support Eclipse Quick Fix.
• C-Units Inference (Section 4). This component resolves

those missing type declarations that can be fixed by merg-
ing multiple code snippets in a post. It automatically
partitions these multiple code snippets into c-units, while
leveraging the feedback from the Java compiler to decide
whether some code snippets should be merged.

• Dependencies Resolver (Section 5). This component
resolves the external dependencies of a c-group. It au-
tomatically identifies the appropriate external libraries,
downloads the JAR archives, and generates import dec-
larations. It achieves this goal by using the synergy of
our clustering hypothesis (Section 5.1) and the feedback-
directed approach. The former helps identify the most
suitable import declarations, while the latter helps refine
the solution by excluding those import declarations that
lead to compilation errors.

• Code Completer (Section 6). This component resolves
compilation errors caused by bad syntax, typos and missing
variable declarations. It automatically applies code com-
pletions to fix compilation errors based on the suggestions
of Eclipse Quick Fix.
Note that the order in which these three components are

executed is important. As discussed in Section 2.3, applying
Quick Fix before the first two components can only mock
declarative completeness. C-units inference and dependency
resolution, the main contribution of this work, are required
to prepare the working environment for Code Completer.

4. C-UNITS INFERENCE
In this section, we explain how CSnippEx automatically

partitions multiple code snippets of a Q&A post into appro-
priate c-units. The high level idea is to merge code snippets
together if they do not conflict with each other, i.e., merging
them does not lead to already.defined errors. For instance,
when dealing with the missing declaration error at line 22
of Figure 2, CSnippEx would merge the two code snippets
into the same class.
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input : 〈csi〉 a sequence of code snippets from a Q&A post
output : c-group, a collection of c-units

1 current ← null
2 for each code snippet csi do
3 errors ← javac wrap(csi)
4 if compiler.err.already.defined ⊂ errors then
5 csi ← renaming(csi)

6 merge ← true
7 if csi is a class declaration then
8 merge ← false
9 else

10 temp ← current ∪ wrap(csi)
11 errors ← javac temp
12 if compiler.err.already.defined ⊂ errors then
13 merge ← false

14 if merge = true then
15 current ← temp
16 else
17 if current 6= null then add current to c-group
18 current ← wrap(csi)

19 if current 6= null then add current to c-group

Algorithm 1: C-Units Inference

Algorithm 1 illustrates the c-units inference process. It
takes as input a sequence of code snippets 〈csi〉 from a
Q&A post, where the index i represents the order in which
they appear in the post. The algorithm outputs a c-group
synthesized from 〈csi〉. When merging code snippets, instead
of trying all possible combinations, we leverage an observation
that the order in which code snippets appear in a post is
likely to follow some rational order. Odd combinations like
cs1 and cs3 belonging to a same c-unit while cs2 and cs4
belong to another one are unlikely to occur in practice. In
view of this, the algorithm performs a linear and sequential
scan of 〈csi〉, and for each csi, it checks whether it should
be merged into the latest c-unit or it should form its own
c-unit. We now describe the whole process in detail.

Before inferring c-units, CSnippEx resolves any “symbol σ
already defined at line ε” compilation errors that appear when
compiling each code snippet csi in isolation (lines 3–5). σ
could be a variable, a method or a reference type. Although
these errors are uncommon in our dataset (0.03%), they
must be fixed because CSnippEx relies on such compiler
error messages to identify wrong compositions of c-units.
If the already.defined errors appear when compiling a
code snippet in isolation, it would jeopardize the c-units
inference. To detect such errors, CSnippEx wraps each csi
inside synthetic method and class declarations (when csi
contains dangling method declarations or statements), and
compiles the resulting c-unit (line 3). If these errors are
encountered, CSnippEx performs renaming operations on
csi to fix them. Specifically, for each duplicated declaration

“symbol σ already defined at line ε”, it replaces σ with σ1

for all the occurrences of σ in csi at the declaration line
ε and all subsequent lines. The rationale of this choice is
that all references after line ε are likely to refer to the latest
declaration at line ε, rather than older ones before line ε.

The c-units inference process starts by checking the type
of csi. If it is a (non-private) class declaration, the algorithm
always decides not to merge csi with the current c-unit (line
8). CSnippEx makes this choice for two reasons. First,
(non-private) class declarations form a natural boundary of
c-units, as usually each c-unit is associated with a single
class declaration. Second, all c-units in a c-group belong to
the same package. In Java, all (non-private) classes declared
in the same package are visible to each other, regardless

1 Function recover (c-group)
2 errors ← javac c-group
3 if errors = ∅ ∨ time-out then
4 return c-group

5 for each c-unit cu ∈ c-group do
6 for each e ∈ errors(cu) do
7 if e = compiler.err.cant.resolve class t then
8 Tcu ← Tcu ∪ t

9 cu.imports ← findImports(Tcu,errors)

10 TF ← TF ∪ cu.imports

11 c-group.buildPath ← getJarFromImports(TF )
12 return recover(c-group);

Algorithm 2: Dependencies resolver

whether they are declared in the same c-unit or not [21].
Therefore, merging csi with the current c-unit makes no
influence on our goal of making the c-group compilable, but
may potentially make our algorithm less efficient. If csi is
not a class declaration, CSnippEx creates a temp c-unit by
merging csi with the current c-unit (line 10). Specifically,
if csi is a method declaration, it is enclosed in the latest
top-level class declaration in current. Otherwise, if csi is
a collection of dangling statements, it is appended to the
end of the main method of current ’s latest top-level class.
Next, CSnippEx compiles temp and if it encounters any
already.defined error, it decides that temp is not a valid
composition of code snippets (line 13).

After processing each code snippet, CSnippEx checks the
decision made: if merge is true, it updates current with temp,
otherwise it saves the current c-unit and creates a new one
enclosing csi. All such inferred c-units in the end are added
to the same c-group.

5. DEPENDENCIES RESOLVER
Algorithm 2 describes how CSnippEx automatically re-

solves the dependencies to external types. Given a c-group,
the algorithm returns a dependency context for this c-group,
i.e., the necessary import declarations for each c-unit (if miss-
ing) and the build path containing the JAR archives of the
recovered external libraries. For each c-unit cu in the c-group,
our algorithm scans its cant.resolve errors and collects the
set of missing references to external class types: Tcu = {ti}
(lines 7–8). Note that multiple references to the same type
are considered only once, and if a type is referred to by both
its simple name and fully qualified name, the former would
be removed from Tcu. To infer if ti refers to a class type,
our algorithm relies on the Java compiler error messages and
Java naming conventions (as discussed in Section 2.2). Note
that it is generally not possible to statically determine all
missing types in a single pass of compilation [30]. This is
mainly because of transitive dependencies. Besides, some
type errors can also be masked by other errors and only ap-
pear when other missing types have been resolved. For this
reason, Algorithm 2 is a recursive process. In each iteration,
it checks for new cant.resolve errors and updates Tcu.

To recover the missing dependencies, CSnippEx relies on
a Type Repository (TR) constituted by 123,591 pairs
of fully qualified names and the latest version of the cor-
responding JAR archive. As Java naming conventions are
widely adopted, such mappings are unique. We build TR
by using the popular Maven Central Repository, which con-
tains a large set of commonly used library artifacts. Let
CTi denote the set of candidate fully qualified names for
a type ti ∈ Tcu. To facilitate subsequent discussion, let
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us denote a type t’s simple name as tS and fully qualified
name as tF . For a simple name tSi ∈ Tcu, CTi is defined as
{tF | tF : p.tSi ∈TR }, where p is the package of tF . For a
fully qualified name tFi ∈ Tcu, CTi is a singleton set {tFi }, if
tFi ∈ TR. Let I denote the set of all possible dependency
resolving solutions for types t1, . . . , tn in Tcu. Then I can be
defined as the n-ary Cartesian product of sets CT1, . . . , CTn,
i.e., I = {〈tF1 , . . . , tFn 〉 | tFi ∈ CTi}. For each c-unit cu in a
given c-group, our algorithm returns a possible solution (i.e.,
finding import declarations) contained in I (line 9).

Build path recovering. After processing all c-units in
the c-group, the algorithm queries the Maven repository to
download the JAR archives that should be included in the
build path (line 11). Note that each c-unit may contain refer-
ences to multiple libraries, and the same import declarations
might be shared across mutilple c-units of the same c-group.
As such, CSnippEx identifies the minimum number of JAR
archives that can cover all elements in TF (i.e., the set of
all import declarations obtained from the current iteration).
It achieves this by using a greedy approximation algorithm
of the set covering problem [16]. CSnippEx then starts a
new iteration of Algorithm 2 (line 12) until there are no
compilation errors or time is out (lines 3–4).

The combinatorial explosion challenge. Our algo-
rithm aims to find the correct import declarations in I (line
9). Unfortunately, this is not an easy task. In practice,
the situation like Figure 4 is rare. In most cases (92.3%
of the 491,906 posts in our dataset), import declarations
are missing for code snippets in Q&A posts. If the code
snippets refer to external types by simple names, naming
ambiguities can easily arise due to the collision of simple
names across libraries [46, 38]. For example, let us assume
that the code snippets in Figure 4 were originally posted
without any import declarations. Our algorithm at line
8 would collect Tcu = {tS1 = File, tS2 = Document,tS3 =
Jsoup, tS4 = PrintWriter, tS5 = IOException}. Accord-
ing to our TR, the cardinality of the corresponding sets of
candidate fully qualified names would be |CT1| = 10, |CT2| =
97, |CT3| = 1, |CT4| = 1, |CT5| = 14. Then in this sim-
ple case with even two singleton sets, the cardinality of I
(|CT1|× |CT2|× · · ·× |CTn| according to rule of product [39])
is 13,580. On average, in our experiments, the cardinality
of I is 2.51 × 1034. Clearly, finding a solution in such a
huge search space is challenging. To address this challenge,
CSnippEx exploits a property of the import declarations that
we hypothesize to be often satisfied in real-world programs.

5.1 Clustering Hypothesis

Import declarations in the same compilation unit likely form
clusters, each of which refers to a package or sub-package.

Consider the code snippet in Figure 4. There are five im-
port declarations forming two clusters. The first three import
declarations refer to the same package java.io, while the
remaining two refer to the same sub-package org.jsoup. Our
insight of the clustering hypothesis is that multiple imported
type declarations in a c-unit often refer to the same (sub-
)packages because the imported types from the same package
more likely interact with one another than with those from
other packages. For example, the method call parse() in Fig-
ure 4 returns an object of type org.jsoup.nodes.Document

that shares the same sub-package with the type on which the
method is called, i.e., org.jsoup.Jsoup. Similar observation

compilable code snippet
stackoverflow.com/a/23702225public class HtmlParser {

[….] try {
File input = new File(fileName);
Document doc = Jsoup.parse(input, "UTF-8");
String newTitle = 4doc.select("font.classname").first().text();
doc.title(newTitle);
PrintWriter writer = new PrintWriter(input,"UTF-8");

[….]
} catch (IOException e) { [….]

import java.io.File;
import java.io.IOException;
import java.io.PrintWriter;
import org.jsoup.Jsoup;
import org.jsoup.nodes.Document;

Figure 4: Example of compilable code snippet.

can be made on the other cluster. This hypothesis can help
CSnippEx efficiently identify correct import declarations
from a myriad of possible solutions.

To validate our hypothesis, we performed a large-scale
statistical analysis on real-world software repositories using
the web service BOA [19]. Software repositories are suitable
for our statistical analysis on import declarations because
they usually contain compilable c-units. We considered the
latest BOA dataset, which is composed by the snapshots of
GitHub at September 2015 and Sourceforge at September
2013. This dataset contains ∼31 million Java c-units with a
total number of import declarations of ∼198 millions.

From the analysis, we first observed that 4.48% of all
import declarations are on-demand-type-import, which is a
discouraged coding style [37]. The observation provides some
support of our hypothesis because the imported types in-
deed belong to the same package or sub-package. To further
validate our hypothesis, we performed a Single-Linkage Hier-
archical Clustering [22] on the import declarations. Our goal
is to test if indeed the import declarations of the same c-unit
form clusters naturally. To identify the clusters, we propose
a dedicated similarity metric on package names because stan-
dard metrics on strings are inadequate in our context. For
example, the edit distance [23], which measures the minimum
number of operations required to transform one string to
the other, would attribute distances stochastically, based on
textual similarity. For a given package p, let len(p) be its
length, which is given by the number of package levels that p
prescribes. Recall that a package uses a hierarchical pattern
name, where levels in the hierarchy are separated by dots (“.”).
We use pi to denote the i-th level of p, where i ∈ [1, len(p)]∩N.
For example, given p=java.util.regex: len(p)=3, p1=java,
p2=java.util and p3=java.util.regex. Let us define the
distance between two packages pa and pb as the length of
the longest uncommon suffix. More formally, d(pa, pb) =
max{len(pa), len(pb)} − k, where k is the length of the
longest (in terms of levels) common prefix, i.e., the largest
natural number between 1 and min{len(pa), len(pb)} such
that pka = pkb . For instance, d(java.util, java.util)= 0,
d(java.util, java.util.regex)= 1.

Since there is no prior knowledge of the number of expected
clusters (which is exactly what we want to find), we adopt
a density threshold τ ∈ N+. Given I ∈ I, the import
declarations of a c-unit and threshold τ , let PτI denote a
partition {I1, I2, . . . , In} of I such that each pair of import
declarations in the same subset (cluster) has a distance less
than τ , i.e., for each i = 1, 2, ..., n, (∀j, w ∈ Ii)

(
d(j, w) < τ

)
.

The heterogeneity degree HD of the import declara-
tions I with threshold τ is defined as follows:
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HDτ
I =
|PτI |
|I| 100 ∈ [100; 0) (1)

where |PτI | denotes the number of clusters and |I| denotes
the total number of import declarations of a given c-unit.
For example, let us consider the five import declarations in
Figure 4 (|I| = 5). For τ = 1, three clusters are formed
(i.e., |P1

I | = 3), thus HD1
I is 60. For τ = 2, two clusters are

formed (i.e., |P2
I | = 2), thus HD2

I is 40. Note that for any
import declarations I, |PτI | ≤ |I| as it is impossible to have
more clusters than the number of import declarations, and
|PτI | ≥ 1 as at least one cluster must be formed. Therefore,
HDτ

I ∈ [100; 0). HDτ
I has the maximum value of 100 when

each import declaration in a c-unit forms its own cluster.
The lower the number of clusters is, the lower the value of
HDτ

I is. HDτ
I attains the lowest value when |PτI | = 1. When

this occurs, we have the minimum heterogeneity degree as all
import declarations are grouped in the same cluster. Thus,
a low value of HDτ

I supports our clustering hypothesis.
We computed the HDτ

I of those c-units in the BOA dataset
with at least two single-type and without any on-demand-
type import declarations in I (∼18 millions c-units). We
choose values of τ = 1, 2, 3, 4 because the average number
of levels per import declarations in the dataset is ∼4. Note
that the lower the value of τ is, the stricter the clustering
criteria is. For example, with τ = 1, import declarations
are grouped in the same cluster if and only if they have an
identical package name (i.e., d(pa, pb) = 0). Table 2 shows
the results. We can observe that the average and median is
far less than 100, supporting our clustering hypothesis. In
addition, Figure 5 shows the average values of HDτ according
to the number of imports declaration per c-unit (|I|). The
heterogeneity degree HD decreases when |I| increases. This
is because: the higher the number of import declarations is,
the higher the probability that they form clusters is.

Table 2: Average, median of HDτ
I with τ = 1,2,3,4

of the ∼18 millions c-units in the BOA data-set[19]

HD1 HD2 HD3 HD4

average 62.00 44.44 34.64 27.68
median 60 40 28.57 22.22
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Figure 5: Average of HDτ
I according to number of

import declarations per c-unit/class (|I|)

5.2 Recovering Import Declarations
CSnippEx leverages the clustering hypothesis to prioritize

the possible solutions in I. Intuitively, those solutions that
form a small number of clusters have higher priorities. How-
ever, it is infeasible to first compute HDτ

I for each possible
solution I in I and then rank the solutions according to HDτ

I .
This is because in practice, I is too huge to be exhaustively
enumerated. To address this problem, we propose a greedy
algorithm (Algorithm 3). The algorithm initially identifies

1 Function findImports(T,errors)
2 if top = null ∨ isNew(T) then
3 for each ti ∈ T do
4 for each p : in p.tS ∈ CTi do
5 freq(p)++

6 for each ti ∈ T do
7 for each tF : p.tS ∈ CTi do
8 score(tF ) ← freq(p)

9 sort DESC CTi by score, name

10 top ← 〈CT1[0], CT2[0], . . . , CTn[0]〉
11 if errors 6= null then
12 replace topi ⊂ errors with CTi[1]

13 for each ti ∈ T do
14 for each p in p.tS ∈ CTi do
15 freq(p)← 0

16 for each ti ∈ T do
17 for each p in p.tS ∈ CTi do
18 if ∃tF :p1.tS ∈ top such that p1 = p then
19 freq(p)++

20 for each ti ∈ T do
21 for each tF : p.tS ∈ CTi do
22 score(tF ) ← freq(p)
23 for k = 1..3 do
24 if freq(plen(p)−k) > score(tF ) then

score(tF ) = freq(plen(p)−k)+1
25

26 sort DESC CTi by score, name

27 return top ← 〈CT1[0], CT2[0], . . . , CTn[0]〉

Algorithm 3: Recovering Import Declarations

the solution that forms the highest cardinality cluster with
density threshold τ = 1 (line 2–10). Then (in case of un-
successful compilation) it relies on compilation errors and
higher density thresholds (τ = 2, 3, 4) to further refine the
solution (lines 11–27). In the following, we illustrate how our
algorithm can successfully recover import declarations using
the example code snippet in Figure 4. Let us assume the code
snippet was originally posted with no import declarations.

Identifying the clusters with highest cardinality. If
the top solution is empty and whenever new missing class
declarations are found (line 2 of Algorithm 3), lines 3–5 scan
each package p in CT1,CT2, . . . ,CTn and compute its global
frequency. Then, for each candidate fully qualified name tF :
p.tS in each CTi, the algorithm gives tF a score of its package
p’s global frequency (lines 6–8). Next, line 9 orders all candi-
dates in each CTi by their score. In case multiple candidates
in a CT i share the same score, the algorithm orders them
alphabetically by their package name. After ordering, the
algorithm returns the top solution by picking the highest
ranked candidate from each CT i (line 10). The rationale
of the algorithm is that by construction it guarantees that
packages in top form clusters with the highest cardinality.
Note that the alphabetic ordering is critical for guaranteeing
this property, since it ensures a fixed order of candidates for
each CT i in tie cases. To ease understanding, Table 3 gives
the algorithm’s running result for our example. As we can
see, CSnippEx identified the cluster java.io, which has the
highest cardinality, and three correct import declarations.
However, the import declaration of the type Document is still
wrong (it should not be org.bson.Document). This can be
fixed by the following refinement process.

Refining the solution by compilation errors. The
first refinement takes into account the compilation errors
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Figure 6: Experimental results of CSnippEx

returned when compiling the c-group with the dependency
context given by the solution top returned at line 10. Note
that this refinement is not applicable for our example at this
stage, as a possible dependency context has not been gener-
ated yet (it will be generated after line 11 of Algorithm 2).
The refinement works as follows. If an error (regardless of its
error code) involves a fully qualified name tF in top, tF is re-
moved from top (line 12 of Algorithm 3) and the next ranked
(if it exists) candidate will become the highest ranked accord-
ingly. It is worth mentioning that tF is only suspicious at this
moment (not definitively wrong), as it could be accidentally
involved in a compilation error because of other wrongly
recovered import declarations. For example, let us assume
that our previous solution associated File in Figure 4 with
a wrong fully qualified name scala.io.File, while Print-

Writer was associated correctly with java.io.PrintWriter.
The compilation error in this case would be: the constructor
java.io.PrintWriter(scala.io.File, java.lang.String) is unde-
fined. Although, java.io.PrintWriter is involved in the
error, it is actually correctly resolved. If the algorithm sim-
ply discards java.io.PrintWriter, it would not be able to
provide the correct solution in the end. Therefore, a sus-
picious tF would not be definitively removed from CT i: in
case CT i becomes empty before Algorithm 3 returns, CT i
is restored with its original (complete) form.

Refining the solution by higher density thresholds.
The second refinement (lines 13–26 of Algorithm 3) com-
putes the global frequency for only those packages that are
contained in top (lines 16–19). Then it checks whether by
considering different levels of package (i.e., different den-
sity thresholds), there exists another tF (excluding those
already in top) that can belong to a higher cardinality
cluster (lines 20–26). For our running example, this re-
finement process can successfully help identify that can-
didate org.jsoup.nodes.Document is more suitable than
org.bson.Document. This is because the frequency of the sub
package org.jsoup has a higher frequency than org.bson.

6. CODE COMPLETER
This component systematically applies code completions

proposals to fix compilation errors based on the suggestions of
Eclipse Quick Fix. It excludes those suggestions that propose
to remove statements or mock declarative completeness (e.g.,
creating an empty class). After applying each suggestion,
the c-group is recompiled to check weather the concerned
error has been fixed or new errors arise. Iteratively, the code
completer systematically applies Quick Fix suggestions until
the compilation succeeds or time is out.

Specifically, in the completion process, CSnippEx uses a
Breadth First Search (BFS) strategy to identify the solution
that can fix all errors with a minimum number of steps.
This strategy follows the principle of theoretical parsimony
Occam’s razor [13]: the simplest solution (i.e., that involving
the minimum number of steps) is the one that should be
preferred. This principle is also leveraged to suggest the best
Eclipse Quick Fix suggestion in related work [28].

Table 3: Running example

File IOException PrintWriter Document Jsoup

3java.io 3java.io 3java.io 1org.bson 1org.jsoup

1scala.. 1com.sun.. 1org.jdom2

1org.specs.. 1net.kuujo.. 1org.jsoup.nodes

.... ... ....

↖ after line 10 of Algorithm 3 ↗
3java.io 3java.io 3java.io 2org.jsoup.nodes 1org.jsoup

.... ... 1org.jdom2

1org.bson

....

↖ after line 27 of Algorithm 3 ↗

7. EVALUATION
In this section, we present our experimental evaluation of

CSnippEx. We start by introducing implementation details.
We implemented CSnippEx as an Eclipse plug-in. To

sythesize compilable code snippets, users only need to pro-
vide the URL to the corresponding StackOverflow post.
For performance consideration, the first two components of
CSnippEx analyze, modify and compile the intermediate
c-groups in memory using the javax.tools.JavaCompiler

APIs. CSnippEx only writes Java source code files to disk if
they are compilable or it needs to invoke Eclipse Quick Fix
via the org.eclipse.jdt APIs. For dependency resolution,
CSnippEx automatically accesses third-party web platforms
to search those fully qualified names that match the sim-
ple names of the types whose declarations are missing and
download necessary JAR archives to configure build path [1].

Experimental Setup. To perform large-scale experi-
ments, we built a local database of StackOverflow posts to
ease data retrieval [7]. In order not to violate the Maven Cen-
tral Terms of Service [4], which limits the number of JARs
that can be downloaded in one day, we cached 3,000 JARs
locally (the collection process takes months). We obtained
the list of these JARs by running CSnippEx on our dataset.
These 3,000 JARs are those top ones that are requested to
construct our type repository. To avoid conflicts between
build paths of different c-groups, each c-group is extracted
as a dedicated Eclipse project. All our experiments were
conducted on a Windows 7 64-bit desktop PC with an Intel®

Core i3-3220 CPU and 12 GB RAM.

7.1 Synthesis Effectiveness
In our first set of experiments, we evaluated CSnippEx’s ef-

fectiveness of synthesizing compilable c-groups. As discussed
earlier, the baseline synthesis failed for 450,557 StackOver-

flow posts (see Section 2.2). For our experiments here, we
selected 242,175 of these 450,557 posts as subjects. We se-
lected these posts because after compiling the corresponding
c-groups synthesized by the baseline approach, Java compiler
reports at least one missing declaration error. These errors
are those that CSnippEx aims to resolve. We then ran the
first two components of CSnippEx and set the time budget
to one second per post. Figure 6 summarizes our the results.

The C-Units Inference component on average finshed
processing each post in 19.04 milliseconds (median = 15). In
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total, it successfully synthesized 1,020 compilable c-groups.
Moreover, it also fixed all missing declaration errors for 2,980
c-groups, but these c-group were still not compilable due
to other types of errors, which are out of our study scope.
For 205 c-groups, the Java compiler crashed and we removed
them from our experiments. The remaining 237,970 c-groups
still contained missing declaration errors, which would be
further fixed by other components. Besides, with this step,
the average number of c-units per c-group decreased from 1.41
to 1.09, showing that the merge operations in Algorithm 1
were successful in many cases.

The Dependencies Resolver on average finished depen-
dency resolution for each post in 61.53 milliseconds (median
= 35). It successfully synthesized 38,421 compilable c-groups.
The majority of the recovered external dependencies involve
third-party libraries. For example, only 1,558 of the 5,826
unique import declarations recovered by CSnippEx for the
38,421 compilable c-groups are related to JDK or Android
SDK. For 54,942 c-groups, CSnippEx requested JARs that
were not cached by us (recall that we only cached 3,000 pop-
ular ones for experiments) and therefore CSnippEx cannot
handle them. For 2,599 c-groups, the Java compiler crashed
and we removed them from our experiments. The remaining
142,008 c-groups were still not compilable after timeout. This
could be caused by two reasons: (1) CSnippEx recovered
a wrong dependency context, or (2) the dependency con-
text was correctly recovered, but other errors (e.g., missing
variable declarations) in the c-units prevented a successful
compilation. Next, these c-groups would be further handled
by the code completer of CSnippEx . For the code comple-
tion experiments, the highest ranked dependency contexts
recovered by CSnippEx would be chosen.

The Code Completer component creates an Eclipse
Java project for each c-group and automatically explores the
code completion possibilities suggested by Eclipse Quick Fix.
Instead of handling all types of errors, we focused on fixing
missing variable declarations, which are within our study
scope. In the experiments, we randomly selected 12,648
(9%) c-groups and launched the code completer to process
them with the time budget set to one second per c-group.
It is worth mentioning that we only managed to experiment
on 12,648 c-groups because in order to run code completer,
Eclipse needs to create and set up a Java project for each c-
group. The performance of Eclipse degraded over time when
more projects were created, taking ∼30 seconds for each
c-group. Finally, 969 c-groups were successfully synthesized.

From the above discussions, we can see that CSnippEx ef-
fectively synthesized a large number of c-groups from Stack-

Overflow posts. Of course, there also exist many posts
that CSnippEx cannot handle. This is because currently
CSnippEx only focuses on resovling missing declaration er-
rors, which are the most common in our dataset.

7.2 Precision of the Dependency Resolving
In our second set of experiments, we performed an in-depth

evaluation of CSnippEx’s Dependencies Resolver, which is a
major contribution of this paper.

Subject selection and ground truth. Although it is
impossible to recover the real missing implementation details
for a post with incomplete code snippets, it is possible to
construct a golden set from those posts with complete code
snippets. In our dataset, 33,735 (6.86%) posts contain import
declarations, which we could remove to construct the golden

Table 4: Results of the 13,444 posts in the golden-set

solution % C % E avg time med time
Top@ compile equivalent (ms) (ms)
Top 1 76.87% 76.30% 66.53 32
Top 10 89.66% 87.35% 103.79 47
Top 100 91.04% 88.27% 4,454.23 1,889

set for evaluating to what extent CSnippEx is able to recover
these import declarations and synthesize compilable c-groups.
To avoid potential biases or conflicts due to the presence of
other types of errors or missing implementation details, we
first selected those posts that can be successfully handled by
the baseline approach (e.g., the example in Figure 4). We
further excluded: (1) 525 (1.57%) posts that only contain
import declarations, but no source code lines, (2) 285 (1.87%)
posts that contain static import declarations, which are
currently not supported by our tool, and (3) 1,016 (7.03%)
posts containing multiple code snippets (for these posts, we
could not unambiguously associate the import declarations
to a single code snippet). A total of 13,444 c-units/posts
were selected for the experiments. On average, each c-unit
has 6.37 import declarations (median = 5). The average size
of I according to our type repository (TR) is 2.51× 1034.

We then removed the user-specified import declarations
from these c-units and ran CSnippEx (Algorithm 2) to
recover them. In our experiments, the stopping criterion is:
either the c-unit can be successfully compiled or the top 100
solutions (i.e., configurations of import declarations) in I are
attempted. During the process, we also collected results for
Top 1 and Top 10 solutions in I.

Table 4 presents the results. Column “%C” shows the
percentage of Q&A posts that were successfully synthe-
sized into compilable c-units. Column “%E” shows the per-
centage of synthesized c-units whose import declarations
are equivalent to the original user-specified ones. Note
that if the original import declarations contain wild cards
(e.g., org.library.*), we would use regular expressions
to match it with single-type import declarations recovered
by CSnippEx (e.g., org.library.C). The remaining two
columns show the average and median time of the recovery
process for each post, respectively.

The results confirmed the effectiveness of our clustering
hypothesis in identifying the correct solutions in the huge
search space of I. For example, for 76.87% of the posts, the
Top 1 solution returned by Algorithm 3 achieved successful
compilation. The results of Top 10 and Top 100 are even
better: for 91% of the posts, CSnippEx successfully synthe-
sized compilable c-units after trying the Top 100 solutions.
This also demonstrated the effectiveness of the refinement
process in Algorithm 3. Moreover, a large percentage of
compilable c-units synthesized by CSnippEx have identical
import declarations as the the golden set (Column E%). This
not only shows that compilability is a good proxy for correct
synthesis, but also confirms that our identification of miss-
ing type information via compilation errors is precise. One
may notice that the results in Columns %C slightly diviates
from those in Column %E, indicating that in some cases,
CSnippEx achieved a successful compilation but generated
import declarations that differed from the user-defined ones.
We investigated these cases and found two major reasons.
First, some user-defined import declarations were never ref-
erenced in the code. Second, some projects make internal
clones of third-party library code to avoid including external
JARs in build path [46]. In such cases, CSnippEx would
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not recover import declarations that are identical to user-
specified ones. Finally, Table 4 also shows the efficiency of
the recovery process. The average processing time ranges
from 66.53 (for Top 1) to 4,454 milliseconds (for Top 100).

Comparison with Baker [46] , the state-of-the-art tech-
nique to build traceability links between source code elements
and external libraries. Baker recovers the links by querying
an oracle for types, methods, and fields to match the con-
straints imposed by a code snippet under analysis. Although
Baker was not originally designed for synthesizing compilable
c-units, it can help recover import declarations. Therefore,
we conducted a comparison experiment to see if Baker could
recover import declarations more effectively than CSnippEx.

The Baker tool is publicly available as a web service. Since
the web service took minutes to process a single request, we
were only able to apply Baker [2] on 4,947 (37%) of those
code snippets (with import declarations removed) analyzed
by CSnippEx in Section 7.2. For each code element identified
as an API type, Baker gives a set of possible fully qualified
names for concerned external class types. For comparison, we
calculated the percentage of code snippets, for which Baker
found unique matches for all concerned class types (i.e., all
returned sets have a cardinality of 1). For fairness, if Baker
returned multiple sets for a class type (when it appears at
multiple lines in a code snippet), we would consider the set
with lowerest cardinality as Baker’s output. We observed
from the experiment that Baker only found unique matches
of external class types for 36.71% code snippets. In other
cases, Baker returns ambiguous results (i.e., multiple matches
for a class type). For each code snippet, we multiplied the
cardinality of each class type matches returned by Baker,
on average this number is 1,293,205. Although, this is an
improvement over 2.51× 1034, it suggests that in many cases
a code snippet does not contain enough discriminative ref-
erences of class types to identify a unique match because
the naming conflicts of fields and methods are also com-
mon [18]. This shows that Baker cannot effectively recover
import declarations.

7.3 Discussion
Guarantees. It is impossible to guarantee that the synthe-

sized c-units are semantically equivalent to the user-intended
code. However, we believe that successful compilation is a
good proxy to validate the correctness of the synthesized
results. This is because CSnippEx obeys the following con-
straints: 1) It never mocks declarative completeness to resolve
missing class/method declarations. 2) It never removes those
lines of code that lead to compilation errors. In some cases
these constraints could prevent a successful synthesis, but
they give some guarantee on the usefulness of the results.

Applicability. Although this paper focuses on Java code
snippets, many of the issues it addressed also apply to other
statically typed languages (e.g., C++). While this paper
focuses on code snippets found in Q&A posts, CSnippEx
could also be applied to those found in tutorial sites and
JavaDoc, which also enclose code snippets in dedicated tags.

8. RELATED WORK
We are not aware of any research or commercial tools that

aim to synthesize compilable code snippets from non-code
sources (e.g., Q&As). We now discuss the most related work.

Traceability Link Detectors. Some studies aimed to
build traceability links between source code elements and

external libraries [46, 45, 38]. In Section 7.2, we show that
the state of the art [46] is ineffective when applied to our
problem. Other pieces of work aimed to build links between
natural language documents and source code elements [10, 18,
31]. These techniques are not suitable for recovering missing
dependencies for code snippets. First, they try to identify
code snippets from natural language text (e.g., emails), but
for Q&A sites code snippets are usually well separated from
text as they are enclosed by dedicated HTML tags. Second,
they are not able to retrieve fully qualified names for class
types unless such names are mentioned in the processed text.

Partial Program Analysis (PPA) [17] aims at gen-
erating fully-resolved abstract syntax trees in the face of
missing types. However, PPA is not effective in analyzing
code snippets from Q&A sites [38, 15, 45]. Partial programs
are considered complete source files without external depen-
dencies [17], while Q&A code snippets are incomplete code
fragments. PPA does not try to recover missing import dec-
larations, instead it relies on the existing ones to infer the
missing types. Moreover, PPA assumes that the analyzed
program is compilable given the required dependencies [17].
This assumption does not hold for Q&A code snippets.

Code Integration. There has been some work to facili-
tate the integration of software retrieved on-line. Ossher et
al. proposed a technique to resolve dependencies for open-
source software [30]. However, it is intended to work with
complete source files like PPA. It relies on the fully qualified
names specified by the import declarations to identify the
dependencies. In contrast, CSnippEx works on incomplete
snippets and identifies dependencies by simple names alone.

Code Search. There is a large body of work on improv-
ing code search in Q&A sites [26, 42, 43], and incorporating
web code search into IDEs to reduce the context switching
from IDEs to browsers [11, 35, 14, 36]. All such proposed
techniques aim to improve the effectiveness of code search.
As discussed, CSnippEx could further help extract, compile
and integrate the code snippets retrieved by these techniques.
Moreover, CSnippEx can precisely identify the referred li-
braries, which could help improve code search results.

9. CONCLUSION AND FUTURE WORK
In this paper, we presented CSnippEx to synthesize com-

pilable Java source code files form Q&A code snippets. Our
experimental results showed the effectiveness of our technique.
Specifically, our greedy algorithm based on the clustering
hypothesis is very effective in quickly identifying possible
solutions of import declarations, while the feedback-directed
approach can further refine the candidate solutions.

Compilability is only a necessary but not a sufficient con-
dition to obtain runnable code. In future work, we plan to
investigate how to synthesize executable context for the com-
pilable code, e.g., addressing the initialization of variables,
generation of files, creation of database connections. To do
so, we are considering a feedback-directed technique guided
by runtime exceptions.
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[28] K. Muşlu, Y. Brun, R. Holmes, M. D. Ernst, and
D. Notkin. Speculative Analysis of Integrated
Development Environment Recommendations. In
OOPSLA, pages 669–682, 2012.

[29] S. Nasehi, J. Sillito, F. Maurer, and C. Burns. What
Makes a Good Code Example?: A Study of
Programming Q&A in StackOverflow. In ICSM, pages
25–34, 2012.

[30] J. Ossher, S. Bajracharya, and C. Lopes. Automated
Dependency Resolution for Open Source Software. In
MSR, pages 130–140, 2010.

[31] S. Panichella, J. Aponte, M. D. Penta, A. Marcus, and
G. Canfora. Mining Source Code Descriptions from
Developer Communications. In ICPC, pages 63–72,
2012.

[32] C. Parnin and C. Treude. Measuring API
Documentation on the Web. In Web2SE, pages 25–30,
2011.

[33] C. Parnin, C. Treude, L. Grammel, and M.-A. Storey.
Crowd Documentation: Exploring the Coverage and
the Dynamics of API Discussions on Stack Overflow.
Technical Report: CrowdDoc-GIT-CS-12-05, 2012.

[34] K. Philip, M. Umarji, M. Agarwala, S. E. Sim,
R. Gallardo-Valencia, C. V. Lopes, and
S. Ratanotayanon. Software Reuse Through Methodical
Component Reuse and Amethodical Snippet Remixing.
In CSCW, pages 1361–1370.

128

http://search.maven.org/
http://gadget.cs.uwaterloo.ca:2145/snippet/index.html
http://gadget.cs.uwaterloo.ca:2145/snippet/index.html
http://sccpu2.cse.ust.hk/csnippex/
http://repo1.maven.org/terms.html
www.quantcast.com/stackoverflow.com
 http://stackexchange.com/sites?view=list#traffic
https://archive.org/download/stackexchange


[35] L. Ponzanelli, A. Bacchelli, and M. Lanza. Seahawk:
Stack Overflow in the Ide. In ICSE, pages 1295–1298,
2013.

[36] L. Ponzanelli, G. Bavota, M. Di Penta, R. Oliveto, and
M. Lanza. Mining Stackoverflow to Turn the IDE into a
Self-confident Programming Prompter. In MSR, pages
102–111, 2014.

[37] A. Reddy et al. Java Coding Style Guide. Sun
MicroSystems - Technical report, 2000.

[38] P. C. Rigby and M. P. Robillard. Discovering Essential
Code Elements in Informal Documentation. In ICSE,
pages 832–841, 2013.

[39] J. Riordan. Introduction to Combinatorial Analysis.
Courier Corporation, 2012.

[40] C. Sadowski, K. T. Stolee, and S. Elbaum. How
Developers Search for Code: A Case Study. In FSE,
pages 191–201, 2015.

[41] S. E. Sim, M. Umarji, S. Ratanotayanon, and C. V.
Lopes. How Well Do Search Engines Support Code
Retrieval on the Web? TOSEM, 21(1):4, 2011.

[42] K. T. Stolee, S. Elbaum, and D. Dobos. Solving the
Search for Source Code. ACM TOSEM, 23(3):26, 2014.

[43] K. T. Stolee, S. Elbaum, and M. B. Dwyer. Code
Search with Input/Output Queries: Generalizing,
Ranking, and Assessment. Journal of Systems and
Software, 21:35–48, 2015.

[44] M.-A. Storey, L. Singer, B. Cleary, F. Figueira Filho,
and A. Zagalsky. The (R)Evolution of Social Media in
Software Engineering. In FOSE, pages 100–116, 2014.

[45] S. Subramanian and R. Holmes. Making Sense of
Online Code Snippets. In MSR, pages 85–88, 2013.

[46] S. Subramanian, L. Inozemtseva, and R. Holmes. Live
API Documentation. In ICSE, pages 643–652, 2014.

129


	Introduction
	Background and Motivation
	Problem Formulation
	Problem Analysis Based on StackOverflow
	Limitations of IDE Quick Fix Tools
	Challenges

	Csnippex Overview
	C-Units Inference
	Dependencies Resolver
	Clustering Hypothesis
	Recovering Import Declarations

	Code Completer
	Evaluation
	Synthesis Effectiveness
	Precision of the Dependency Resolving
	Discussion

	Related Work
	Conclusion and Future Work
	Acknowledgments
	References

