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Abstract—The number of Android apps keeps increasing in
recent years. Despite the fact that there exist apps for various
kinds of purposes, apps that share similar functionalities with
existing ones are still emerging on the market. To reduce the effort
in testing such apps, previous research has proposed approaches
for migrating test scripts across similar apps. However, such
test reuse techniques require existing test suites for migrating,
which hinders their practical use in commercial app development.
Unlike script-based GUI testing, record-and-replay techniques
are more convenient for human testers who are unfamiliar with
programming. In this paper, we propose a new testing technique,
RIDA, that records interaction sequences on one app (source app)
and replays them on another app (target app) with similar func-
tionalities. Such cross-app record-and-replay is challenging. First,
there are no clear mappings between the recorded sequences on
source apps and the sequences required to be performed on the
target apps. Second, reliable indicators of widgets’ functionalities
are not always available from the recorded sequences, which
limits the effectiveness of event matching between source and
target apps. To address the challenges, we design an on-the-
fly searching algorithm for finding target widgets during cross-
app replay and leverage multiple semantic descriptors together
with image captioning techniques to infer the functionalities of
widgets. We have implemented RIDA and evaluated it using
both controlled and in-the-wild experiments. The results show
that RIDA can effectively perform cross-app record-and-replay
and outperform baseline methods in terms of the number of
completely- and partially- replayed events.

Index Terms—Android testing, cross-app record-and-replay,
semantic matching, image captioning

I. INTRODUCTION

According to Statista [1], Google Play, the official Android
app market, possesses more than 2.6 million apps. They
offer a plethora of functionalities to Android users. Despite
the fact that Android app markets are growing and the app
categories are enriching through the years, apps with similar
functionalities to existing popular ones are still emerging. For
example, at the time of paper writing, we searched the keyword
“calculator” with a “New” filter on AppBrain [2], among the
487 resulting apps, 360 were published in the recent month
according to their “App age” attributes. These apps can be
diverse in their appearances [3], language preferences [4], or
privacy policies [5], but their core functionalities are typically
the same. For instance, mobile browsers must be able to visit a
website by its URL or navigate between different web pages,
regardless of their color schemes or widget shapes. Moreover,
these core functionalities are usually triggered via particular
user interaction patterns (e.g., enter a URL at the top bar of a
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browser to visit a new web page). Reusing common interaction
patterns for specific functionalities is a good practice for
reducing users’ learning costs on newly installed apps [6].

On Android, developers usually write GUI test scripts
using test automation frameworks, like UIAutomator2 [7], for
quality assurance [8]–[11]. However, for a newly created app,
developing and maintaining a test suite can be labor-intensive
and expensive [12]. To reduce the cost of testing such apps,
recent studies have proposed techniques for reusing existing
test suites from other apps with similar functionalities. This
approach is called test reuse [13]–[16]. However, existing test
reuse techniques suffer from a major limitation: they require
a test suite from the reference app as input, which is usually
unavailable for large commercial and closed-source apps. This
prevents the practical use of migrating Android GUI tests
through test reuse.

Despite the abundant research on GUI test automation,
manually performing GUI testing is still widely adopted by
Android developers [17]. Given that automated test scripts
are hard to maintain, record-and-replay becomes a good
alternative to facilitate GUI testing [18]–[22]. In record-and-
replay, human testers do not need to write test code. Instead,
they will manually perform user events on the test device, and
these events are recorded as test cases which will be replayed
for regression testing purposes. Our insight is, in addition to
regression testing, these recorded test cases can also be reused
(or replayed) to test other apps with similar functionalities.
We call such a scenario as cross-app record-and-replay, in
which the test cases are recorded on a source app, and will
be transferred to exercise another target app.

Existing record-and-replay approaches on the Android plat-
form mostly concern the stability and compatibility of GUI
test cases across different Android devices. These tools cannot
be directly adapted to a cross-app scenario. There are two
technical challenges for cross-app record-and-replay. First, as
the source app and the target app are created by different
developers, their ways of interaction are typically not identical.
For the same usage scenario, their required user events can be
different. Hence, cross-app record-and-replay should be able to
map one event in the source app to multiple events in the target
app, and vice versa. Second, unlike test reuse which identifies
source event widgets through unique textual locators (i.e.,
the resource-id attributes) from the test scripts, the raw
recorded events are typically coordinate-based. Since texts are
essential for semantic mapping between widgets [23], lacking
accurate textual indicators of functionalities [24] can further

Yepang Liu
Typewritten Text
This is a preprint version posted for research purpose. The copyright of the paper belongs to IEEE.



increase the difficulty of identifying appropriate target widgets.
We propose RIDA, a tool for Record-and-replay In Different

Android Apps. RIDA addresses the aforementioned challenges
in the following ways. To achieve one-to-many and many-to-
one event mapping, RIDA first identifies the source widgets
through self-replaying and extracts the widgets’ semantic
descriptors from the source app’s UI hierarchy. For widgets
without explicit textual indicators of functionalities, RIDA
generates their semantic descriptors using the image caption-
ing technique [24]. RIDA employs an on-the-fly bidirectional
search algorithm to analyze the source event sequence, and
identifies appropriate target events via semantic matching.
Considering that a widget’s text information is typically short
in length, RIDA leverages part-of-speech tagging to reduce
noises caused by common words from the short texts to facili-
tate semantic matching. Experiment results on 25 popular real-
world Android apps show that RIDA is effective in replaying
both controlled and unspecified user events. Moreover, RIDA’s
semantic matching algorithm outperforms the state-of-the-art
approach and other baseline methods.

In summary, we make four contributions in this paper:
1) To the best of our knowledge, we made the first attempt to

address the technical challenges for cross-app record-and-
replay, which can help Android app developers boost their
development process when QA resources are limited.

2) We designed and implemented RIDA, a practical tool
that employs an on-the-fly search algorithm and image
captioning technique to realize record-and-replay across
apps with similar functionalities.

3) We evaluated RIDA by both controlled experiment and
in-the-wild experiment, showing that RIDA is effective
in replaying both controlled and unspecified user event
sequences. The results demonstrate RIDA’s usefulness for
cross-app record-and-replay tasks.

4) We made RIDA’s source code and all experiment data
publicly available for future research [25].

II. PRELIMINARIES

A. Semantic Matching & Word Embedding

An important step for migrating recorded events across apps
is comparing the semantic similarity between widgets’ textual
descriptions. This is also called semantic matching for GUI
events [23]. Many test reuse tools utilize semantic matching
technique to match similar widgets in source apps and target
apps [13], [14]. Two widgets’ semantic similarity is mostly
calculated with their associated textual information. Such
information, called semantic descriptors, is obtained through
various means, for example, the textual attributes defined in
the GUI’s front-end code. The extracted texts should typically
be vectorized into numerical forms through word embedding
techniques [26]–[28], from which the similarity scores can
be computed. According to Mariani et al.’s work [23], Word
Mover’s Distance (WMD) [27] is the state-of-the-art word
embedding model for semantic mapping in app test reuse. It
measures the dissimilarity between two sentences by finding

TABLE I
IMAGE CAPTIONS GENERATED BY LABELDROID

“next” “more options” “clear query”

the minimum cumulative distance between embedded words
from one sentence and that from the other.

B. Image Captioning

Image captioning is a technique that generates textual
descriptions for visual images. Generally, image captioning
models consist of two deep neural networks: a convolutional
neural network (CNN) that extracts image features as one-
dimensional numerical vectors, and a recurrent neural network
(RNN) that generates descriptive sentences given the vectors
returns from the CNN. Different image captioning techniques
vary in the CNN and RNN structures they applied [29].

In mobile app development, image captioning can be used
to improve app’s usability and accessibility for users with
visual impairment [30]. This task is realized by predicting
textual labels (i.e., descriptors) for image-based widgets on
mobile GUIs and reading them out via the devices’ screen
readers. Table I shows three examples of app buttons and their
corresponding image labels generated by LABELDROID [24],
a label prediction model for image-based buttons.

III. APPROACH

A. Overview

Figure 1 shows RIDA’s workflow. Similar to many record-
and-replay techniques [21], [31], it consists of three phases: (1)
Recording, (2) Self-Replaying, and (3) Cross-App Replaying.
Given a source app and a target app, RIDA records the actions
performed by the human tester on the source app and replays
the recorded test cases on the target app by searching for
appropriate events and exercising them.

In the recording phase, the tester interacts with the source
app. RIDA will record these actions and save the recorded
input events into a log file in a raw coordinate-based form.
In the self-replaying phase, RIDA replays the categorized
input events on the source app to obtain the involved widgets
and their semantic descriptors. In order to obtain reliable
descriptions of the widgets’ functionalities, RIDA leverages the
UI hierarchies and screenshots of the source app to generate
short captions from the widget icons. The categorized events,
as well as their semantic descriptors, will be saved and used in
the next phase. Finally, in the cross-app replaying phase, based
on the recorded events, RIDA will identify the appropriate
actions for the target app by performing semantic matching
of events using the descriptors obtained from both apps and
replay the actions on the target app. The following parts will
describe the three phases in detail.



UI hierarchies

Screenshots

Record input events

Recording

Source 

App

Widget-based events

Widget descriptors Match widgets

Cross-App Replaying

Input events
Replay events

Tester

Interact

Categorize events 

Locate widgets

Extract descriptors

Self-Replaying

UI hierarchies

Screenshots
Replay events

Coordinate-based events

Source 

App

Target 

App

Fig. 1. The workflow of RIDA

B. Recording

The recording phase intercepts and dumps the tester’s raw
actions into a text file. RIDA utilizes the getevent command
provided by the Android Debug Bridge (ADB) to capture
user inputs [32]. Figure 2 gives a sample output of the
getevent command with the options -tl, when two click
events were performed on an Android device’s touchscreen.
The option -l means to display readable textual labels of
the event codes and -t means to display timestamps. Each
line can be divided into three fields. The first field is the
timestamp in seconds since the system starts. The second
field is the type of the input devices, such as phone cameras,
accelerometers, etc. In the example, /dev/input/event2
corresponds to interactions from the touchscreen. The third
field provides detailed information about the input event as a
3-tuple. For instance, the 3-tuple ⟨EV KEY, BTN TOUCH,
DOWN⟩ at line 1 is an event of touchscreen press, while the 3-
tuple ⟨EV KEY, BTN TOUCH, UP⟩ at line 9 indicates the
finger release. There can be more 3-tuples between these two
events, which contain precise user interaction information. For
example, line 3 records a ABS MT POSITION X element
with a hexadecimal value of 3e5, which means the touch event
at line 1 had an X coordinate of 997 on the device’s screen.
Similarly, line 4 indicates that the Y coordinate is 1795. During
the recording phase, the tester performs actions on the Android
device without intervention. RIDA saves the coordinate-based
events until the tester finishes the recording phase.

C. Self-Replaying

The goal of the self-replaying phase is to locate the source
widgets on which the tester’s actions were performed and
extract the widgets’ semantic descriptors. Taking the file from
the previous phase, RIDA will replay the recorded events in
sequential order on the source app running on the same device.
Before exercising an event, RIDA obtains two essential pieces
of information from the source app. First, it obtains the UI hi-
erarchy, i.e., an XML tree that represents the current app state.
App widgets and their textual attributes are stored as nodes of
the XML tree so that we can locate the interacted widgets
through tree traversal and extract semantic descriptors from
the attributes. Second, when the textual attributes are missing
[24], RIDA will take a screenshot and crop the widget’s image
according to its bound denoted by the XML attributes. The

[  406538.849065] /dev/input/event2: EV_KEY       BTN_TOUCH            DOWN
[  406538.849065] /dev/input/event2: EV_ABS       ABS_MT_TRACKING_ID   000013c3
[  406538.849065] /dev/input/event2: EV_ABS       ABS_MT_POSITION_X    000003e5
[  406538.849065] /dev/input/event2: EV_ABS       ABS_MT_POSITION_Y    00000703
[  406538.849065] /dev/input/event2: EV_ABS       ABS_MT_PRESSURE      0000000d
[  406538.849065] /dev/input/event2: EV_SYN       SYN_REPORT           00000000
[  406538.887656] /dev/input/event2: EV_ABS       ABS_MT_PRESSURE      00000000
[  406538.887656] /dev/input/event2: EV_ABS       ABS_MT_TRACKING_ID   ffffffff
[  406538.887656] /dev/input/event2: EV_KEY       BTN_TOUCH            UP
[  406538.887656] /dev/input/event2: EV_SYN       SYN_REPORT           00000000
[  406539.810633] /dev/input/event2: EV_KEY       BTN_TOUCH            DOWN
[  406539.810633] /dev/input/event2: EV_ABS       ABS_MT_TRACKING_ID   000013c4
[  406539.810633] /dev/input/event2: EV_ABS       ABS_MT_POSITION_X    0000029a
[  406539.810633] /dev/input/event2: EV_ABS       ABS_MT_POSITION_Y    0000065d
[  406539.810633] /dev/input/event2: EV_ABS       ABS_MT_PRESSURE      00000007
[  406539.810633] /dev/input/event2: EV_SYN       SYN_REPORT           00000000
[  406539.856073] /dev/input/event2: EV_ABS       ABS_MT_PRESSURE      00000000
[  406539.856073] /dev/input/event2: EV_ABS       ABS_MT_TRACKING_ID   ffffffff
[  406539.856073] /dev/input/event2: EV_KEY       BTN_TOUCH            UP
[  406539.856073] /dev/input/event2: EV_SYN       SYN_REPORT           00000000

Timestamp Device Type Event Information

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.

Fig. 2. Sample raw input events of two clicks

cropped images will be used to generate additional descriptors.
It is worth mentioning that the extracted semantic descriptors
are device-independent. Thus the cross-app replaying phase
can also be conducted on a different Android device.

1) Event Categorization: Similar to previous work on test
reuse [13], [14], [23], RIDA supports three common types of
touchscreen events: click, long press, and swipe. We refer to
the official guidelines of Android GestureDetector [33]
and ViewConfiguraion [34] utilities to categorize user
events. Specifically, a continuous touch that wanders over eight
pixels on the screen is considered a swipe. If the moving
distance is within eight pixels and the duration is more than
400 milliseconds, it is regarded as a long press; otherwise,
we consider it a click. Note that these rules also support text
input events, in which a series of clicks are performed on the
system’s soft keyboard.

2) Widget Locating: RIDA locates the interacted widgets
by referring to the bound attributes in the UI hierarchy. If an
interacted coordinate is within a widget’s rectangular bound,
RIDA regards it as the interacted widget. Occasionally, there
can be multiple widgets at the same coordinate. In such cases,
we adopt a heuristic strategy to identify the interacted widget.
Specifically, RIDA drops out widgets covered by the newly
appeared widget after performing the event and chooses the
one that occupies the least screen size. Our intuition is that



smaller widgets are more likely to be on top of other widgets
on the screen, thus intercepting user interactions.

After locating the interacted widget, RIDA will determine
its widget type. RIDA considers four widget types: editable
app widget, non-editable app widget, soft keyboard widget,
and system widget. Editable app widgets are instances of the
class EditText [35] and its subclasses. Other app widgets
are categorized as non-editable. Given that the package names
of system widgets and soft keyboard widgets do not change
in different apps on the same device, RIDA identifies them
based on their package attributes in the UI hierarchy. In the
cross-app replaying phase, widgets in distinct categories are
not expected to be matched with each other.

3) Descriptors Extraction: RIDA obtains semantic descrip-
tors from three candidate attributes of the interacted wid-
gets in their UI hierarchies: text, content-desc, and
resource-id. These attributes are also considered by pre-
vious test reuse approaches [13], [14]. Some clickable layout
widgets, e.g., widgets of the class ViewGroup [36] and its
subclasses, contain textual descriptions in the text attributes
of their descendants in the UI hierarchies. For these widgets,
RIDA also uses the text values of their descendants as the
descriptors. To normalize the extracted text values, RIDA per-
forms tokenization, lemmatization (reduce the words to their
base forms), and removes common widget type descriptors,
such as “button” and “fab” (short for Floating Action Button).

When extracting descriptors, all three candidate attributes
can be missing. According to [24], more than 77% of apps
contain at least one widget that lacks content-desc.
Furthermore, we crawled the top 500 apps in each of the
32 app categories on Google Play [37] and used Apktool
[38] to obtain their front-end XML files. We identified about
16.4 million widgets. Among them, about 4.2 million widgets
(25.6%) lack all three attributes. To avoid empty descriptors
in such cases, RIDA utilizes LABELDROID [24] to generate
a widget icon’s image caption and uses it as the semantic
descriptor as a fallback choice. Similarly, these image captions
will be normalized following the aforementioned process.

After this phase, each recorded event e will be described
as a 3-tuple e = ⟨et, wt,D⟩, where et denotes one of the
three event types (§III-C1) of this event, wt stands for the
widget’s type (§III-C2), and D is a set of normalized semantic
descriptors associated with the interacted widget, which are
extracted from its textual attributes or image caption (§III-C3).

D. Cross-App Replaying

The most important task in the cross-app replaying phase is
to match the semantic descriptors of widgets in both the source
and target apps and identify appropriate events to replay on
the target app. This semantic matching process is described
as follows. It takes semantic descriptor set Ds of a source
event1 as input. On the target app’s screen, RIDA retrieves a
series of semantic descriptor sets D = {D1, D2, ..., Dn} from

1 “Source events” refer to the user events recorded in the source app, and
“target events” refer to those that will be replayed on the target app. “Source
widgets” and “target widgets” are their corresponding widgets, respectively.

all the n widgets. By comparing the similarities between Ds

and every D′ ∈ D, we find the most similar one Dt, and its
corresponding widget will be matched. RIDA uses the WMD
model [27] to compute the distance between a pair of semantic
descriptors. When finding the distance between two semantic
descriptor sets Ds and Dt, RIDA takes the mean distance of
every pair of semantic descriptors ⟨ds, dt⟩, where ds ∈ Ds

and dt ∈ Dt.
The effectiveness of semantic matching can be drastically

affected by common words in the semantic descriptors, which
are mostly short texts. For example, by applying the WMD
pre-trained model, the semantic distance between “add task”
and “delete task” is 0.59, while the distance between “add
task” and “create todo” is 1.17. Although the texts in the
former pair have a shorter distance, the texts in the latter
are actually closer in their meanings (in fact, the former pair
have opposite meanings). To overcome this problem, before
semantic descriptors are fed into the WMD model, RIDA
removes their common words based on the results of part-of-
speech (POS) tagging. POS tagging is a process of assigning
grammatical tags, such as nouns, verbs, and adjectives, to the
words in a sentence according to their context. A common
word x will be removed from a pair of semantic descriptors
⟨ds, dt⟩ before computing their semantic distance if all of the
three conditions are satisfied:

1) x has the same grammatical tag in both ds and dt
2) ds contains a non-common word xs and dt contains a

non-common word xt

3) xs and xt are different but have the same tag
The conditions ensure that for two semantic descriptors,

their common word x belongs to the same part-of-speech,
while both of them contain non-common words in some
other part-of-speech. For example, when finding the semantic
distance of two phrases “create note” and “delete note”, the
identical noun “note” will be discarded, and the similarity
between “create” and “delete” will be considered instead
because both of them have the same noun but different verbs.
After that, their semantic distance is greatly increased. Thus
RIDA can achieve better widget matching performance.

As we pointed out before, the source events and the target
events may not always be a one-to-one correspondence. In-
stead, the same usage scenario may require different lengths
of interaction steps in different apps. Previous test reuse
approaches mostly utilize apps’ window transition graphs to
match widgets [13], [14]. However, building such graphs can
be time-consuming, especially when the app has a large size.
Besides, it is also hard to ensure the quality of the graphs as
building them typically requires static program analysis, which
is often inaccurate. To realize cross-app widget matching, we
design a lightweight on-the-fly search algorithm.

Algorithm 1 shows how RIDA performs event matching via
bidirectional search. Its main loop has four steps:

Step 1 (lines 3-7): RIDA first attempts to match the current
event E[i]. In line 3, RIDA finds all interactable widgets of
the same type as the widget of E[i]. A widget is considered
interactable if its clickable attribute is true on the current



Algorithm 1 Cross-App Replaying
Input List of source events E of length N , target app A, semantic

matching threshold τ , forward-searching steps m
1: i← 0
2: while i < N do
3: W ← interactable widgets of type E[i].wt on A
4: wt ← GETMATCH(E[i].D, W , τ )
5: if wt ̸= null then
6: perform E[i].et on wt
7: i← i+ 1
8: else if i < N − 1 then
9: j ← 1

10: while i+ j < N − 1 ∧ j ≤ m do
11: W ′ ← interactable widgets of type E[i+ j].wt on A
12: wt ← GETMATCH(E[i+ j].D, W ′, τ )
13: if wt ̸= null then
14: perform E[i+ j].et on wt
15: i← i+ j + 1
16: break
17: end if
18: j ← j + 1
19: end while
20: end if
21: if wt = null ∧ i > 0 then
22: W ′ ← interactable widgets of type E[i− 1].wt on A
23: wt ← GETMATCH(E[i− 1].D, W ′, τ )
24: if wt ̸= null then
25: perform E[i− 1].et on wt
26: else
27: wt ← GETMATCH(E[i].D, W ,∞)
28: perform E[i].et on wt
29: i← i+ 1
30: end if
31: end if
32: end while

UI hierarchy. Then, it tries to obtain the target widget for
E[i]. RIDA identifies target widget wt with the GETMATCH
function. The GETMATCH function returns the widget wt

whose descriptor set has the shortest semantic distance with
the source widget’s descriptors E[i].D among the candidate
widgets W , and the shortest distance should be less than a
given threshold τ . If a target widget wt is identified, RIDA
will replay E[i] on it and continue with the next iteration.

Step 2 (lines 8-20): If no widget was matched in the first
step, RIDA will search forward in E and try to match one of
the subsequent m events (line 10), where m is a pre-defined
parameter of forward-searching steps. If a subsequent event
E[i + j] is matched, RIDA will replay E[i + j] on the target
widget and skip other events that precede it (lines 14-15). This
step handles the situation where multiple consecutive source
events are mapped to one target event.

Consider an example in Figure 3, where we record an “Add
note” use case on the source app BlackNote [39] and replay
it on the target app Notepad [40]. In BlackNote, adding a
new note requires three actions: clicking the “add” button 1 ,
clicking the button with the label “note” 2 , and entering note
title to the edit title area 3 . However, in Notepad, users can
input text to the title input box 5 directly after a single
click on the “add note” button 4 . To migrate the source
event sequence, by Step 1, RIDA matches source widget 1 to
“add note” button 4 in Notepad. Then in the next iteration,

①

②

③

④

⑤

Fig. 3. “Add note” in BlackNote (left) and Notepad (right)

Step 1 fails to identify any matching widget for widget 2 .
However, by Step 2, RIDA searches forward and successfully
finds the target widget 5 for the third source event, i.e., the
title entering event. Further, we can easily extend this example
to a many-to-one event mapping situation, where there are
more than two source widgets preceding 3 .

Step 3 (lines 21-25): If Step 2 fails, RIDA will search
backward and try to match the last event E[i−1] (lines 22-23).
If it was matched, RIDA replays the event on the target widget
(line 25). After that, the index i will not increase, which means
RIDA will attempt to match the current event E[i] again in the
next iteration. Step 3 works when one event in the source app
is mapped to multiple consecutive events in the target app.

Take Figure 3 as an example again. This time, Notepad
is the source app, and BlackNote is the target app. In Step
1 of the first iteration, RIDA will match the source widget
4 to the “add” button 1 . In the next iteration, RIDA cannot

identify a target widget for the source widget 5 on the current
GUI by neither Step 1 nor 2. However, by Step 3, RIDA will
search backward and match the first event again to the “note”
button 2 . The intuition is, for one-to-many event mapping,
the source event often contains descriptions related to all the
mapped target widgets. For instance, 4 contains a descriptor
(e.g. “add note”) that is semantically similar to the descriptors
of 1 (e.g. “add”) and 2 (e.g. “note”). Similarly, this example
can be extended to a one-to-many mapping situation.

Step 4 (lines 26-30): If none of the widgets is matched
after the above-mentioned attempts, RIDA will fallback and
try to match the current event E[i] again. However, this
time, the widget with the shortest semantic distance will be
directly returned without considering the threshold (line 27).
The cross-app replaying process terminates when the source
event sequence has been exhaustively processed.

To further improve the effectiveness of widget matching, we
integrate two heuristic strategies into the cross-app replaying
phase, which correspond to two common interaction patterns
on the Android platforms. Note that, in the self-replaying
phase, these two types of interactions will not be saved since
their implementations may vary in different apps.

First, in the target app, a user sometimes needs to first
press a “more options” button to open an options menu, as
shown in Table II, to interact with the target widget from
the newly appeared options. However, in the source app, the
corresponding widget may exist outside the menu. In order to
locate these hidden widgets, RIDA first identifies such a menu



TABLE II
“MORE OPTIONS” BUTTON AND CONFIRMATION DIALOG

More Options Confirmation Dialog

button if its descriptor contains “more options” (e.g., “show
more options” and “more options button icon”). If a “more
options” button is located on the current UI hierarchy when
finding interactable buttons (lines 3, 11, 22), RIDA will click
it and add the newly appeared widgets to the candidate list. If
the target widget is found behind the “more options” button,
RIDA will perform the event on the target widget; otherwise,
RIDA will press back and continue matching.

Second, in some scenarios, after users perform an action, a
confirmation dialog will pop up, and the users should click
the positive button (e.g., “Delete” in Table II) to confirm
their previous action. This dialog may not be necessary for
a usage scenario. Therefore, every time after RIDA replays an
event, it will check if a confirmation dialog appears and click
the positive button. RIDA considers a newly appeared layout
widget as a confirmation dialog if it contains at most three
buttons and their descriptors contain words like “Cancel”,
“No”, or “Yes”. Once a dialog is identified, RIDA will click
its positive button before replaying the subsequent events.

IV. EVALUATION

A. Implementation Details

RIDA uses UIAutomator2 [7] to perform UI events, obtain
the UI hierarchies, and capture screenshots. It applies the
standard WMD pre-trained model [41] for semantic analysis
of texts. According to [16], a threshold value of 0.65 yields
the best trade-off for applying the WMD model. Therefore,
we use this value as the threshold for semantic matching. For
Algorithm 1, we set the forward-searching step m to be 1
by default because one-to-one and two-to-one cross-app event
mappings are frequently observed.

B. Experiment Setup

We conducted all the experiments on a Pixel 3 device
running a stock Android 10 system. To collect subject apps,
we selected five app categories following the previous test
reuse and record-and-replay works on Android [21], [23]. For
each category, we searched its name on Google Play and
downloaded the first five apps from the query results as our
experiment subjects. The subject apps, as well as their exact
versions and download numbers, are listed in Table III.

The experiments aimed to answer the following research
questions regarding RIDA’s effectiveness and usability:

• RQ1: How effective is RIDA in performing cross-app
record-and-replay for common usage scenarios of real-
world Android apps?

TABLE III
SUBJECT APPS IN THE EXPERIMENTS

Category App Name Version Downloads
Google Tasks [42] 4.23 10M+

To Do [43] 12.7 10M+
Tasks Tasks [44] 2.7.1 1M+

Tasks.org [45] 1.8.7 100K+
Todoist [46] v10362 10M+
Gmail [47] 2022.08.21 10B+

Outlook [48] 4.2204.5 500M+
Email Email [49] 1.30.0 5M+

Yahoo Mail [50] 6.59.0 100M+
Mail.ru [51] 14.31 100M+
Brave [52] 1.41.100 100M+
Edge [53] 103.0.1264 10M+

Browser DuckDuckGo [54] 5.130.0 10M+
Firefox [55] 70.3.3653 100M+

UC Browser [56] 13.4.0.1306 1B+
Notepad [40] 1.21.2 10M+

BlackNote [39] 2.2.1 5M+
Notes ColorNote [57] 4.4.0 100M+

BasicNote [58] 1.1.9 5M+
Google Keep [59] 3.3.7 1B+

Google Calculator [60] 8.2 1B+
Simple Calculator [61] 1.11.1 100K+

Calculator Calculator Plus [62] 4.2.0 50M+
HiPER [63] 12.3.12 10M+

All-In-One Calculator [64] 5.9.1 5M+

• RQ2: Can semantic matching and image captioning help
improve the effectiveness of cross-app record-and-replay?

• RQ3: How does the semantic matching algorithm of
RIDA compare to the state-of-the-art approach?

• RQ4: How effective is RIDA in performing cross-app
record-and-replay for non-designated user interactions?

To answer the above research questions, we designed two
types of experiments:

1) Controlled Experiment: This experiment aims to answer
RQ1, RQ2 and RQ3. We compared RIDA against a state-of-
the-art semantic matching algorithm and three RIDA’s variants.
They correspond to the following four configurations:

RIDA with SEMFINDER (RIDA w/ SF). SEMFINDER is
the state-of-the-art semantic matching algorithm for Android
test reuse [23]. SEMFINDER concatenates all the candidate text
attributes into one sentence and removes duplicate words, and
then compares two sentences by word embedding techniques.
Given that an attribute value is usually a phrase or sentence,
e.g., “search email”, the way SEMFINDER processes them
can break their original structures, making syntactic analysis
inapplicable. In contrast, RIDA’s semantic matching computes
the average semantic similarity score between each pair of
descriptors and utilizes POS tagging to assist matching. In this
configuration, we replaced the semantic matching algorithm of
RIDA with SEMFINDER in the cross-app replaying phase.

RIDA without Image Captioning (RIDA w/o IC). In
this configuration, RIDA does not use the image captions
generated by LABELDROID. In such cases, widgets with
empty descriptor sets will have an infinite semantic distance
from others. We use these variants to evaluate the impact of
image captioning on the effectiveness of RIDA.



TABLE IV
APP CATEGORIES AND CORRESPONDING USAGE SCENARIOS

Category Usage Scenario Steps
Add new task 1. Click “add task” button

2. Input task title
3. Click “save” button

Tasks Delete task 1. Click/long-click a task
2. Click “delete” button

Edit task 1. Click a task
2. Clear old task title
3. Input new task title

Send email 1. Click “compose” button
2. Input recipient address
3. Press enter
4. Input title
5. Input mail content
6. Click “send” button

Email Search email 1. Click “search” button
2. Input keywords
3. Press enter

Save draft 1. Click “compose” button
2. Input mail content
3. Click ”back” button
4. Click ”save” button

Access website by URL 1. Input URL
2. Press enter

Add new tab 1. Click “switch tab” button
2. Click “new tab” button

Browser Back button 1. Input URL
2. Press enter
3. Input another URL
4. Press enter
5. Press back

Add note 1. Click “add note” button
2. Input note title
3. Input note content
4. Press back

Notes Delete note 1. Click/long-click a note
2. Click “delete” button

Search note 1. Click “search” button
2. Input keywords
3. Press enter

Calculate 1+2 1. Click “1” button
2. Click “+” button
3. Click “2” button
4. Click “=” button

Calculator Clear input 1. Click “6” button
2. Click “-” button
3. Click “3” button
4. Click “clear” button

Delete number 1. Click “0” button
2. Click “delete” button

RIDA without Semantic Matching (RIDA w/o SM). In
this variant, RIDA’s semantic matching is replaced by string
equality checking, which means two widgets will be matched
if they contain identical semantic descriptors in their sets D.

RIDA without Image Captioning and Semantic Matching
(RIDA w/o IC & SM). In this configuration, we do not use
image captions as widget descriptors and replace semantic
matching of RIDA with string equality checking. We use this
variant to investigate how the combination of image captioning
and semantic matching affects the performance of RIDA.

We designed three common usage scenarios for each app
category following the previous work [13] or the subject apps’
descriptions. We also manually examined these scenarios to

ensure that they can be performed on all subject apps. The
steps for each usage scenario are listed in Table IV. Given
that a step may correspond to more than one event in some
apps, the actual event lengths are between 2 and 7.

In a test, we chose one app as the source app to record a
designated usage scenario and then used another app in the
same category as the target app for replaying the recorded
events. Thus there are 5 (#source app) × 4 (#target app) × 15
(#scenario) = 300 tests. Each test is repeated with RIDA and
the other four configurations. During the tests, we manually
inspected the app states (e.g., views, images) to confirm if
an event was successfully replayed. A test ends when all
events are successfully replayed or if the replay fails at an
intermediate step. Finally, we counted the number of replayed
events of each test for each configuration and compared their
performances based on the number of completely replayed
tests (#CR), partially replayed tests (#PR), and tests that
failed at the first event (#F).

2) In-The-Wild Experiment: The controlled experiment has
a limited number of usage scenarios. To further evaluate the
usability of RIDA, we conducted an in-the-wild experiment to
investigate whether RIDA can help replay uncontrolled user
interactions with real-world apps (human testers may freely
explore a source app’s functionalities). For the experiment,
we invited three non-Computer Science students to perform
5-10 actions on each subject app in any way. Then, for each
test, we used RIDA to replay the recorded event sequence
on other subject apps from the same category. Considering
that the target apps may not provide certain functionalities
of the source app, we dropped the unsupported events before
replaying each test. If a source event sequence starts with an
unsupported event on a given target app, we simply dropped
this test since the following source events are not expected to
be applicable from the starting page of the target app. Similar
to the controlled experiment, we manually checked if each
event is successfully replayed and recorded RIDA’s #CR, #PR,
and #F for this experiment.

C. Answer to RQ1

As shown by the results in Table V, RIDA can completely
replay 164 (55%) and partially replay 105 (35%) out of the
300 tests. In general, RIDA has a higher success rate for
shorter scenarios. It even achieves a 100% complete replay
for the “Delete note” scenario, which has an average event
sequence length of 3. Although RIDA has relatively lower #CR
for long scenarios, e.g., “Send email” and “Add note”, it can
still partially replay most of the tests. For the long sequence
scenario “Back button”, RIDA completely replays 12 out of
the 20 tests, while in two short scenarios “Add new task”
and “Add new tab”, it completely replays less than a half.
The reason for RIDA’s poor performance for the two short
scenarios is that they involve widgets that lack all candidate
attributes. Such a widget can negatively affect eight test results
(four tests where the app with the widget is the source app,
plus four tests where the app is the target app). Even though
RIDA mitigates the issue with image captioning, it can still



TABLE V
CONTROLLED EXPERIMENT RESULTS

Category Usage Scenario Avg. #Source Event RIDA RIDA w/ SF RIDA w/o IC RIDA w/o SM RIDA w/o SM & IC
Add new task 3 5/12/3 4/11/5 3/14/3 4/5/11 4/5/11

Tasks Delete task 3.2 15/5/0 13/4/3 15/5/0 6/14/0 6/14/0
Edit Task 2.2 19/1/0 16/4/0 19/1/0 20/0/0 20/0/0

Send email 6.2 2/17/1 0/12/8 1/11/8 0/6/14 0/6/14
Email Search email 3 15/1/4 14/2/4 15/1/4 4/2/14 4/2/14

Save draft 3.2 11/9/0 7/9/4 7/9/4 0/6/14 0/6/14
Access website by URL 2.4 12/4/4 12/2/6 12/4/4 6/0/14 6/0/14

Browser Add new tab 2 5/9/6 4/10/6 4/10/6 2/12/6 2/12/6
Back button 5.8 12/4/4 12/1/7 12/4/4 6/0/14 6/0/14

Add note 4.4 6/10/4 7/7/6 6/10/4 0/1/19 0/1/19
Notes Delete note 3 20/0/0 16/4/0 20/0/0 12/8/0 12/8/0

Search note 3.6 15/0/5 16/0/4 15/0/5 6/0/14 6/0/14
Calculate 1+2 4 5/15/0 4/16/0 5/15/0 2/13/5 2/13/5

Calculator Clear input 4 4/16/0 4/16/0 4/16/0 0/13/7 0/13/7
Delete number 2 18/2/0 18/2/0 18/2/0 6/6/8 6/6/8

Total 3.5 164/105/31 147/100/53 156/102/42 74/86/140 74/86/140
1 The third column is the average length of recorded event sequences for each scenario, which is different from the steps in Table IV because one step
can map to multiple user events in different apps.
2 Each table cell displays three metrics: #CR, #PR, and #F, separated by two slashes.

cause multiple failures when the widget is not image-based
or when the image captions are inaccurate. These causes of
failure will further be categorized and discussed in §V.

For category-wise performance, RIDA achieves the highest
#CR of 41 for the Notes category. With manual analysis, we
found that it is because the subject apps in this category are
well-maintained. Their widgets’ textual attributes can precisely
describe the underlying functionalities. Such high-quality se-
mantic descriptors greatly improve the success rate of widget
matching between source and target apps. In contrast, for the
Calculator category, RIDA has the lowest #CR. RIDA’s poor
performance for this category is due to the lack of meaningful
descriptors in the widgets. Many widgets in the Calculator
apps lack textual labels or only contain vague descriptors such
as “c” for “clear input” and character “-” for “minus”.

D. Answer to RQ2

The results of RIDA’s variants are shown in the last three
columns of Table V. We compare them with RIDA to see
how semantic matching algorithm and image captioning can
improve RIDA’s effectiveness.

Overall, RIDA achieves the best performance compared
with all its variants. RIDA without image captioning performs
slightly poorer than RIDA (11 more tests fail to replay at
the first step). RIDA without semantic matching is the least
effective. Interestingly, the last two variants yield the same
results, which means LABELDROID does not generate image
captions identical to the existing descriptors and, therefore,
cannot improve the effectiveness of string matching.

Compared to the variant without image captioning, RIDA
has more complete and partial replays in four scenarios. These
scenarios involve interactions with image-based widgets that
lack valid textual descriptors, and image captioning helps
semantic matching in this situation. As mentioned in §IV-C,
one source or target widget that lacks textual descriptors can
negatively affect the results. The relatively minor improvement

by image captioning is due to the inaccurate or incorrect image
captions generated by LABELDROID.

RIDA is more effective than its variant without semantic
matching in terms of #CR and #PR. This is because different
developers may use different descriptions for widgets with the
same functionality. Thus string equality checking cannot help
match widgets across apps effectively. An exception occurs for
the scenario “Edit task”. In that case, the source widget and
the expected target widget both contain an identical descriptor.
However, RIDA does not guarantee to match such a widget
since it may have other descriptors, making the average dis-
tance above the threshold. In contrast, string equality checking
identifies the target if one descriptor is matched.

In summary, the results show that both semantic matching
and image captioning can improve the performance of RIDA
in cross-app record-and-replay in terms of #CR and #PR.

E. Answer to RQ3
We compare RIDA without image captioning and RIDA with

SEMFINDER to answer RQ3. The reason is that neither of them
uses image captions as descriptors. Therefore, their compari-
son can fairly evaluate RIDA’s semantic matching algorithm.
Here we refer to the two methods as RIDA′ and SEMFINDER
for convenience. Their evaluation results are presented in
the sixth and fifth columns of Table V, respectively. RIDA′

achieves nine more #CR and two more #PR than SEMFINDER
in total. It has a higher #CR in six scenarios and more #F
in only one scenario. Even though most widget descriptors
in Calculator apps are single words, the result of RIDA′ and
SEMFINDER can still be different due to the difference in how
they aggregate similarity scores for two sets of descriptors.
The results suggest that RIDA’s semantic matching algorithm
outperforms SEMFIDNER in cross-app record-and-replay.

F. Answer to RQ4
Table VI shows the results of the in-the-wild experiment.

We obtained a total of 267 test results from the three students.



TABLE VI
IN-THE-WILD EXPERIMENT RESULTS

Category Avg. #Source Event #CR #PR #F #U
Tasks 3.1 33 13 7 7
Email 3.8 21 23 6 10

Browser 2.9 36 11 9 4
Notes 3.6 23 18 7 12

Calculator 7.9 9 50 1 0
Total 4.3 122 115 30 33

After discarding 33 tests that start with unsupported events
(see column #U), the remaining source event sequences have
an average length of 4.3. The reason why the first four
categories have shorter event lengths is that many subject
apps under these categories contain widgets related to app-
specific functionalities that are not seen on other apps, and
the testers frequently interacted with them. These unsupported
events were dropped before we performed cross-app replaying.

RIDA successfully replayed 122 (46%) and partially re-
played 115 (43%) of the tests. For the Tasks and Browser
categories, RIDA completely replays more than half of the
tests. Similar to the results in the controlled experiment, the
success rate of RIDA is also highly correlated with the average
number of source events. The Browser category, which has the
highest success rate, also has the lowest test length, while the
Calculator category has a reversed trend. It is worth noting
that even though RIDA only achieves a #CR of 9 for the
event sequences for Calculator apps due to the long sequence
lengths, it partially replays most of the tests, with only one
completely failed case.

V. DISCUSSIONS

A. Failed Cases

Table VII shows the number of failed cases and their causes
for RIDA in the controlled and in-the-wild experiments, which
were verified by us during experiments.

Most failures are caused by the inaccurate matching of
target widgets. We observed 103 such failed cases in the
controlled experiment and 104 in the in-the-wild experiment.
These failures often occur when the original textual attributes
are misleading or when incorrect POS tags are generated, etc.
In 19 cases of the controlled experiment and 29 cases of
the in-the-wild experiment, the image captions generated by
LABELDROID are inaccurate or incorrect, leading to replay
failures. Incorrect image captions do not improve semantic
matching accuracy. They could even trigger unexpected fail-
ures if the wrong captions happened to be semantically similar
to widgets other than the target ones. For example, the “plus”
button in the HiPER calculator [63] is incorrectly labeled as
“add contact” by LABELDROID. 15 cases failed due to the
empty attributes in the source or target widgets. LABELDROID
cannot generate captions for widgets that are not image-based,
e.g., editable text areas. As a result, RIDA could not extract
their semantic descriptors if all three candidate attributes
were empty, and the matching will fail. In five cases, the
clickable attribute in the UI hierarchy is incorrect, such

TABLE VII
FAILED CASES

Cause of failure Controlled In-the-wild Total
Inaccurate matching 103 104 207

Incorrect image caption 19 29 48
Empty XML attributes 7 8 15

Incorrect clickable attribute 3 2 5
Unrecognized “more options” 4 0 4

Scroll down list 0 2 2

that unclickable or invisible widgets are marked as clickable.
In these cases, non-interactable widgets will be matched if
their descriptors match those of the source widget. A typical
example is the descriptive text [3] surrounding the actual target
widget. There are four cases where RIDA cannot correctly
recognize the “more options” button, while the target widget
is behind it according to our manual validation. Two failed
cases are related to scrollable lists. In these cases, the target
widget cannot be seen before we scroll the list down to the
appropriate positions.

B. Threats to Validity

One threat to validity is that the apps and usage scenarios
we used in the experiment may lack generality. To mitigate
this threat, we collected 25 commercial apps from Google
Play from five different categories. Our experiment scale is
comparable to previous test reuse works [13] [23]. Further-
more, we conducted an in-the-wild experiment, which incor-
porated additional and uncontrolled usage scenarios produced
by human testers. Another threat to validity is the possible
mistakes in our implementation and experiment. To mitigate
this threat, we have manually inspected all the results and the
intermediate files. Moreover, we make our experiment data
public for external validation [25].

VI. RELATED WORK

A. Record-And-Replay

There have been many record-and-replay tools for the
Android platform. They can be grouped into the following two
categories according to the way they record input UI events.

Coordinate-based: RERAN [18] is an early-stage record-
and-replay tool on the Android platform. It uses the
getevent command to capture low-level UI events and per-
forms exact replays of these events. MOSAIC [19] records low-
level events and transforms them into a device-independent
format, allowing the events to be replayed across different de-
vices by linearly scaling the interacting coordinates according
to the target device’s screen resolution. VALERA [20] is a
stream-oriented record-and-replay approach, it achieves high-
accuracy and low-overhead by eliminating the nondeterminism
of three system events: sensor input, network, and event
schedule. Under such precise timing control, VALERA is
able to reproduce event-driven race bugs, which are extremely
sensitive to event scheduling. MOBIPLAY [65] captures app
inputs from the local device and replays them on the target app
running on the server. Such client-server architectural design



allows the testers to record and replay system events without
acquiring root privilege from the Android system.

Widget-based: Espresso [66] is the official UI testing
framework of Android. It provides a utility Espresso Test
Recorder that captures UI events and records widget-based
actions with their unique resource IDs. SARA [21] intercepts
and records the input events on the application layer via
dynamic instrumentation. It can record widget-sensitive events
and replay them on devices with different screen resolutions.
LIRAT [22] is capable of performing cross-platform record-
and-replay. It detects target widgets on different platforms
by matching images and page layouts. RANDR [67] achieves
cross-device replay with both static and dynamic instrumenta-
tion, and it has a special focus on replaying several network
protocols and random numbers.

In essence, RIDA is also a widget-based record-and-replay
approach. It utilizes the getevent command to obtain low-
level UI events like many coordinate-based methods. Similar
to SARA, RIDA introduces an extra self-replaying phase to
categorize input events and extract semantic descriptors, which
will be used during cross-app replay. However, different from
existing work, RIDA generates image captions and uses word
embedding techniques in the replaying phase to detect target
widgets on another app with similar functionality. To the best
of our knowledge, RIDA is the first tool that achieves cross-app
record-and-replay on the Android platform.

B. Test Reuse

Test reuse (a.k.a. “test transfer” or “test migration”) is a
technique that migrates test scripts across different apps with
similar functionalities. A key challenge for test reuse is how
to match similar widgets across different apps, i.e., seman-
tic matching. CRAFTDROID [13] and APPTESTMIGRATOR
(ATM) [14] are two test reuse tools for Android apps. Both
of them use Word2Vec [26] as the word embedding model for
semantic matching and analyze the Window Transition Graphs
to search for unmatched widgets across different app pages. In
contrast, RIDA leverages an on-the-fly searching algorithm to
achieve cross-app event mapping, which means RIDA does not
need to perform static analysis on the code of each Android
Activity and Fragment. Prior to ATM, Behrang and Orso
proposed GUITESTMIGRATOR (GTM) [15] for migrating test
event sequences. GTM pre-processes texts associated with a
pair of given widgets by POS tagging and then calculates
their similarity score using the Wu and Palmer [68] method.
Different from ATM, GTM does not use word embedding
and cannot migrate test oracles. ADAPTDROID [16] utilizes
the evolutionary algorithm to migrate tests across Android
apps. Mariani et al. [23] compared CRAFTDROID and ATM
by studying the effectiveness of four components in semantic
matching: corpus, word embedding model, event descriptor,
and semantic matching algorithm. They did not compare
GTM since it was a downgraded version of ATM. They also
presented a new semantic matching algorithm SEMFINDER,
which outperforms the algorithms of both CRAFTDROID and
ATM. Zhao et al. [69] presented a framework FRUITER for

evaluating UI test reuse techniques on Android. Unlike [23],
FRUITER evaluates test reuse tools as a whole, rather than
considering semantic matching algorithms in particular. Both
of them do not evaluate the effectiveness of migrating oracles.
Recently, Liu et al. [70] present TRASM, which uses adaptive
strategies to improve the performance of semantic matching
for test reuse on Android Applications.

The key difference between the above test reuse tools and
RIDA is that the latter does not depend on the existing test
scripts to generate new test cases. Instead, RIDA accepts
manual inputs directly from the testers and replays them
across apps with similar functionalities. As for end-to-end
comparisons between RIDA’s cross-app record and replay with
other test reuse approaches that are based on existing test
scripts, we leave this as our future work.

Test reuse techniques can also be employed for the same
app on different application platforms. TESTMIG [71] can
migrate GUI tests from iOS to Android. It leverages the
sequence transduction technique to guide the event explo-
ration, which explicitly addresses the challenge that users on
different mobile platforms may have different habits. MAPIT
[72] is capable of performing bidirectional test migration
between pairs of Android and iOS apps. Given that app
widget appearances are more consistent under this scenario,
we believe that RIDA’s novel semantic matching algorithm
with image captioning technique can also enhance such cross-
platform test reuse by improving widget matching accuracy.

VII. CONCLUSION AND FUTURE WORK

This paper proposes a cross-app record-and-replay approach
RIDA. RIDA employs an on-the-fly search algorithm to match
widgets across apps. It also applies image captioning to gen-
erate semantic descriptors when text attributes are unavailable
for a given widget. We evaluate RIDA using controlled and in-
the-wild experiments. The results show that RIDA can effec-
tively perform cross-app record-and-replay in both scenarios.
Also, RIDA’s semantic matching algorithm outperforms the
state-of-the-art approach and other baseline methods.

One future work is that we can extend RIDA to realize
cross-platform record-and-replay, for instance, recording tests
in Web applications and replaying them on mobile apps. In
addition, RIDA’s word-matching algorithm is rather simple.
It takes advantage of the syntactic information between de-
scriptors to mitigate the effect of common words on matching
accuracy. More advanced techniques can be applied to further
improve the RIDA’s matching accuracy.
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