
CUSTODES: Automatic Spreadsheet Cell Clustering and
Smell Detection using Strong and Weak Features

Shing-Chi Cheung§, Wanjun Chen§, Yepang Liu§, and Chang Xu‡
§Dept. of Computer Science and Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
‡State Key Lab for Novel Software Technology and Dept. of Computer Sci. and Tech., Nanjing University, Nanjing, China

§{scc*, wchenah, andrewust}@cse.ust.hk, ‡changxu@nju.edu.cn*2

ABSTRACT

Various techniques have been proposed to detect smells in spread-

sheets, which are susceptible to errors. These techniques typically

detect spreadsheet smells through a mechanism based on a fixed set

of patterns or metric thresholds. Unlike conventional programs,

tabulation styles vary greatly across spreadsheets. Smell detection

based on fixed patterns or metric thresholds, which are insensitive

to the varying tabulation styles, can miss many smells in one

spreadsheet while reporting many spurious smells in another. In

this paper, we propose CUSTODES to effectively cluster spread-

sheet cells and detect smells in these clusters. The clustering mech-

anism can automatically adapt to the tabulation styles of each

spreadsheet using strong and weak features. These strong and weak

features capture the invariant and variant parts of tabulation styles,

respectively. As smelly cells in a spreadsheet normally occur in mi-

nority, they can be mechanically detected as clusters’ outliers in

feature spaces. We implemented and applied CUSTODES to 70

spreadsheets files randomly sampled from the EUSES corpus.

These spreadsheets contain 1,610 formula cell clusters. Experi-

mental results confirmed that CUSTODES is effective. It success-

fully detected harmful smells that can induce computation anoma-

lies in spreadsheets with an F-measure of 0.72, outperforming state-

of-the-art techniques.

CCS Concepts

• Software and its engineering➝Software creation and manage-

ment➝Software verification and validation➝Software defect

analysis➝Software testing and debugging • Applied compu-

ting➝Computers in other domains➝Personal computers and

PC applications➝Spreadsheets.

Keywords

Spreadsheets; cell clustering; smell detection; feature modeling;

end-user programming.

1. INTRODUCTION

Spreadsheets are a popular computation paradigm used for data

storage and analysis, decision support, financial reporting, and

quality control [46]. Despite their popularity, spreadsheets are

*Shing-Chi Cheung and Chang Xu are the corresponding authors.

found to be error-prone [13, 25, 37, 42, 45]. Conventional quality

assurance measures for software such as unit tests and assert state-

ments are generally inapplicable to spreadsheets.

To improve spreadsheet quality, researchers have proposed various

quality assurance techniques [34], among which smell detection

draws much attention. The concept of spreadsheet smell is inspired

by code smell, which was originally introduced by Fowler [23]. In

conventional programs, code smells refer to those bad designs that

are not necessarily errors themselves, but likely degenerate into

faults in subsequent program development and maintenance. In the

spreadsheet domain, researchers study smells mainly from two per-

spectives. One is to apply the conventional principles of code

smells to spreadsheets [28]. Formula cells with complexity exceed-

ing certain pre-defined metric thresholds are detected as smells in

the sense that they hinder spreadsheet understanding. The other is

to consider spreadsheet-specific characteristics such as statistical

properties of data [16] and computation semantics of formulas [19,

32]. From the latter perspective, spreadsheet smells usually refer to

the discrepancies between a group of similar cells that are usually

neighbors. There is so far no systematic way to characterize smells

in spreadsheets and address the problem uniformly. Users need to

apply various techniques individually under different settings and

validate their results one by one. Moreover, smells detected as vio-

lations of pre-defined patterns or metric thresholds fail to adapt to

diverse tabulation styles, which reflect different user formula de-

sign practices and application domains. As a result, the smell de-

tection can miss many smells in one spreadsheet while reporting

many spurious smells in another.

We made two observations from the existing literature on spread-

sheet smells. One is that the studied smells are mostly related to

formulas. These smells occur at formula operations, cell references

or missing formulas [16, 19, 28, 32]. Second, the identification (or

clustering) of neighboring cells plays an important role in smell de-

tection so that these cells can be checked against some pre-defined

pattern or threshold as a group. For example, Hermans et al. [28]

identified the smells that occur when one formula differs slightly

from its “neighbors”, and referred to them as “Rare Formulas”.

Cunha et al. [16] catalogued smells like “pattern finder” that iden-

tifies the deviation of one cell from the pattern in a row. Dou et al.

[19] identified “ambiguous computational smells” in a cell array (a

contiguous range of formula cells in a row or a column) if it con-

tains cells evaluated using different computations.

While the first observation motivates us to study formula-related

smell detection, the second observation suggests two existing prob-

lems in smell detection. First, clustering based on neighboring cells

can be inaccurate because neighboring cells can sometimes be spa-

tially unobvious. An alternative is to locate neighboring cells based

on formula expressions [2, 15, 22, 47]. However, this alternative is

Permission to make digital or hard copies of all or part of this work for per-

sonal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACM must be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from Permissions@acm.org.

ICSE '16, May 14-22, 2016, Austin, TX, USA
© 2016 ACM. ISBN 978-1-4503-3900-1/16/05…$15.00

DOI: http://dx.doi.org/10.1145/2884781.2884796

not effective on smell detection because cells suffering from for-

mula-related smells often have their formulas deviated from others

or even completely missing. Second, they do not consider that users

often have their own styles in tabulating spreadsheets. Such styles

can also vary across application domains. The use of a pre-defined

pattern or metric threshold to cluster neighboring cells for any

spreadsheet can incorrectly identify cell clusters, and therefore miss

the detection of true smells or detect spurious smells.

Motivated by these two observations, we propose in this paper a

formula-related smell detection approach called CUSTODES (clus-

tering using strong and weak features) that can infer and adapt to

users’ different tabulation styles. To achieve this, we study how to

effectively cluster similar formula cells using features based on un-

supervised learning. The effect of each feature on clustering can

vary across tables and spreadsheets, depending on tabulation styles.

We also study the characterization of smelly cells as outliers of their

clusters and detect them in feature spaces.

CUSTODES addresses three major challenges. The first challenge

is how to determine the set of features to construct a feature model

for automatic cell clustering. Spreadsheets are often prepared and

maintained by users who likely have their own styles in tabulating

data and formulas. These styles may not even be consistent in all

cells in a cluster when parts of them are copied or adapted from

another spreadsheet. For example, some users put a “Total” header

label to indicate the summation computation; hence summation for-

mula cells related to this header should reside in the same cluster.

While in other situations, users may put a summation formula cell

at the end of a row or column without labeling it as “Total”. Auto-

matically clustering cells based on computation semantics is diffi-

cult without prior knowledge of users’ design and styles. The fea-

ture model should not only reflect general spreadsheet system char-

acteristics, but also capture varying spreadsheet tabulation styles.

The second challenge is how to extract those features. Comparing

with conventional software, spreadsheets involve simpler compu-

tation [34]. Spreadsheets provide limited coding information from

which relationships among cells can be inferred. The third chal-

lenge is to determine and quantify the deviation among cells for

effective smell detection as outliers. The deviation should be so

quantified that a cell suffering from more types of smells would be

a clearer outlier.

To address the three challenges, CUSTODES adopts a two-stage

clustering technique, which is inspired by Yoshida et al. [49], based
on a spreadsheet’s strong and weak features. Strong features model

the invariant parts of tabulation styles. They are properties that can
be generically used for clustering. Examples are cell formulas and

cell reference relations (e.g., those cells in [F11:F16] in Figure 1).
These features can often be used to cluster cells together. However,

relying on strong features alone for cell clustering is inadequate and

can result in many non-clustered cells because not all cells in a clus-
ter necessarily exhibit these strong features. For example, a smelly

cell F17 in Figure 1 misses the strong feature described by the for-
mula expression as in cells [F11:F19], and hence cannot be clus-

tered using formulas alone. To solve this problem, we also consider
weak features, which model the variant parts of tabulation styles.

Examples are cell labels, layouts, spatial relations, fonts and the
number of significant figures. They may sometimes be used to clus-

ter cells together (e.g., the header “Total” in F9 for cells [F11:F19]).
The idea is to use the clusters obtained at the first stage to extract

weak features for the second stage of clustering. These weak fea-
tures can be specific to tables and spreadsheets. For example, not

all tables and spreadsheets use “Total” to label cells in a cluster.
CUSTODES have two unique advantages. First, it does not have to

assume cells in a cluster appearing in the same row, same column
or even contiguously in a spreadsheet. Second, it can automatically

adapt to varying tabulation styles.

Cells dissimilar to most of their peers can be identified as outliers

of their clusters. Such dissimilarity is a good indicator of smells or

errors. Specifically, CUSTODES identifies outlier cells as smells

and ranks them based on their outlier scores. We further classify

various kinds of outliers into different smell types by examining the

feature spaces. Explanation of the smell types exhibited by each

outlier cell in terms of the corresponding feature space can be pro-

vided for users’ further actions.

We implemented CUSTODES as a tool and evaluated its perfor-

mance using the EUSES corpus [21] from two perspectives: cell

clustering and smell detection. Experimental results show that our

two-stage clustering approach can improve existing clustering tech-

niques [39] by over 12% in recall while retaining a high precision.

As smells typically occur in minority, such an improvement in re-

call is critical to effective smell detection. As we will show in Sec-

tion 6.3, our tool successfully clustered many smelly cells that

6 A E F G H

7 DEPOSITS/SHARES LOANS

8 Dollars %	of Dollars %	of

9 (000's) Total (000's) Total

11 Trust	Companies 1547458 =(RC[-1]/R21C[-1])*100 1377629 =(RC[-1]/R21C[-1])*100

12 Limited	Purpose	Banks 0 =(RC[-1]/R21C[-1])*100 404 =(RC[-1]/R21C[-1])*100

13 National	Banks* 7440908 =(RC[-1]/R21C[-1])*100 6508230 =(RC[-1]/R21C[-1])*100

14 State	Savings	Banks 5010519 =(RC[-1]/R21C[-1])*100 4859363 =(RC[-1]/R21C[-1])*100

15 Federal	Savings	Banks 739898 =(RC[-1]/R21C[-1])*100 859251 5.3

16 State	Savings	and	Loans 103550 =(RC[-1]/R21C[-1])*100 107427 =(RC[-1]/R21C[-1])*100

17 Federal	Savings	and	Loans 206822 1.15 211442 =(RC[-1]/R21C[-1])*100

18 State	Credit	Unions 711205 =(RC[-1]/R21C[-1])*100 568652 3.5

19 Federal	Credit	Unions 2127767 =(RC[-1]/R21C[-1])*100 1735908 =(RC[-1]/R21C[-1])*100

20

21 TOTAL =SUM(R[-10]C:R[-1]C) 100 =SUM(R[-10]C:R[-1]C) =SUM(R[-10]C:R[-2]C)

22

31 State-Chartered =SUM(R[-20]C,R[-19]C,R[-17]C,R[-15]C,R[-13]C)=SUM(R[-20]C,R[-19]C,R[-17]C,R[-15]C,R[-13]C)=SUM(R[-20]C,R[-19]C,R[-17]C,R[-15]C,R[-13]C)=SUM(R[-20]C,R[-19]C,R[-17]C,R[-15]C,R[-13]C)

32 Federally	Chartered* =SUM(R[-19]C,R[-17]C,R[-15]C,R[-13]C)=SUM(R[-19]C,R[-17]C,R[-15]C,R[-13]C)=SUM(R[-19]C,R[-17]C,R[-15]C,R[-13]C)=R[-19]C+R[-17]C+R[-15]C+R[-13]C

33

37 Out-of-State	Ownership* 3782155 =(RC[-1]/R[2]C[-1])*R[-16]C 2823577 =(RC[-1]/R[2]C[-1])*100

39 TOTAL =R[-5]C =R[-5]C =R[-5]C =R[-5]C

Cluster 1 Cluster 1

Cluster 2

Cluster 3

Cluster 4

Cluster 6
Cluster 5

Figure 1. A motivating example of an extracted EUSES [21] spreadsheet in Excel R1C1 format

could not be clustered by existing approaches. The successful clus-

tering of these smelly cells allows them to be detected as outliers.

Our tool implemented the outlier detection of four popular types of

smells reported by recent studies: missing formulas, dissimilar ref-

erences, dissimilar operations and formulas with hard-coded con-

stants [45]. The evaluation results show that CUSTODES can de-

tect smells effectively, and outperform the state-of-the-art smell de-

tection techniques. Smells are detected with a precision of 0.65, re-

call of 0.80, F-measure of 0.72 as compared with 0.57, 0.62, 0.60

achieved by our previous work AmCheck [19].

CUSTODES differs from our previous work AmCheck [19] in both

cell clustering and smell detection. Unlike the current work using a
feature model for clustering, AmCheck aggregates a row or column

of contiguous cells into a cluster only if: (1) none of the cells is

empty or contains labels, and (2) the row and column indices of
their formula operands must be within the range of these contiguous

cells. As such, AmCheck does not cluster the cells in Clusters 1 and
5 in Figure 1. Unlike the current work identifying smells as outliers

in a feature space, AmCheck detects smells by checking whether a
set of constraints extracted from the formulas in a cluster is solva-

ble. As such, the smell detection of AmCheck is mostly restricted
to formulas that can be handled by linear constraint solvers. In con-

trast, the current work detects smells as outliers in feature spaces.
It is able to detect smelly cells that involve complex formula ex-

pressions such as those containing conditions and strings. No prior
technique has been proposed to cluster spreadsheet cells using

strong and weak features, and formulate the problem of spreadsheet
smell detection as outlier detection.

In summary, this paper makes the following four contributions:

- We proposed a feature model that is able to capture both the in-

variant and variant parts of tabulation styles. The former models

those common practices for spreadsheet tabulation. The latter

models domain knowledge and user styles specific to individual

spreadsheets.

- We adapted a recent algorithm [43] proposed in the information

retrieval community to automatically cluster cells in two stages.

Each cell cluster is associated with a feature model. Smells are

then automatically identified and ranked as outliers.

- We implemented CUSTODES as a tool that can automatically

cluster cells and detect smells for spreadsheets.

- We evaluated CUSTODES on 70 spreadsheet files, which con-

tain 1,610 clusters of formula cells, randomly sampled from the

EUSES corpus.

The remainder of this paper is organized as follows. We present a
motivating example in Section 2, followed by an overview of CUS-

TODES in Section 3. Section 4 introduces our two-stage clustering
and outlier-based smell detection approach. Section 5 presents the

implementation of CUSTODES. After reporting our experimental
results in Section 6, we discuss our findings and related work in

Sections 7 and 8, followed by a review of threats to validity in Sec-

tion 9. The paper is concluded in Section 10.

2. MOTIVATING EXAMPLE

In this section, we motivate our problem using an illustrative exam-

ple extracted from the EUSES corpus [21] in Figure 1. Due to page

limit, the example gives an excerpt of the actual spreadsheet, which

summarizes the assets, deposits/shares and loans of MAINE finan-

cial institutions. The example contains seven smelly cells, among

which the values of four data cells are likely errors (the four nu-

meric data cells marked with a red right-cornered triangle “”).

For example, the value of cell F17 is inconsistent with that com-

puted by formula (RC[-1]/R21C[-1])*100, and the values of cells

[F11:F19] do not sum up to 100 as indicated in cell F21. Errors in

some cells such as F17 can induce further errors in other cells such

as F21. Note that none of the smells shown in Figure 1 can be de-

tected by the error checking tool of Excel 2013. In the example, we

observe four different types of harmful smells that can induce com-

putation anomalies.

Missing formula smell: It is a type of smells studied by AmCheck
[19]. The smell occurs when a cell is supposed to contain a formula,

but it does not. AmCheck detects such smells by checking whether

a row/column of contiguous cells, referred to as a cell array, con-
tains both data and formula cells. If yes, AmCheck would consider

those data cells smelly. However, AmCheck fails to detect three
missing formula smells in the example because they cannot be clus-

tered using cell arrays. For instance, the cells in [F11:F19] should
have the same formula, but AmCheck fails to detect the missing

formula smell in F17 because [F11:F19] is not considered a cell

array as its operand R21C[-1] is not a cell between rows 11 and 19.

This illustrates that correct identification of cell clusters is im-
portant to smell detection. It also illustrates the difficulties in char-

acterizing a cluster using fixed patterns and spatial relations.

Dissimilar reference smell: The smell occurs when a formula ref-

erences an incorrect cell or cell range. An example is cell H21. Un-
like its peers in Cluster 2, the formula of cell H21 misses the refer-

ence of cell H20. This smell can degenerate into errors in subse-
quent modification and maintenance, as for example, if row 20 is

no longer empty or the SUM in H21 is replaced by another function
that is sensitive to empty cells.

Dissimilar operation smell: It occurs when the cells in a cluster
contain formulas with dissimilar operations. An example is cell

H32, which uses the “+” operator to evaluate summation while its
peers in the same row use a “SUM” function. Refactoring the con-

cerned formula using function SUM, which is also used in H32’s
peers such as cell F32, could repair the smell in H32. However,

identifying the peers of H32 as well as making refactoring sugges-
tions are non-trivial.

Hard-coded constant smell: This type of smells occurs when a

cell replaces cell referencing with a number while other peer cells

do not. For example, unlike cell F37, cell H37 replaces the refer-
ence R[-16]C with a constant 100 in formula. Although the current

result is correct since R[-16]C in H37 references cell H21 whose
value happens to be 100, this may induce errors when H21 is no

longer evaluated to 100 in future after spreadsheet maintenance.

The above four smell types can be found in real-life spreadsheets
[19, 41, 45]. A case study on how they could be induced is dis-
cussed in our earlier study [19]. As illustrated above, smells of dif-
ferent types are characterized in existing work using different cri-
teria, which require the use of different mechanisms for their detec-
tion. This makes it a hurdle for users to adopt automatic smell de-
tection for spreadsheets, especially when they have no idea which
mechanism would work best for their spreadsheets. It is because
users generally do not have prior knowledge on the types of smells
by which their spreadsheets are mostly infected. Another issue is
that users adopt different styles in tabulating spreadsheets. This mo-
tivates us to study whether smells can be uniformly characterized
and detected.

3. METHODOLOGY OVERVIEW

Figure 2 gives an overview of our methodology, which consists of

four steps: preprocessing, first-stage clustering, second-stage clus-

tering by bootstrapping, and smell detection. The preprocessing

step identifies formulas in given spreadsheets. From these formu-

las, we extract two strong features: abstract syntax trees and cell

dependency trees. Cell dependency can be extracted using the

“trace precedents” built-in function of Excel. These two strong fea-

tures can be used to relate cells belonging to the same cluster in

each spreadsheet. The first-stage clustering is an unsupervised

learning process based on the similarities calculated using the two

strong features. The clusters such constructed are referred to as seed

clusters. The second-stage clustering extracts a set of weak features

common to each seed cluster and its member cells. These weak fea-

tures can be used to associate additional cells with the cluster. Note

that each cell may only be associated with one cluster. The last step

is smell detection. An intra-cluster outlier score is calculated using

outlier detection technique for each cell within a cluster by explor-

ing the feature space in the worksheet concerned (a worksheet is a

page in a spreadsheet). The report of this step is a list of cells ranked

by their outlier scores. Highly ranked cells are likely smells because

they most likely miss features common to their clusters. These cells

are more error-prone than others, prompting users’ attention. Lowly

ranked cells are unlikely smells.

Let us illustrate the process using Cluster 1 of the previous example

in Figure 1. After the first-stage clustering, cells [F11:F16],

[F18:F19], [H11:H14], [H16:H17] and H19 are aggregated to form

one seed cluster since they share one R1C1 formula as well as the

same structure of cell dependency. In the second stage, we are able

to extract four weak features that are closely associated with the

seed cluster: (1) they (cells) all have the same “Total” header labels;

(2) they are all either in column F or column H; (3) they form two

repeating cell blocks with horizontal one cell gap; and (4) they are

in the same table. Using the extracted weak features, cells F17, H15

and H18 are further aggregated to the seed cluster since they share

the same weak features. These three cells are also detected as out-

liers in the feature space of formulas. Unlike most of their peers in

the seed cluster, these outliers miss all formula related features.

This illustration demonstrates that cell clustering based on formula

alone is inadequate. It misses the three smelly cells.

4. APPROACH

As mentioned in Section 1, CUSTODES needs to tackle three chal-

lenges. In this section, we introduce the features that can be lever-
aged for cell clustering to address the first challenge, and explain

how they can be extracted to address the second challenge. After

that, we present our two-stage clustering algorithm, followed by a

smell detection mechanism to address the third challenge.

4.1 Preliminaries

The following introduces the terminologies used in this paper.

Cell classification: We follow Hermans et al.’s approach [29] to

classify cells into: (1) label cells: string cells that explain the mean-

ing of other cells, (2) data cells: value cells without embedding for-

mulas, (3) formula cells: cells that embed a formula, and (4) empty

cells. Formula clusters are those cell clusters that contain at least

one formula cell. Since formula-related smells are common in

spreadsheets [19, 30], we focus on deriving formula clusters and

detecting smells in these clusters. Note that a formula cluster may

contain data or empty cells. We do not cluster label cells, and treat

labels as a candidate weak feature of formula clusters.

Cell address: A cell address is the coordinate (𝑥, 𝑦) of a given cell,

where x and y represent its row and column indices, respectively.

Cell reference: A cell reference is a reference in a formula to an-

other cell. Cell references can be absolute or relative. An absolute
reference in the form of xy refers to a cell at the address (x, y). It

does not change even if the reference is copied to another cell for-
mula within the same worksheet. A relative reference encodes the

cell address offset between the current cell and referenced cell. The
offset of a relative reference remains unchanged when it is copied

to another cell formula.

Cell formula: Let 𝐹 be a set of cell formulas, 𝐴 be a set of cell ref-

erences, and 𝑉 be a set of values. A formula (𝑓 ∈ 𝐹) expresses a

value (𝑣 ∈ 𝑉), a cell reference (𝑎 ∈ 𝐴), or an operation 𝜑 over one

or more formulas: 𝑓 ∷= 𝑣 | 𝑎 | 𝜑(𝑓, … , 𝑓). Operations in a formula

include basic operators, such as +, −, *, /, as well as Excel’s built-

in functions like SUM and AVERAGE. Formulas are given in

R1C1 format, which is commonly adopted to represent the formula

of a cell in Excel [42, 48]. Formula cells in the same cluster often

have the same expression in R1C1 format. The formula in cells

[F11:F19] is “=(RC[-1]/R21C[-1])*100”, where “RC[-1]” refers to

the cell in the same row but one column left to the current cell.

4.2 First-stage Clustering
In the first stage, we extract two strong clustering features from

each formula cell: formula expression and cell dependency. These

features are generic to spreadsheets.

4.2.1 Two Strong Clustering Features

Formula’s abstract syntax tree: Formulas are a common feature

to relate formula cells of the same cluster [2, 15, 22]. This feature

is extracted by parsing each formula (including its cell references,

values and operations) into an abstract syntax tree (AST), which

represents the computation semantics of the associated formula.

Cell dependency: Formula cells in the same cluster are typically

subject to the same pattern (or tree structure) of cell dependency.

We adapt the spreadsheet program model proposed by Abrahm and

Erwig [4] to model cell dependency. The cell dependency of a cell

c is a tree rooted by c. The tree is so constructed that a formula cell

is the parent node of those cells this formula cell references. Leaf

nodes of the tree are data or empty cells.

4.2.2 Cell Similarity Function

Since both strong features are modeled as tree structures, we cluster

formula cells with respect to strong features based on tree similarity.

Tree similarity is measured by Tree Edit Distance using the RTED

algorithm [44], which calculates an editing script of a tree structure

with add, update and delete actions. Given two formula cells 𝑓1 and

𝑓2, their tree similarity is defined as follows:

𝑠𝑖𝑚(𝑓1, 𝑓2) = 1.0 −
𝑅𝑇𝐸𝐷(𝑇1,𝑇2)

|𝑇1|+|𝑇2|
,

where |𝑇| is the node number in tree T.

4.2.3 Clustering Algorithm

For each pair of formula cells, we obtain two similarity scores
ASTsim and CRTsim based on their tree similarity with respect to

abstract syntax tree and cell dependency, respectively. The merged

similarity score 𝑠𝑖𝑚(𝑓1, 𝑓2) of two formula cells 𝑓1 and 𝑓2 is calcu-

lated as a multiplication of the two scores:

𝑠𝑖𝑚(𝑓1, 𝑓2) = 𝐴𝑆𝑇𝑠𝑖𝑚(𝑓1, 𝑓2) ∗ 𝐶𝑅𝑇𝑠𝑖𝑚 (𝑓1, 𝑓2).

Figure 2. Methodology overview

Strong

Features

Weak

FeaturesPreprocessing

First-stage

Clustering

Second-stage

Clustering Smell

Detection

We use the standard hierarchical agglomerative clustering (HAC)

[26] algorithm to cluster formula cells based on the merged simi-
larity. Initially, each formula cell forms a cluster on its own. This

cluster then iteratively merges clusters with the closest distance
pairs. The average distance metric is defined as below in order to

decide inter-cluster distances:

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐶𝑙𝑖 , 𝐶𝑙𝑗) =
∑ ∑ 𝑑𝑖𝑠𝑡(𝑓1,𝑓2)𝑓2∈𝐶𝑙𝑗𝑓1∈𝐶𝑙𝑖

|𝐶𝑙𝑖||𝐶𝑙𝑗|
,

𝑑𝑖𝑠𝑡(𝑓1 , 𝑓2) = 1.0 − 𝑠𝑖𝑚(𝑓1 , 𝑓2).

The parameter of HAC [26] is the similarity threshold value. In or-

der to guarantee high accuracy in the first stage clustering, the

threshold is set to strong similarity. Two cell clusters in a worksheet

are considered separate when their distance exceeds 0.02. The out-

put of this stage is a set of clusters that contain more than one cell.

We refer to them as seed clusters, and the cells in these clusters as

seed cells. The input of the algorithm can be a worksheet, a spread-

sheet or even a family of spreadsheets with similar filenames.

4.3 Second-stage Clustering

This subsection explains weak features and our second-stage boot-

strapping clustering algorithm. Weak features are collected from

the existing literature on spreadsheets to relate similar cells. While

these features (e.g., layout and labels) can relate similar cells, they

vary across spreadsheets. We present in the following seven weak

features currently implemented by our tool. The set of weak fea-

tures can be readily extended and supported by CUSTODES for

second-stage clustering.

4.3.1 Weak Clustering Features

Cell address：A cell is uniquely addressed by its row and column

indices (x, y). It is common for users to add new cells in a cluster

along the same row or column. As such, cells in the same row or

column likely belong to the same cluster. Typically, a cluster

groups cells either horizontally or vertically. Both extensions of

clusters can also appear at the same time in a spreadsheet. Our clus-

tering algorithm assumes no prior-knowledge about whether the

cells in a spreadsheet are clustered along row or column.

Label: Labels in a spreadsheet can be horizontal or vertical. Hori-

zontal and vertical labels describe cells in a row and a column, re-

spectively. A label (e.g., “TOTAL”) is the string content of a label

cell. It is sometimes used to describe the computation performed by

a cell cluster [1]. As such, labels can be a useful clustering feature

if we can automatically relate each cell to a label. To do that, we

follow an approach proposed by Abraham and Erwig [1] to relate

each non-label cell to its nearest horizontal label cell (on the left in

the same row) and its nearest vertical label cell (above in the same

column). For example, in Figure 1, the label cell A21 “TOTAL” is

assigned to cells [E21:H21] as their horizontal label, indicating a

summation of values. Not all non-label cells have horizontal and

vertical labels. We ignore meaningless label cells formed by strings

serving as visual separators such as “=” and “−”.

Layout: Spreadsheet users may deploy different layout styles to

visually cluster related cells in the same format [33]. Examples of

layout styles are font, font size, font color, borders and even back-

ground color. CUSTODES treats font color as well as background

color as a candidate weak feature of a cell. This feature varies ac-

cording to users’ practices and preferences, and tends to be con-

sistent within the same spreadsheet.

Alliance: A cell is an alliance of another cell if they are the param-

eters/operands of the same function/operation like SUM, MAX or

AVG. For example, when a formula cell is evaluated by an opera-

tion “=SUM(R[-10]C:R[-2]C)”, all cells in the range [R[-10]C:R[-

2]C] referenced by the formula cell are alliances. Such alliance re-

lation is referred to as physical area, which can be used to describe
a conceptual cohesion among cells [9].

Table: A spreadsheet table serves as an area where data and for-
mula cells are clustered [2]. An example is the rectangular area

comprising cells [E11:H19] in Figure 1. However, users may not
always separate unrelated data using tables or organize tables con-

sistently. As such, the containment of a cell by a table is only a

weak feature for clustering. We follow the approach adopted by
Abraham and Erwig [2] to extract tables in a given spreadsheet.

Cell array membership: A cell array clusters a set of contiguous,

non-empty cells in a column or row that are subject to the same

computation semantics [19]. A row or column of contiguous cells

are clustered into a cell array if: (1) none of the cells is empty or

contains labels, and (2) the row and column indices of their formula

operands must be within the range of these contiguous cells. A cell

array must contain at least one formula cell. A cell may at most be

clustered into one cell array. There are two kinds of cell arrays:

row-based and column-based, depending on whether clustered cells

in an array share the same row or column. For example, the cells in

[E21:H21] in Figure 1 are members of the same cell array.

Gap template: Templates can be generalized from two or more cell
blocks formed by consecutive rows or columns of cells that capture

similar types of data and computation. They share the same visual
layout, and some of their formula cells in the same relative position

share the same formula. An example is the two cell blocks [F11:F19]
and [H11:H19] in Figure 1. Cells F13 and H13 have the same rela-

tive position in their respective cell blocks, and they share the same
formula. After a template based on similar cell blocks is derived,

peer cells (e.g., F15 and H15) in the same relative position in their
own blocks could be associated and clustered. The addresses of

these peer cells differ by a horizontal or vertical offset. The deriva-
tion of templates as well as the corresponding offsets can be imple-

mented by referencing the spreadsheet template inference mecha-
nism proposed by Abraham and Erwig [2]. We refer to these offsets

as gap templates. For example, the gap template based on [F11:F19]
and [H11:H19] models a horizontal offset of two. Note that it is

possible to derive multiple gap templates from a set of spreadsheet
cells. A gap template can also be derived from similar cell blocks

across worksheets and even spreadsheets.

4.3.2 Bootstrapping Algorithm

The bootstrapping algorithm (Figure 3) used in CUSTODES is
adapted from an information retrieval technique, referred to as “Es-

presso”, for computational linguistics [43]. The algorithm was later
applied by Yoshida et al. [49] to reinforce a two-stage clustering

that disambiguates person names in Web search results. Given a set
of seed instances, Espresso learns their patterns and thereby ex-

tracts additional instances over the Web, iteratively. New instances
and patterns are selected and added according to a reliability func-

tion defined over self-mutual-information values. We adapt Es-
presso by mapping instances and patterns to cells and weak features,

respectively. Under such mappings, the algorithm is adapted to har-
vest weak features from the (seed) cells in each seed cluster derived

in the first stage. Remaining (originally non-seed) cells are then
successively added to seed clusters based on their extracted weak

features. Algorithm 1 gives the bootstrapping algorithm. A matrix
multiplication is used to propagate weak features from seed clusters

to non-seed cells. Like the first-stage clustering, we apply the boot-

strapping algorithm for each worksheet so that a cell can only be
grouped (or harvested) to a seed cluster in the same worksheet.

4.3.2.1 Input matrix construction

Let 𝑭𝑻 denote the weak feature vector, CE denote the cell vector

(containing both seed and non-seed cells), CL denote the seed clus-

ter vector. Feature-cell matrix 𝑃 ≔ |𝑭𝑻| × |𝑪𝑬| , where 𝑝𝑖,𝑗 = 1

when 𝑓𝑡𝑖 is contained in 𝑐𝑒𝑗 . Cell-Cluster matrix 𝑹𝑪𝑬 ≔ |𝑪𝑬| ×
|𝑪𝑳|, is a matrix to capture the association strength among cells and

clusters. For the initial matrix 𝑹𝑪𝑬
(𝟎)

, 𝒓𝒋,𝒌
(𝟎)

= 1 if the cell 𝑐𝑒𝑗 is in the

seed cluster 𝑐𝑙𝑘 after the first stage clustering. Feature-cluster ma-

trix 𝑹𝑭𝑻 ≔ |𝑭𝑻| × |𝑪𝑳|, is a weighting matrix of weak features and

clusters.

4.3.2.2 Algorithm details

This algorithm contains two major components: (1) matrix multi-

plication to refine cell-cluster association values (Lines 1–3), and

(2) harvesting non-seed cells to be added to seed clusters (Lines 5–

11). We elaborate on the details below.

Matrix multiplication (Lines 1–3): Before performing the matrix

multiplication, we need to prepare two input items 𝑹𝑪𝑬
(𝟎)

 and P. First,

cells in seed clusters of a size larger than one are identified, giving

the cell-cluster matrix 𝑹𝑪𝑬
(𝟎)

. These cells, referred to as seed cells

earlier, are formula cells that exhibit the two strong features as pre-

sented in Section 4.2.1. Second, the weak features of each seed

cluster are extracted from its seed cells to form a feature-cell matrix

P. Except for seed cells, label cells and empty cells, data and re-

maining unclustered formula cells are referred to as non-seed cells.

Line 1 is a matrix multiplication to get an initial feature-cluster as-

sociation weights 𝑹𝑭𝑻
(𝟎)

 by multiplying feature-cell matrix 𝑷 with

initial cell-cluster matrix 𝑹𝑪𝑬
(𝟎)

. However, it is possible that a feature

is common to many clusters, resulting in a high weight. For exam-

ple, the same font style is used in many clusters. However, this con-

tradicts to our goal of finding weak features specific to a cluster,

i.e., features most uniquely characterize a cluster. As such, the

Ochiai coefficient is calculated for resulting feature-cluster matrix

𝑹𝑭𝑻 (Line 2). Ochiai coefficient is one of the best performing asso-

ciation measures [5]. This step could be regarded as a re-weighting

process to put higher weights on features that are strongly related

to a seed cluster. At Line 3, by multiplying 𝑷𝑻 with 𝑹𝑭𝑻, cluster

feature weights then propagate back to the cell-cluster matrix and
new cell-cluster association values are obtained.

Harvesting non-seed cells (Lines 5–11): In order to harvest non-

seed cells to seed clusters, the algorithm finds the cluster that max-

imizes the association value for each non-seed cell (Line 7). If the

value is above the specified threshold, this non-seed cell could be

harvested (Lines 8–9). Intuitively, we want to exclude those cells

with insignificant associations when compared with the seed cells

in the cluster. We use a relative difference (Line 15) to compare the

minimum association value of the seed cells in the same cluster

with the ready-to-harvest one, and this makes the difference nor-

malized to range [0, 1] and relieves from the need for adopting a
different threshold for each cluster.

4.4 Smell Detection

Let us explain smell detection based on our identified cell clusters.

4.4.1 Intra-cluster Smelly Suspiciousness

Our two-stage clustering algorithm identifies the set of weak fea-

tures that uniquely characterize each seed cluster from seed cells,

and leverages these features to group cells into seed clusters. This

allows cells to be grouped into a seed cluster even if their strong

features (i.e., formulas) deviate from those of the seed cells inside

the same cluster. Since smells likely occur in minority, we utilize

an outlier detection technique for smell detection. For example, an

outlier detection in the feature space of the strong features can de-

tect computation-related smells as a cell’s computation is driven by

its formula.

We focus on computation-related smells in spreadsheets because

they are pervasive and can adversely affect spreadsheet correctness.

To facilitate outlier detection of such smells, strong features are

mapped onto vectors, and the Euclidian distance in the feature

space is calculated to determine the degree of deviation.

Local Outlier Factor (LOF) [12] is a density-based outlier detection

technique, which assumes that the density around a normal data ob-

ject (inlier) should be similar to the density around its neighbors,

while the density around an outlier is substantially lower than the

density around its neighbors. An LOF score is assigned to each

clustered cell to represent its outlierness. The score is calculated as

the ratio of the local density of the cell and the average local density

of its neighbor. The local density of a cell is inversely proportional

to the average distance to its k-nearest neighbors. A cell can be con-

sidered an outlier if its LOF score is well above 1 [12]. In order to

use LOF, a parameter k is needed to decide the neighborhood size.

Here, we follow the rule-of-thumb in the k-nearest neighbor algo-

rithm and assume k to be the square root of the cluster size [27, 35,

36]. The output of our algorithm is a list of cells ranked in a de-

scending order by their LOF scores, which represent their smell

suspiciousness.

Algorithm 1. Bootstrapping algorithm

Input: Feature cell matrix P, cell cluster matrix 𝑹𝑪𝑬
(𝟎)

, threshold

Output: Cell clusters 𝑪𝒍𝒖𝒄𝒆𝒍𝒍

 1: 𝑹𝑭𝑻
(𝟎)

=
𝟏

|𝑪𝑬|
𝑷𝑹𝑪𝑬

(𝟎)
 // Calculate feature-cluster matrix

 2:
𝑹𝑭𝑻 = {

𝟏

𝐦𝐚𝐱 𝑶𝒄𝒉𝒊𝒂𝒊
𝒍𝒐𝒈

𝒑(𝒇𝒕, 𝒄𝒆)

𝒑(𝒇𝒕)𝒑(𝒄𝒆)
 𝒊𝒇

𝒑(𝒇𝒕, 𝒄𝒆)

𝒑(𝒇𝒕)𝒑(𝒄𝒆)
> 𝟏

𝟎 𝑶𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆
 ,

 (𝐟𝐨𝐫 𝐞𝐚𝐜𝐡 𝒇𝒕 ∈ 𝑭𝑻, 𝒄𝒆𝒍𝒍 ∈ 𝑪𝑬𝑳𝑳)

 3: 𝑹𝑪𝑬 =
𝟏

|𝑭𝑻|
𝑷𝑻𝑹𝑭𝑻 // Calculate cell-cluster matrix

 4:

 5: method Harvesting (𝑹𝑪𝑬)

 6: for each 𝑪𝒍𝒖 ∈ 𝑪𝑳𝑼 do

 7:
𝑪𝒍𝒖𝑵𝑺𝒄𝒆𝒍𝒍 = 𝐚𝐫𝐠 𝒎𝒂𝒙𝒄𝒍𝒖𝒓𝑵𝑺𝒄𝒆𝒍𝒍,𝑪𝒍𝒖′, where

{𝑪𝒍𝒖′ | (𝑪𝒍𝒖′ ∈ 𝑪𝑳𝑼 ⋀ |𝑪𝒍𝒖| > 𝟏) ⋁ 𝑪𝑳𝑼(𝑪𝑬𝑳𝑳)
(𝟎)

}

 8: if 𝐂𝐨𝐦𝐩(𝑪𝒍𝒖𝑵𝑺𝒄𝒆𝒍𝒍, 𝑪𝒍𝒖) > threshold

 9: 𝑪𝒍𝒖𝒄𝒆𝒍𝒍 = 𝒂𝒅𝒅(𝑵𝑺𝒄𝒆𝒍𝒍, 𝑪𝒖) //Add non-seed cell to cluster

10: end if

11: end for

12:

13: method Comp (𝑺𝒐, 𝑪𝒍𝒖)

14: for each 𝑺𝒄𝒆𝒍𝒍 ∈ 𝑪𝑬 do

15: 𝑺𝒎𝒊𝒏 = 𝐚𝐫𝐠 𝒎𝒊𝒏𝑺𝒄𝒆𝒍𝒍𝒓𝑺𝒄𝒆𝒍𝒍,𝑪𝒍𝒖

16: end for

17: return
𝑺𝒐−𝑺𝒎𝒊𝒏

𝑺𝒎𝒊𝒏

Figure 3. Algorithm for the second-stage cell clustering

4.4.2 Smell Types Categorization

In this subsection, we present how we categorize outliers into dif-

ferent types of computation smells.

Missing formula smell: It occurs at a numeric data cell where a
formula is expected but missing. It is a smell detected by AmCheck.

The smell is known as overwriting formula errors in another study
[9]. Cells suffering from this smell do not exhibit any strong feature,

and therefore they have high LOF scores. In the motivating exam-
ple (Figure 1), there are four data cells such as cells F17 and F21

suffering from this smell. CUSTODES clusters these smelly cells
together with formula cells. This facilitates users to validate the

smells and their numeric values using the associated formulas.
Since clustered data cells miss the two strong formula-related fea-

tures completely, they are strong suspects of missing formula
smells. An optimization of smell detection is to treat all these data

cells as outliers and thereby save their LOF calculation. This opti-
mization can sometimes improve the outlier detection of dissimilar

formula smells. We deployed this optimization in our experiments.

Dissimilar formula smell: A cell’s formula describes its computa-
tion. A formula typically consists of three types of components: cell

references, constant values and operations. Depending on which
type of component is smelly, smells can occur in any of the three

following forms:

(1) Dissimilar formula references: It occurs when the R1C1 expres-

sion of a formula is dissimilar to its peer cells’ formulas in the same

cluster. The smell can be characterized by an outlier that deviates

mainly in the cell dependency strong feature. This kind of smells

(e.g., cell H21 in Figure 1) is often found to be error-prone [41, 45].

(2) Dissimilar formula operations: It occurs at a formula cell whose

set of operations/operators differs from that of the majority cells in

the same cluster. The smell can be characterized by an outlier that

deviates mainly in the formula operations feature. Its effect is less

serious if the different operations have the same computational se-

mantics such as SUM and “+”, an example cell falling into this sub-

category is H32.

(3) Formula with hard-coded constants: It occurs at a formula cell

where an operand of its formula is hard-coded with a constant in-

stead of a cell reference, while it is not the case for most formula

cells in the same cluster. It is referred to as a qualitative error in

[45], and especially harmful when users forget to update the con-

stant value in spreadsheets upon modification or reuse. An example

of this is cell H37 in Figure 1.

Hermans et al. [28] proposed five other types of formula smells by

adapting conventional code smells in programs to spreadsheet for-

mulas. These smells occur to cells that subscribe a relatively com-

plex formula. Although formula complexity can degrade readabil-

ity and comprehensibility, complexity smells tend to be less prob-

lematic because formulas may need to be such implemented for

their intended computations. Due to space, we do not discuss the

detection and categorization of these five types of smells in this pa-

per. Essentially, they can also be detected as outliers in a feature

space that models formula complexity such as the number of refer-

ences, number of operations and calculation chains.

5. IMPLEMENTATION

This section briefly explains some implementation details. In the

preprocessing part, a formula cell’s dependency relationship is

tracked using Excel’s built-in function. We implemented it using

VBA in macros. The two-stage clustering and smell detection mod-

ules were implemented in Java, and Excel files’ processing was re-

alized on top of Apache POI [8]. Our tool automatically identifies

cell clusters and highlights them visually to users. Each smelly cell

is additionally marked by a red right-cornered triangle “” together

with a comment, describing its smell type and ranking.

6. EVALUATION

Our evaluation studies the following two research questions:

RQ1. How well can our two-stage approach cluster spreadsheet

cells? We compare the clustering result of CUSTODES with those

of two existing cell clustering techniques: (1) the cell array tech-

nique from AmCheck [19], and (2) the logical area technique [39]

whose three cell similarity criteria are commonly used in spread-

sheet visualization, auditing, testing and error categorization.

RQ2. How well can our outlier-based smell detection detect

spreadsheet smells? We compare the smell detection result of

CUSTODES with that of AmCheck [19]. We use the precision, re-

call and F-measure metrics in the comparison.

6.1 Experimental Subjects

We evaluated our research questions on 291 worksheets from 70

spreadsheet files, which were randomly selected from the EUSES

corpus [21]. These spreadsheets form a representative subset of

EUSES corpus according to the previous work AmCheck [19]. Be-

fore our experiments, we manually inspected each worksheet to la-

bel all cell clusters. In each cell cluster, we further marked the

smelly cells and labeled their smell types. This ground truth was

carefully established by many rounds of cross validations by all co-

authors of this paper and an additional postgraduate student. Table

1 gives the statistics of the experimental subjects. As shown in the

table, the subjects are diverse (covering eight different categories)

and contain more than 20 thousand cells and formulas. Our manual

inspection of these files found 1,610 cell clusters and 1,974 smelly

cells. We made our experimental dataset available online for future

research [17].

6.2 Evaluation Metrics

The performance of cell clustering is evaluated based on four out-

comes of each cell pair’s assignment: (1) a pair of similar cells as-

signed to the same cluster (true positive or TP), (2) a pair of dis-

similar cells not assigned to the same cluster (true negative or TN),

(3) a pair of dissimilar cells assigned to the same cluster (false pos-

itive or FP), and (4) a pair of similar cells not assigned to the same

cluster (false negative or FN). Two cells are similar if they should

belong to the same cell cluster.

Similarly, smell detection can also have the four outcomes: (1) a

detected smelly cell is truly smelly (TP), (2) a normal cell (non-

smelly) is detected as normal (TN), (3) a detected smelly cell is

normal (FP), and (4) a truly smelly cell is detected as normal (FN).

Table 1. Statistics of our experimental subjects

Category

worksheets
cells

formula
cells

clusters
smelly

cells

cs101 1 106 40 8 3

database 60 42,688 6,973 547 1,206

financial 102 54,734 5,692 533 477

forms3 5 1,774 734 35 12

grades 30 23,998 2,571 73 124

homework 23 12,137 3,878 150 50

inventory 35 17,082 1,927 125 59

modeling 35 36,508 4,901 139 43

Total 291 189,027 26,716 1,610 1,974

To study the effectiveness of our clustering approach and compare

it with existing techniques, we use the following three evaluation

metrics [18, 38, 49]:

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 Recall =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁

F-measure =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

6.3 Cell Clustering Evaluation Results

We made no assumption on the optimal threshold value of our two-

stage bootstrapping algorithm (Algorithm 1), and set the threshold

to default 0.5 in all our experiments.

Table 2 gives our cell clustering results. In total, CUSTODES de-

tected 1,582 cell clusters. Its average precision, recall and F-meas-

ure are 0.91, 0.89 and 0.90, respectively. For comparison, Am-

Check [19] detected 2,486 cell arrays. Its precision is 0.98, which

is slightly higher than CUSTODES. However, its recall is only 0.17,

meaning that it failed to cluster many similar cells. This is because

AmCheck imposes strong spatial constraints on cell array members

as well as their referenced cells to achieve high clustering precision.

As we discussed earlier, such a heuristic-based technique may not

always perform well, although the heuristic can cluster quite a few

smelly cells.

We also compared CUSTODES with the logical area technique

[39]. The technique adopts three similarity criteria of formula cells

to find conceptually-cohesive but not necessarily spatial-related re-

gions in spreadsheets. The three similarity criteria are: (1) copy-

equivalence (CE), meaning that a pair of cells share the same R1C1

formula, (2) logical-equivalence (LE), meaning that the two formu-

las of a pair of cells differ only in absolute cell references or con-

stant values, and (3) structural-equivalence (SE), meaning that the

formulas of a pair of cells contain the same operations and in the

same order.

Table 2 gives the experimental results of the logical area technique.

As shown in the table, the performance of the three criteria differs.

CE has the highest precision (0.99), while SE has the highest recall

(0.79) among the three. The precisions of CE (0.99) and LE (0.93)

are slightly higher than CUSTODES (0.91) because we try to

achieve a tradeoff between precision and recall. For example, by

using weak features in our two-stage bootstrapping algorithm, more

similar cells can be grouped into the same cluster, facilitating ef-

fective smell detection.

Figure 4 compares the effect of recall on the number of true smells

successfully clustered by three logical area criteria and by our CUS-

TODES approach. The light (grey) bars show the recall for the log-

ical area clustering technique with three different similarity criteria,

respectively. The darker (orange) bars give the recall of our two-

stage clustering approach. Our recall (0.89) outperforms those of

CE (0.74) and LE (0.73). Although the differences seem not large,

we found that the clusters detected by using the CE and LE criteria

are not very useful in smell detection as the cells in these clusters

are highly consistent. Our experimental results also confirmed this.

For example, CE is a criterion requiring identical formulas, and

only cells with the same formula can be aggregated to a cluster. As

such, no smell can be detected from these clusters. The nine smelly

cells clustered by the LE criterion can also be clustered by CUS-

TODES. More importantly, the improvement in recall from 0.73

(LE) to 0.89 (CUSTODES) brings significant benefit of clustering

nearly 1,800 more true smelly cells that could not be clustered by

LE. Finally, although SE has a better recall (0.79) than CE (0.74)

and LE (0.73), its low precision (0.58) indicates that many cells are

incorrectly clustered. Among the clusters identified by SE, 249 true

smelly cells can be detected as outliers. In other words, there are

many smelly cells failing to be clustered using SE. The clusters

generated by CUSTODES can be more effectively used for smell

detection as compared with those generated by the three logical

area techniques. Note that CUSTODES clustered 1,804 smells but

only detected 1,583 of them (see Section 6.4).

Based on the above results and comparisons, we derive our answer

to RQ1: Our two-stage bootstrapping clustering approach is effec-

tive. It outperforms existing clustering techniques in recall while
preserving a high precision.

6.4 Smell Detection Evaluation Results

In order to evaluate the effectiveness of our outlier-based smell de-

tection for two formula-related smells, i.e., missing formula and

dissimilar formula (see Section 4.4.2), we made comparisons with

AmCheck [19], UCheck [3], Dimension Inference [14], and the

built-in error checking of Excel 2013. We enabled all checking

rules in Excel 2013 except the two rules: (1) cells containing years

are represented as two digits, and (2) numbers are formatted as text

or preceded by an apostrophe. This is because the two rules are ir-

relevant to formula-related smell detection.

Our smell detection reports a score for each cell to represent its out-

lierness in its cluster. As explained in Section 4.4, cells with a score

less than or equal to 1 are inliers. Hence, in experiments, we con-

sidered those cells with scores larger than 1 smelly or outliers.

In total, CUSTODES identified 1,582 cell clusters, of which 510

(32.23%) were considered smelly, i.e., suffering at least one type

of smell. It further detected 2,443 smelly cells in these problematic

cell clusters. Among these suspicious cells, 1,583 (64.80%) were

confirmed as true positives. Table 3 reports more detailed results.

As listed in Table 1, our 70 spreadsheet subjects in total contain

291 worksheets, out of which 60 (20.62%) come from the database

category. These worksheets contribute the largest number of for-

mula cells in our experiments. The result in Table 3 shows that

0.89

0.89

0.89

0.79

0.73

0.74

SE

LE

CE

 Three Logical Area Criteria CUSTODES

0 smells

1,804 smells

1,804 smells

1,804 smells

9 smells

249 smells

Figure 4. Comparison of recall and true smells clustered

Table 2. Precision, recall and F-measure of three cluster-

ing techniques

Clustering technique # clusters Precision Recall F-measure

AmCheck 2,486 0.98 0.17 0.29

Logical Area (CE) 1,725 0.99 0.74 0.85

Logical Area (LE) 1,840 0.93 0.73 0.82

Logical Area (SE) 823 0.58 0.79 0.67

CUSTODES 1,582 0.91 0.89 0.90

these formula cells also account for the largest proportion of the

detected smells. We do not observe a specific category whose for-

mula cells are significantly more smelly than the others.

As a comparison, AmCheck detected 2,163 smelly cells in these

spreadsheet files. 1,231 (56.91%) were confirmed to be true posi-

tives. CUSTODES is capable of detecting 352 more true smelly

cells than AmCheck. UCheck [3] and Dimension Inference [14]

were proposed to validate calculation by checking whether there

are illegal combinations of incompatible units or dimensions as in-

ferred by them. They marked 204 and 1,697 cells as erroneous, re-

spectively. We manually checked these cells and found that only 1

(0.49%) of the 204 cells reported by UCheck and 11 (0.65%) of the

1,697 cells reported by Dimension Inference are erroneous or

smelly. We conjecture that the low precision of UCheck is due to

its imperfect unit analysis. For example, we observed in our exper-

iments that an addition of a cell labelled as “Indian Point 2” and a

cell labeled as “Indian Point 3” was marked as erroneous by

UCheck. Although the two cells have slightly different labels, the

addition of their values should not be considered an illegal opera-

tion. In fact, the two labels reflect a specific tabulation style by us-

ers. On the other hand, Dimension Inference is not applicable to

those cells that are not associated with clear dimensions in spread-

sheets. An earlier study [13] also showed that dimensions occur in-

frequently in spreadsheets (only occur in 25% of the formula

spreadsheets). As a result, Dimension Inference can miss many er-

roneous cells. Moreover, both UCheck and Dimension Inference

are only applicable to formula cells. As such, smelly cells without

formulas cannot be detected. As for Excel 2013, it only detected

143 true smelly cells. Most of these smelly cells were detected by

three error checking rules: (1) formulas that do not match nearby

formulas (detected 23 true smelly cells), (2) formula omitting cells

in a region (detected 37 true smelly cells), and (3) formulas that

refer to empty cells (detected 81 true smelly cells).

Figure 5 further compares CUSTODES with AmCheck in terms of

precision, recall and F-measure in smell detection. CUSTODES

achieved a precision of 0.65, recall of 0.80, and F-measure of 0.72,

all higher than those of AmCheck (precision of 0.57, recall of 0.62

and F-measure of 0.60). These experimental results show that our

outlier-based smell detection outperforms AmCheck, UCheck, Di-

mension Inference and Excel’s built-in error checking support.

Based on these results, we derive our answer to RQ2: Our outlier-

based smell detection can effectively locate smelly cells. It signifi-

cantly outperforms existing smell detection techniques.

7. DISCUSSION

Figure 6 gives a typical example from our experiments. It is an ex-

cerpt from a EUSES spreadsheet that reports quarterly financial

data in each fiscal year. The four cell clusters identified by our two-

stage approach are shaded in four different colors. We made two

observations on the user’s tabulation style: (1) The region of rows

63, 64 and 65 capture similar type of data and computation as the

region of rows 67, 68 and 69, where each pair of peer cells (e.g.,

C65 and C69) in rows 65 and 69 share similar computation. This

favors a weak clustering feature based on a gap template with a

vertical offset of 4. (2) Users using header information, such as “Pro

Forma Earning per share” as a summation calculation indicator.

There are four missing formula smells and one dissimilar formula

smell detected by our tool (marked by “”). Noticeable smell ex-

amples are cells F67 and F68. Although a spatial contiguous clus-

tering method might cluster them together with F69, they prescribe

essentially different computations. F69 is a summation of some ver-

tical cells above, while F67 and F68 should follow the same calcu-

lation as F63 and F64 to sum up the cells on their left. This exposes

the requirement and thus challenge for automatically deciding the

extension of user table design. CUSTODES tackles this challenge

by capturing the user’s specific tabulation style in terms of weak

features. Actually, the two missing formula smells in cells F67 and

F68 likely reveal real data discrepancies. After applying the for-

mula in cells F63 and F64, cell F67’s value changes from 0.55 to

0.56, and F68’s value changes from -0.17 to -0.18. No existing au-

tomatic smell detection approaches can detect the two smells/errors.

The success of clustering F67 and F68 with formula cells (F63 and

F64) using weak features contributes greatly to the detection of the
two smells.

Table 3. Smell detection results compared with existing smell/error detection techniques

Category

Smell Detection Results of Different Techniques

CUSTODES AmCheck UCheck
Dimension

Inference
Excel’s Error Checking

Detected True Detected True Detected True Detected True Detected True

cs101 3 3 6 1 0 0 0 0 1 0

database 1,116 1,066 823 790 158 0 863 4 563 18

financial 651 317 502 287 0 0 151 1 1,204 70

forms3 29 10 73 1 0 0 0 0 464 2

grades 316 94 79 78 0 0 11 0 322 8

homework 95 47 109 16 0 0 370 0 1,238 6

inventory 144 27 372 37 34 0 190 2 391 17

modeling 89 19 199 21 12 1 112 4 798 22

Total 2,443
1,583

(64.80%)
2,163

1,231

(56.91%)
204

1

(0.49%)
1,697

11

(0.65%)
4,981

143

(2.87%)

Figure 5. Performance comparison with AmCheck

0.57
0.62 0.60

0.65

0.80
0.72

0.00

0.20

0.40

0.60

0.80

Precision Recall F-measure

AmCheck CUSTODES

8. RELATED WORK

There are several approaches proposed to identify spatially, struc-

turally or semantically related blocks or regions of cells in spread-

sheet visualization. Mittermeir and Clermont [39] introduced three

kinds of “logical areas” to cluster formula cells that satisfy three

forms of equivalences: copy, logical and structural equivalences.

Among the three equivalences, copy equivalence that requires iden-

tical formulas is the strongest, and structural equivalence that re-

quires only the same set of operations is the weakest. Sajaniemi [46]

also employs equivalent formulas to identify cell blocks. While ex-

isting work clusters cells based on formula similarity, our two-stage

approach goes beyond that and takes advantage of weak features to

identify cell clusters. The use of weak features enables us to cluster

smelly cells even though their formulas are dissimilar to their peers.

Various techniques have been proposed to detect different kinds of

spreadsheet smells or errors. Unit and type inference is quite a ma-

jor research topic in the last decade. UCheck [3] and dimension in-

ference [14] are proposed to derive unit or dimensional information

to verify the correctness of calculation by checking whether there

is any illegal combination of incompatible units. Hermans et al. im-

plemented tools to detect and visualize inter-worksheet smells [29],

data clones [31], formula smells [30], lookup smells [32] by adapt-

ing the concept of code smells to the spreadsheet domain. Cunha et

al. [16] presented a catalog of spreadsheet smells by considering

spreadsheet-specific data statistics features. AmCheck [19] catched

potential errors caused by ambiguous computation in a cell array.

AmCheck’s smell detection works in two steps. It first clusters cells

to cell arrays. AmCheck adopts a simple heuristic to group contig-

uous cells in a row or column into a cluster. A cell array is then

considered smelly if it contains cells that prescribe inequivalent for-

mulas. CheckCell [11] identifies those data entries that cause ex-

traordinary impact on results as potential data errors. VEnron [20]

publishes the first versioned spreadsheet corpus to facilitate evolu-

tion analysis.

Spreadsheet quality is also studied by the information systems com-

munity. Galletta et al. [24] in an empirical study reports that spread-

sheet experts did not outperform novices in identifying formula er-

rors, and that identifying simple spreadsheet errors is non-trivial

even for practitioners. Another empirical experiment by Nixon and

O’Hara [40] reports that spreadsheet auditing software can assist

auditors to detect errors. Anderson [7] in a later study confirms the

finding but reports that auditing software tools missed many

spreadsheet errors. The study concludes that both tools and compe-

tent users are needed for spreadsheet error detection.

This paper differs from the existing techniques. It makes the first

effort to derive clusters of spreadsheet cells using a two-stage tech-

nique based on strong and weak features. It proposes to detect mul-

tiple types of smells uniformly based on outlier detection in feature

spaces. In addition to smell detection, there are other pieces of work

related to smell refactoring [10] and fault localization using smells

[6], which target at different scopes from our work.

9. THREATS TO VALIDITY

A threat to internal validity of our evaluation is that we are not able

to confirm the ground truth that were manually marked by us, since

EUSES corpus was collected in the wild without any labeling of

true smells or errors. We alleviated this by making the data public

for crosschecking and experiment repeating [17]. Another threat to

the external validity is the representativeness of experimental sub-

jects used in our evaluation. We chose a set of 70 spreadsheets from

the EUSES corpus [21]. These spreadsheets are non-trivial, con-

taining 26,716 formulas and 1,610 clusters. They span across major

application domains categorized by EUSES, which is the most pop-

ular corpus that has been used for spreadsheet evaluation.

10. CONCLUSION

In this paper, we have proposed an automatic spreadsheet cell clus-

tering approach by constructing a feature model that is capable of

extracting invariant tabulation styles as strong features and variant

tabulation styles as weak features. Two formula-based strong fea-

tures and seven weak features are presented. A two-stage clustering

technique is proposed to effectively aggregate spreadsheet cells

into clusters. Our evaluation shows that our clustering technique is

able to achieve a high precision (0.91) and recall (0.89) at the same

time, and successfully group smelly cells into their own clusters.

About one-third of clusters are found to be smelly, confirming pre-

vious findings in the literature that spreadsheets are error-prone. It

is time-consuming to identify all smells manually. To address this

issue, we have also proposed an automatic outlier-based smell de-

tection technique. A wide class of smells can be characterized as

outliers of various feature spaces. Our evaluation results show that

our smell detection technique achieves large improvements in F-

measure (0.72) as compared to state-of-the-art techniques.

In conclusion, our CUSTODES approach is effective in cell clus-

tering and smell detection. In future, we plan to further improve

CUSTODES by identifying more spreadsheet user behaviors and

modeling them as features.

11. ACKNOWLEGMENTS

The research was supported by RGC/GRF Grant 611811 of Hong

Kong SAR, and by National Basic Research 973 Program (Grant

No. 2015CB352202) and National Natural Science Foundation

(Grant Nos. 61472174, 91318301, 61321491) of China. We would

like to thank Ruiqing Zhang for his great help in validating experi-

mental results and the writing of this paper. We also want to greatly

thank the ICSE 2016 reviewers for their valuable comments and

suggestions, which helped improve our paper.

Figure 6. An typical example output from CUSTODES

12. REFERENCES

[1] R. Abraham and M. Erwig. 2004. Header and unit inference

for spreadsheets through spatial analyses. In Proceedings of

the 2004 IEEE Symposium on Visual Languages and Human

Centric Computing. VL/HCC '04. 165–172.

[2] R. Abraham and M. Erwig. 2006. Inferring templates from

spreadsheets. In Proceedings of the 28th International Con-

ference on Software Engineering. ICSE '06. 182–191.

[3] R. Abraham and M. Erwig. 2007. UCheck: A spreadsheet type

checker for end users. In Journal of Visual Languages & Com-

puting, 18(1):71–95.

[4] R. Abraham and M. Erwig. 2009. Mutation operators for

spreadsheets. In IEEE Transactions on Software Engineering,

35(1):94–108.

[5] R. Abreu, J. Cunha, J. P. Fernandes, P. Martins, A. Perez, and

J. Saraiva. 2014. Smelling faults in spreadsheets. In Proceed-

ings of the 30th International Conference on Software Mainte-

nance and Evolution. ICSME '14. 111–120.

[6] R. Abreu, P. Zoeteweij, and A. J. Van Gemund. 2006. An eval-

uation of similarity coefficients for software fault localization.

In Proceedings of the 12th Pacific Rim International Sympo-

sium on Dependable Computing. PRDC '06. 39–46.

[7] W. Anderson. 2004. A comparison of automated and manual

spreadsheet error detection. Master thesis, Massey University.

[8] Apache POI: the Java API for Microsoft Documents. URL:

https://poi.apache.org/.

[9] Y. Ayalew, M. Clermont, and R. T. Mittermeir. 2000. Detect-

ing errors in spreadsheets. In Proceedings of the European

Spreadsheet Risks Interest Group Annual Conference. Eu-

SpRIG '00.

[10] S. Badame and D. Dig. 2012. Refactoring meets spreadsheet

formulas. In Proceedings of the 28th International Conference

on Software Maintenance. ICSM '12. 399–409.

[11] D.W. Barowy, D. Gochev, and E.D. Berger. 2014. CheckCell:

Data Debugging for Spreadsheets. In Proceedings of the ACM

International Conference on Object Oriented Programming

Systems Languages & Applications. OOPSLA '14. 507–523.

[12] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander. 2000.

Lof: identifying density-based local outliers. In Proceedings

of the 2000 ACM SIGMOD International Conference on Man-

agement of Data. SIGMOD '00. 93–104.

[13] J. P. Caulkins, E. L. Morrison, and T. Weidemann. 2007.

Spreadsheet errors and decision making: evidence from field

interviews. In Journal of Organizational and End User Com-

puting, 19(3):1–23.

[14] C. Chambers and M. Erwig. 2009. Automatic detection of di-

mension errors in spreadsheets. In Journal of Visual Lan-

guages & Computing, 20(4):269–283.

[15] M. Clermont. A toolkit for scalable spreadsheet visualization.

2008. arXiv preprint arXiv:0802.3924.

[16] J. Cunha, J. P. Fernandes, J. Mendes, and J. Saraiva. 2015.

Spreadsheet engineering. In Lecture Notes in Computer Sci-

ence, volume 8606, 246–299.

[17] CUSTODES project. URL: http://sccpu2.cse.ust.hk/custodes/.

[18] I. S. Dhillon, S. Mallela, and D. S. Modha. 2003. Information-

theoretic co-clustering. In Proceedings of the 9th ACM

SIGKDD International Conference on Knowledge Discovery

and Data Mining. KDD '03. 89–98.

[19] W. Dou, S.C. Cheung, and J. Wei. 2014. Is spreadsheet ambi-

guity harmful? Detecting and repairing spreadsheet smells due

to ambiguous computation. In Proceedings of the 36th Inter-

national Conference on Software Engineering. ICSE '14. 848–

858.

[20] W. Dou, L. Xu, S.C. Cheung, C. Gao, J. Wei, and T. Huang.

2016. VEnron: A Versioned Spreadsheet Corpus and Related

Evolution Analsysis. In Proceedings of the 38th International

Conference on Software Engineering. ICSE’16 - SEIP. To ap-

pear.

[21] M. Fisher and G. Rothermel. 2005. The Euses spreadsheet cor-

pus: a shared resource for supporting experimentation with

spreadsheet dependability mechanisms. In ACM SIGSOFT

Software Engineering Notes, volume 30, 1–5.

[22] M. Fisher, G. Rothermel, T. Creelan, and M. Burnett. 2006.

Scaling a dataflow testing methodology to the multiparadigm

world of commercial spreadsheets. In Proceedings of 17th

IEEE International Symposium on Software Reliability Engi-

neering. ISSRE '06. 13–22.

[23] M. Fowler. 1999. Refactoring: improving the design of exist-

ing code. Addison-Wesley.

[24] D. Galletta, D. Abraham, and et al. 1993. An empirical study

of spreadsheet error-finding performance. In Accounting,

Management, and Information Technologies, 3(2), 79–95.

[25] S. Gandel. Damn Excel! How the ‘most important software

application of all time’ is ruining the world. URL: http://for-

tune.com/2013/04/17/damn-excel-how-the-most-important-

software-application-of-all-time-is-ruining-the-world/. Last

accessed 13/2/2016.

[26] J. Han, M. Kamber, and J. Pei. 2006. Data mining, Southeast

Asia edition: Concepts and techniques. Morgan Kaufmann.

[27] A. B. Hassanat, M. A. Abbadi, G. A. Altarawneh, and A. A.

Alhasanat. 2014. Solving the Problem of the K Parameter in

the KNN Classifier Using an Ensemble Learning Approach.

arXiv preprint arXiv:1409.0919.

[28] F. Hermans, M. Pinzger, and A. van Deursen. 2010. Automat-

ically extracting class diagrams from spreadsheets. In Pro-

ceedings of the 24th European Conference on Object-Ori-
ented Programming. ECOOP '10. 52–75.

[29] F. Hermans, M. Pinzger, and A. van Deursen. 2012. Detecting

and visualizing inter-worksheet smells in spreadsheets. In

Proceedings of the 34th International Conference on Software

Engineering. ICSE '12. 441–451.

[30] F. Hermans, M. Pinzger, and A. van Deursen. 2012. Detecting

code smells in spreadsheet formulas. In Proceedings of the

28th International Conference on Software Maintenance.
ICSM '12. 409–418.

[31] F. Hermans, B. Sedee, M. Pinzger, and A. v. Deursen. 2013.

Data clone detection and visualization in spreadsheets. In Pro-

ceedings of the 35th International Conference on Software En-
gineering. ICSE '13. 292–301.

[32] F. Hermans, E. Aivaloglou, and B. Jansen. 2015. Detecting

and Repairing Smelly Lookup Functions in Spreadsheets. In

Proceedings of the 2015 IEEE Symposium on Visual Lan-

guages and Human Centric Computing. VL/HCC '15. 153–
157.

[33] S. Hipfl. Using layout information for spreadsheet visualiza-
tion. arXiv preprint arXiv:0802.3939, 2008.

[34] D. Jannach, T. Schmitz, B. Hofer, and F. Wotawa. 2014.

Avoiding, finding and fixing spreadsheet errors–a survey of

automated approaches for spreadsheet. In Journal of Systems

and Software, 94:129–150.

[35] M. Jirina and M. Jirina. 2010. Using singularity exponent in

distance based classifier. In Proceedings of the 10th Interna-

tional Conference on Intelligent Systems Design and Applica-

tions. ISDA '10. 220–224.

[36] M. Jirina and M. Jirina Jr. 2011. Classifiers Based on Inverted

Distances. INTECH Open Access Publisher.

[37] A. J. Ko, R. Abraham, L. Beckwith, A. Blackwell, M. Burnett,

M. Erwig, C. Scaffidi, J. Lawrance, H. Lieberman, B. Myers,

et al. 2011. The state of the art in end-user software engineer-

ing. In ACM Computing Surveys (CSUR), 43(3):21.

[38] C. D. Manning, P. Raghavan, and H. Schutze. 2008. Introduc-

tion to information retrieval. Cambridge University Press.

[39] R. Mittermeir and M. Clermont. 2012. Finding high-level

structures in spreadsheet programs. In Proceedings of the

Ninth Working Conference on Reverse Engineering. WCRE

'12. 221–232.

[40] D. Nixon and M. O’Hara. 2001. Spreadsheet Auditing Soft-

ware. In Proceedings of the European Spreadsheet Risks In-

terest Group Annual Conference. EuSpRIG '01.

[41] R. R. Panko. 1998. What we know about spreadsheet errors.

In Journal of Organizational and End User Computing,

10(2):15–21.

[42] R. R. Panko and N. Ordway. 2008. Sarbanes-oxley: What

about all the spreadsheets? arXiv preprint arXiv:0804.0797.

[43] P. Pantel and M. Pennacchiotti. 2006. Espresso: Leveraging

generic patterns for automatically harvesting semantic rela-

tions. In Proceedings of the 21st International Conference on

Computational Linguistics and the 44th Annual Meeting of the

Association for Computational Linguistics. COLING/ACL
'06. 113–120.

[44] M. Pawlik and N. Augsten. 2011. Rted: a robust algorithm for

the tree edit distance. In Proceedings of the VLDB Endow-
ment, 5(4):334–345.

[45] S. G. Powell, K. R. Baker, and B. Lawson. 2008. A critical

review of the literature on spreadsheet errors. In Decision Sup-
port Systems, 46:128–138.

[46] J. Sajaniemi. 2000. Modeling spreadsheet audit: A rigorous

approach to automatic visualization. In Journal of Visual Lan-
guages & Computing, 11(1):49–82.

[47] C. Scaffidi, M. Shaw, and B. Myers. 2005. Estimating the

numbers of end users and end user programmers. In Proceed-

ings of the 2005 IEEE Symposium on Visual Languages and
Human Centric Computing. VL/HCC '05. 207–214.

[48] J. Walkenbach et al. 1999. Microsoft Excel 2000 power pro-
gramming with VBA. John Wiley & Sons, Inc..

[49] M. Yoshida, M. Ikeda, S. Ono, I. Sato, and H. Nakagawa.

2010. Person name disambiguation by bootstrapping. In Pro-

ceedings of the 33rd International ACM SIGIR Conference on

Research and Development in Information Retrieval. SIGIR

'10. 10–17.

