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ABSTRACT 

Various techniques have been proposed to detect smells in spread-

sheets, which are susceptible to errors. These techniques typically 

detect spreadsheet smells through a mechanism based on a fixed set 

of patterns or metric thresholds. Unlike conventional programs, 

tabulation styles vary greatly across spreadsheets. Smell detection 

based on fixed patterns or metric thresholds, which are insensitive 

to the varying tabulation styles, can miss many smells in one 

spreadsheet while reporting many spurious smells in another. In 

this paper, we propose CUSTODES to effectively cluster spread-

sheet cells and detect smells in these clusters. The clustering mech-

anism can automatically adapt to the tabulation styles of each 

spreadsheet using strong and weak features. These strong and weak 

features capture the invariant and variant parts of tabulation styles, 

respectively. As smelly cells in a spreadsheet normally occur in mi-

nority, they can be mechanically detected as clusters’ outliers in 

feature spaces. We implemented and applied CUSTODES to 70 

spreadsheets files randomly sampled from the EUSES corpus. 

These spreadsheets contain 1,610 formula cell clusters. Experi-

mental results confirmed that CUSTODES is effective. It success-

fully detected harmful smells that can induce computation anoma-

lies in spreadsheets with an F-measure of 0.72, outperforming state-

of-the-art techniques. 

CCS Concepts 

• Software and its engineering➝Software creation and manage-

ment➝Software verification and validation➝Software defect 

analysis➝Software testing and debugging • Applied compu-

ting➝Computers in other domains➝Personal computers and 

PC applications➝Spreadsheets.  
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Spreadsheets; cell clustering; smell detection; feature modeling; 

end-user programming. 

1. INTRODUCTION 

Spreadsheets are a popular computation paradigm used for data 

storage and analysis, decision support, financial reporting, and 

quality control [46]. Despite their popularity, spreadsheets are 
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found to be error-prone [13, 25, 37, 42, 45]. Conventional quality 

assurance measures for software such as unit tests and assert state-

ments are generally inapplicable to spreadsheets. 

To improve spreadsheet quality, researchers have proposed various 

quality assurance techniques [34], among which smell detection 

draws much attention. The concept of spreadsheet smell is inspired 

by code smell, which was originally introduced by Fowler [23]. In 

conventional programs, code smells refer to those bad designs that 

are not necessarily errors themselves, but likely degenerate into 

faults in subsequent program development and maintenance. In the 

spreadsheet domain, researchers study smells mainly from two per-

spectives. One is to apply the conventional principles of code 

smells to spreadsheets [28]. Formula cells with complexity exceed-

ing certain pre-defined metric thresholds are detected as smells in 

the sense that they hinder spreadsheet understanding. The other is 

to consider spreadsheet-specific characteristics such as statistical 

properties of data [16] and computation semantics of formulas [19, 

32]. From the latter perspective, spreadsheet smells usually refer to 

the discrepancies between a group of similar cells that are usually 

neighbors. There is so far no systematic way to characterize smells 

in spreadsheets and address the problem uniformly. Users need to 

apply various techniques individually under different settings and 

validate their results one by one. Moreover, smells detected as vio-

lations of pre-defined patterns or metric thresholds fail to adapt to 

diverse tabulation styles, which reflect different user formula de-

sign practices and application domains. As a result, the smell de-

tection can miss many smells in one spreadsheet while reporting 

many spurious smells in another. 

We made two observations from the existing literature on spread-

sheet smells. One is that the studied smells are mostly related to 

formulas. These smells occur at formula operations, cell references 

or missing formulas [16, 19, 28, 32]. Second, the identification (or 

clustering) of neighboring cells plays an important role in smell de-

tection so that these cells can be checked against some pre-defined 

pattern or threshold as a group. For example, Hermans et al. [28] 

identified the smells that occur when one formula differs slightly 

from its “neighbors”, and referred to them as “Rare Formulas”. 

Cunha et al. [16] catalogued smells like “pattern finder” that iden-

tifies the deviation of one cell from the pattern in a row. Dou et al. 

[19] identified “ambiguous computational smells” in a cell array (a 

contiguous range of formula cells in a row or a column) if it con-

tains cells evaluated using different computations.  

While the first observation motivates us to study formula-related 

smell detection, the second observation suggests two existing prob-

lems in smell detection. First, clustering based on neighboring cells 

can be inaccurate because neighboring cells can sometimes be spa-

tially unobvious. An alternative is to locate neighboring cells based 

on formula expressions [2, 15, 22, 47]. However, this alternative is 
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not effective on smell detection because cells suffering from for-

mula-related smells often have their formulas deviated from others 

or even completely missing. Second, they do not consider that users 

often have their own styles in tabulating spreadsheets. Such styles 

can also vary across application domains. The use of a pre-defined 

pattern or metric threshold to cluster neighboring cells for any 

spreadsheet can incorrectly identify cell clusters, and therefore miss 

the detection of true smells or detect spurious smells. 

Motivated by these two observations, we propose in this paper a 

formula-related smell detection approach called CUSTODES (clus-

tering using strong and weak features) that can infer and adapt to 

users’ different tabulation styles. To achieve this, we study how to 

effectively cluster similar formula cells using features based on un-

supervised learning. The effect of each feature on clustering can 

vary across tables and spreadsheets, depending on tabulation styles. 

We also study the characterization of smelly cells as outliers of their 

clusters and detect them in feature spaces. 

CUSTODES addresses three major challenges. The first challenge 

is how to determine the set of features to construct a feature model 

for automatic cell clustering. Spreadsheets are often prepared and 

maintained by users who likely have their own styles in tabulating 

data and formulas. These styles may not even be consistent in all 

cells in a cluster when parts of them are copied or adapted from 

another spreadsheet. For example, some users put a “Total” header 

label to indicate the summation computation; hence summation for-

mula cells related to this header should reside in the same cluster. 

While in other situations, users may put a summation formula cell 

at the end of a row or column without labeling it as “Total”. Auto-

matically clustering cells based on computation semantics is diffi-

cult without prior knowledge of users’ design and styles. The fea-

ture model should not only reflect general spreadsheet system char-

acteristics, but also capture varying spreadsheet tabulation styles. 

The second challenge is how to extract those features. Comparing 

with conventional software, spreadsheets involve simpler compu-

tation [34]. Spreadsheets provide limited coding information from 

which relationships among cells can be inferred. The third chal-

lenge is to determine and quantify the deviation among cells for 

effective smell detection as outliers. The deviation should be so 

quantified that a cell suffering from more types of smells would be 

a clearer outlier. 

To address the three challenges, CUSTODES adopts a two-stage 

clustering technique, which is inspired by Yoshida et al. [49], based 
on a spreadsheet’s strong and weak features. Strong features model 

the invariant parts of tabulation styles. They are properties that can 
be generically used for clustering. Examples are cell formulas and 

cell reference relations (e.g., those cells in [F11:F16] in Figure 1). 
These features can often be used to cluster cells together. However, 

relying on strong features alone for cell clustering is inadequate and 

can result in many non-clustered cells because not all cells in a clus-
ter necessarily exhibit these strong features. For example, a smelly 

cell F17 in Figure 1 misses the strong feature described by the for-
mula expression as in cells [F11:F19], and hence cannot be clus-

tered using formulas alone. To solve this problem, we also consider 
weak features, which model the variant parts of tabulation styles. 

Examples are cell labels, layouts, spatial relations, fonts and the 
number of significant figures. They may sometimes be used to clus-

ter cells together (e.g., the header “Total” in F9 for cells [F11:F19]). 
The idea is to use the clusters obtained at the first stage to extract 

weak features for the second stage of clustering. These weak fea-
tures can be specific to tables and spreadsheets. For example, not 

all tables and spreadsheets use “Total” to label cells in a cluster. 
CUSTODES have two unique advantages. First, it does not have to 

assume cells in a cluster appearing in the same row, same column 
or even contiguously in a spreadsheet. Second, it can automatically 

adapt to varying tabulation styles. 

Cells dissimilar to most of their peers can be identified as outliers 

of their clusters. Such dissimilarity is a good indicator of smells or 

errors. Specifically, CUSTODES identifies outlier cells as smells 

and ranks them based on their outlier scores. We further classify 

various kinds of outliers into different smell types by examining the 

feature spaces. Explanation of the smell types exhibited by each 

outlier cell in terms of the corresponding feature space can be pro-

vided for users’ further actions.  

We implemented CUSTODES as a tool and evaluated its perfor-

mance using the EUSES corpus [21] from two perspectives: cell 

clustering and smell detection. Experimental results show that our 

two-stage clustering approach can improve existing clustering tech-

niques [39] by over 12% in recall while retaining a high precision. 

As smells typically occur in minority, such an improvement in re-

call is critical to effective smell detection. As we will show in Sec-

tion 6.3, our tool successfully clustered many smelly cells that 

6 A E F G H

7 DEPOSITS/SHARES LOANS

8 Dollars %	of Dollars %	of

9 (000's) Total (000's) Total

11 Trust	Companies 1547458 =(RC[-1]/R21C[-1])*100 1377629 =(RC[-1]/R21C[-1])*100

12 Limited	Purpose	Banks 0 =(RC[-1]/R21C[-1])*100 404 =(RC[-1]/R21C[-1])*100

13 National	Banks* 7440908 =(RC[-1]/R21C[-1])*100 6508230 =(RC[-1]/R21C[-1])*100

14 State	Savings	Banks 5010519 =(RC[-1]/R21C[-1])*100 4859363 =(RC[-1]/R21C[-1])*100

15 Federal	Savings	Banks 739898 =(RC[-1]/R21C[-1])*100 859251 5.3

16 State	Savings	and	Loans 103550 =(RC[-1]/R21C[-1])*100 107427 =(RC[-1]/R21C[-1])*100

17 Federal	Savings	and	Loans 206822 1.15 211442 =(RC[-1]/R21C[-1])*100

18 State	Credit	Unions 711205 =(RC[-1]/R21C[-1])*100 568652 3.5

19 Federal	Credit	Unions 2127767 =(RC[-1]/R21C[-1])*100 1735908 =(RC[-1]/R21C[-1])*100

20

21 TOTAL =SUM(R[-10]C:R[-1]C) 100 =SUM(R[-10]C:R[-1]C) =SUM(R[-10]C:R[-2]C)

22

31 State-Chartered =SUM(R[-20]C,R[-19]C,R[-17]C,R[-15]C,R[-13]C)=SUM(R[-20]C,R[-19]C,R[-17]C,R[-15]C,R[-13]C)=SUM(R[-20]C,R[-19]C,R[-17]C,R[-15]C,R[-13]C)=SUM(R[-20]C,R[-19]C,R[-17]C,R[-15]C,R[-13]C)

32 Federally	Chartered* =SUM(R[-19]C,R[-17]C,R[-15]C,R[-13]C)=SUM(R[-19]C,R[-17]C,R[-15]C,R[-13]C)=SUM(R[-19]C,R[-17]C,R[-15]C,R[-13]C)=R[-19]C+R[-17]C+R[-15]C+R[-13]C

33

37 Out-of-State	Ownership* 3782155 =(RC[-1]/R[2]C[-1])*R[-16]C 2823577 =(RC[-1]/R[2]C[-1])*100

39 TOTAL =R[-5]C =R[-5]C =R[-5]C =R[-5]C

Cluster 1 Cluster 1

Cluster 2 

Cluster 3 

Cluster 4 

Cluster 6
Cluster 5

Figure 1. A motivating example of an extracted EUSES [21] spreadsheet in Excel R1C1 format 



could not be clustered by existing approaches. The successful clus-

tering of these smelly cells allows them to be detected as outliers. 

Our tool implemented the outlier detection of four popular types of 

smells reported by recent studies: missing formulas, dissimilar ref-

erences, dissimilar operations and formulas with hard-coded con-

stants [45]. The evaluation results show that CUSTODES can de-

tect smells effectively, and outperform the state-of-the-art smell de-

tection techniques. Smells are detected with a precision of 0.65, re-

call of 0.80, F-measure of 0.72 as compared with 0.57, 0.62, 0.60 

achieved by our previous work AmCheck [19]. 

CUSTODES differs from our previous work AmCheck [19] in both 

cell clustering and smell detection. Unlike the current work using a 
feature model for clustering, AmCheck aggregates a row or column 

of contiguous cells into a cluster only if: (1) none of the cells is 

empty or contains labels, and (2) the row and column indices of 
their formula operands must be within the range of these contiguous 

cells. As such, AmCheck does not cluster the cells in Clusters 1 and 
5 in Figure 1. Unlike the current work identifying smells as outliers 

in a feature space, AmCheck detects smells by checking whether a 
set of constraints extracted from the formulas in a cluster is solva-

ble. As such, the smell detection of AmCheck is mostly restricted 
to formulas that can be handled by linear constraint solvers. In con-

trast, the current work detects smells as outliers in feature spaces. 
It is able to detect smelly cells that involve complex formula ex-

pressions such as those containing conditions and strings. No prior 
technique has been proposed to cluster spreadsheet cells using 

strong and weak features, and formulate the problem of spreadsheet 
smell detection as outlier detection.  

In summary, this paper makes the following four contributions:  

- We proposed a feature model that is able to capture both the in-

variant and variant parts of tabulation styles. The former models 

those common practices for spreadsheet tabulation. The latter 

models domain knowledge and user styles specific to individual 

spreadsheets. 

- We adapted a recent algorithm [43] proposed in the information 

retrieval community to automatically cluster cells in two stages. 

Each cell cluster is associated with a feature model. Smells are 

then automatically identified and ranked as outliers.  

- We implemented CUSTODES as a tool that can automatically 

cluster cells and detect smells for spreadsheets.  

- We evaluated CUSTODES on 70 spreadsheet files, which con-

tain 1,610 clusters of formula cells, randomly sampled from the 

EUSES corpus. 

The remainder of this paper is organized as follows. We present a 
motivating example in Section 2, followed by an overview of CUS-

TODES in Section 3. Section 4 introduces our two-stage clustering 
and outlier-based smell detection approach. Section 5 presents the 

implementation of CUSTODES. After reporting our experimental 
results in Section 6, we discuss our findings and related work in 

Sections 7 and 8, followed by a review of threats to validity in Sec-

tion 9. The paper is concluded in Section 10. 

2. MOTIVATING EXAMPLE 

In this section, we motivate our problem using an illustrative exam-

ple extracted from the EUSES corpus [21] in Figure 1. Due to page 

limit, the example gives an excerpt of the actual spreadsheet, which 

summarizes the assets, deposits/shares and loans of MAINE finan-

cial institutions. The example contains seven smelly cells, among 

which the values of four data cells are likely errors (the four nu-

meric data cells marked with a red right-cornered triangle “”). 

For example, the value of cell F17 is inconsistent with that com-

puted by formula (RC[-1]/R21C[-1])*100, and the values of cells 

[F11:F19] do not sum up to 100 as indicated in cell F21. Errors in 

some cells such as F17 can induce further errors in other cells such 

as F21. Note that none of the smells shown in Figure 1 can be de-

tected by the error checking tool of Excel 2013. In the example, we 

observe four different types of harmful smells that can induce com-

putation anomalies. 

Missing formula smell: It is a type of smells studied by AmCheck 
[19]. The smell occurs when a cell is supposed to contain a formula, 

but it does not. AmCheck detects such smells by checking whether 

a row/column of contiguous cells, referred to as a cell array, con-
tains both data and formula cells. If yes, AmCheck would consider 

those data cells smelly. However, AmCheck fails to detect three 
missing formula smells in the example because they cannot be clus-

tered using cell arrays. For instance, the cells in [F11:F19] should 
have the same formula, but AmCheck fails to detect the missing 

formula smell in F17 because [F11:F19] is not considered a cell 

array as its operand R21C[-1] is not a cell between rows 11 and 19. 

This illustrates that correct identification of cell clusters is im-
portant to smell detection. It also illustrates the difficulties in char-

acterizing a cluster using fixed patterns and spatial relations. 

Dissimilar reference smell: The smell occurs when a formula ref-

erences an incorrect cell or cell range. An example is cell H21. Un-
like its peers in Cluster 2, the formula of cell H21 misses the refer-

ence of cell H20. This smell can degenerate into errors in subse-
quent modification and maintenance, as for example, if row 20 is 

no longer empty or the SUM in H21 is replaced by another function 
that is sensitive to empty cells.  

Dissimilar operation smell: It occurs when the cells in a cluster 
contain formulas with dissimilar operations. An example is cell 

H32, which uses the “+” operator to evaluate summation while its 
peers in the same row use a “SUM” function. Refactoring the con-

cerned formula using function SUM, which is also used in H32’s 
peers such as cell F32, could repair the smell in H32. However, 

identifying the peers of H32 as well as making refactoring sugges-
tions are non-trivial. 

Hard-coded constant smell: This type of smells occurs when a 

cell replaces cell referencing with a number while other peer cells 

do not. For example, unlike cell F37, cell H37 replaces the refer-
ence R[-16]C with a constant 100 in formula. Although the current 

result is correct since R[-16]C in H37 references cell H21 whose 
value happens to be 100, this may induce errors when H21 is no 

longer evaluated to 100 in future after spreadsheet maintenance. 

The above four smell types can be found in real-life spreadsheets 
[19, 41, 45]. A case study on how they could be induced is dis-
cussed in our earlier study [19]. As illustrated above, smells of dif-
ferent types are characterized in existing work using different cri-
teria, which require the use of different mechanisms for their detec-
tion. This makes it a hurdle for users to adopt automatic smell de-
tection for spreadsheets, especially when they have no idea which 
mechanism would work best for their spreadsheets. It is because 
users generally do not have prior knowledge on the types of smells 
by which their spreadsheets are mostly infected. Another issue is 
that users adopt different styles in tabulating spreadsheets. This mo-
tivates us to study whether smells can be uniformly characterized 
and detected. 

3. METHODOLOGY OVERVIEW 

Figure 2 gives an overview of our methodology, which consists of 

four steps: preprocessing, first-stage clustering, second-stage clus-

tering by bootstrapping, and smell detection. The preprocessing 



step identifies formulas in given spreadsheets. From these formu-

las, we extract two strong features: abstract syntax trees and cell 

dependency trees. Cell dependency can be extracted using the 

“trace precedents” built-in function of Excel. These two strong fea-

tures can be used to relate cells belonging to the same cluster in 

each spreadsheet. The first-stage clustering is an unsupervised 

learning process based on the similarities calculated using the two 

strong features. The clusters such constructed are referred to as seed 

clusters. The second-stage clustering extracts a set of weak features 

common to each seed cluster and its member cells. These weak fea-

tures can be used to associate additional cells with the cluster. Note 

that each cell may only be associated with one cluster. The last step 

is smell detection. An intra-cluster outlier score is calculated using 

outlier detection technique for each cell within a cluster by explor-

ing the feature space in the worksheet concerned (a worksheet is a 

page in a spreadsheet). The report of this step is a list of cells ranked 

by their outlier scores. Highly ranked cells are likely smells because 

they most likely miss features common to their clusters. These cells 

are more error-prone than others, prompting users’ attention. Lowly 

ranked cells are unlikely smells. 

Let us illustrate the process using Cluster 1 of the previous example 

in Figure 1. After the first-stage clustering, cells [F11:F16], 

[F18:F19], [H11:H14], [H16:H17] and H19 are aggregated to form 

one seed cluster since they share one R1C1 formula as well as the 

same structure of cell dependency. In the second stage, we are able 

to extract four weak features that are closely associated with the 

seed cluster: (1) they (cells) all have the same “Total” header labels; 

(2) they are all either in column F or column H; (3) they form two 

repeating cell blocks with horizontal one cell gap; and (4) they are 

in the same table. Using the extracted weak features, cells F17, H15 

and H18 are further aggregated to the seed cluster since they share 

the same weak features. These three cells are also detected as out-

liers in the feature space of formulas. Unlike most of their peers in 

the seed cluster, these outliers miss all formula related features. 

This illustration demonstrates that cell clustering based on formula 

alone is inadequate. It misses the three smelly cells. 

4. APPROACH 

As mentioned in Section 1, CUSTODES needs to tackle three chal-

lenges. In this section, we introduce the features that can be lever-
aged for cell clustering to address the first challenge, and explain 

how they can be extracted to address the second challenge. After 

that, we present our two-stage clustering algorithm, followed by a 

smell detection mechanism to address the third challenge. 

4.1 Preliminaries 

The following introduces the terminologies used in this paper.  

Cell classification: We follow Hermans et al.’s approach [29] to 

classify cells into: (1) label cells: string cells that explain the mean-

ing of other cells, (2) data cells: value cells without embedding for-

mulas, (3) formula cells: cells that embed a formula, and (4) empty 

cells. Formula clusters are those cell clusters that contain at least 

one formula cell. Since formula-related smells are common in 

spreadsheets [19, 30], we focus on deriving formula clusters and 

detecting smells in these clusters. Note that a formula cluster may 

contain data or empty cells. We do not cluster label cells, and treat 

labels as a candidate weak feature of formula clusters. 

Cell address: A cell address is the coordinate (𝑥, 𝑦) of a given cell, 

where x and y represent its row and column indices, respectively.  

Cell reference: A cell reference is a reference in a formula to an-

other cell. Cell references can be absolute or relative. An absolute 
reference in the form of $x$y refers to a cell at the address (x, y). It 

does not change even if the reference is copied to another cell for-
mula within the same worksheet. A relative reference encodes the 

cell address offset between the current cell and referenced cell. The 
offset of a relative reference remains unchanged when it is copied 

to another cell formula.  

Cell formula: Let 𝐹 be a set of cell formulas, 𝐴 be a set of cell ref-

erences, and 𝑉 be a set of values. A formula (𝑓 ∈ 𝐹) expresses a 

value (𝑣 ∈ 𝑉), a cell reference (𝑎 ∈ 𝐴), or an operation 𝜑 over one 

or more formulas: 𝑓 ∷= 𝑣 | 𝑎 | 𝜑(𝑓, … , 𝑓). Operations in a formula 

include basic operators, such as +, −, *, /, as well as Excel’s built-

in functions like SUM and AVERAGE. Formulas are given in 

R1C1 format, which is commonly adopted to represent the formula 

of a cell in Excel [42, 48]. Formula cells in the same cluster often 

have the same expression in R1C1 format. The formula in cells 

[F11:F19] is “=(RC[-1]/R21C[-1])*100”, where “RC[-1]” refers to 

the cell in the same row but one column left to the current cell. 

4.2 First-stage Clustering 
In the first stage, we extract two strong clustering features from 

each formula cell: formula expression and cell dependency. These 

features are generic to spreadsheets. 

4.2.1 Two Strong Clustering Features 

Formula’s abstract syntax tree: Formulas are a common feature 

to relate formula cells of the same cluster [2, 15, 22]. This feature 

is extracted by parsing each formula (including its cell references, 

values and operations) into an abstract syntax tree (AST), which 

represents the computation semantics of the associated formula.  

Cell dependency: Formula cells in the same cluster are typically 

subject to the same pattern (or tree structure) of cell dependency. 

We adapt the spreadsheet program model proposed by Abrahm and 

Erwig [4] to model cell dependency. The cell dependency of a cell 

c is a tree rooted by c. The tree is so constructed that a formula cell 

is the parent node of those cells this formula cell references. Leaf 

nodes of the tree are data or empty cells. 

4.2.2 Cell Similarity Function 

Since both strong features are modeled as tree structures, we cluster 

formula cells with respect to strong features based on tree similarity. 

Tree similarity is measured by Tree Edit Distance using the RTED 

algorithm [44], which calculates an editing script of a tree structure 

with add, update and delete actions. Given two formula cells 𝑓1 and 

𝑓2, their tree similarity is defined as follows: 

𝑠𝑖𝑚(𝑓1, 𝑓2) = 1.0 −
𝑅𝑇𝐸𝐷(𝑇1,𝑇2)

|𝑇1|+|𝑇2|
, 

where |𝑇| is the node number in tree T. 

4.2.3 Clustering Algorithm 

For each pair of formula cells, we obtain two similarity scores 
ASTsim and CRTsim based on their tree similarity with respect to 

abstract syntax tree and cell dependency, respectively. The merged 

similarity score 𝑠𝑖𝑚(𝑓1, 𝑓2) of two formula cells 𝑓1 and 𝑓2 is calcu-

lated as a multiplication of the two scores: 

𝑠𝑖𝑚(𝑓1, 𝑓2) = 𝐴𝑆𝑇𝑠𝑖𝑚(𝑓1, 𝑓2) ∗ 𝐶𝑅𝑇𝑠𝑖𝑚 (𝑓1, 𝑓2). 

 

Figure 2. Methodology overview 
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We use the standard hierarchical agglomerative clustering (HAC) 

[26] algorithm to cluster formula cells based on the merged simi-
larity. Initially, each formula cell forms a cluster on its own. This 

cluster then iteratively merges clusters with the closest distance 
pairs. The average distance metric is defined as below in order to 

decide inter-cluster distances: 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐶𝑙𝑖 , 𝐶𝑙𝑗) =
∑ ∑ 𝑑𝑖𝑠𝑡(𝑓1,𝑓2)𝑓2∈𝐶𝑙𝑗𝑓1∈𝐶𝑙𝑖

|𝐶𝑙𝑖||𝐶𝑙𝑗|
, 

𝑑𝑖𝑠𝑡(𝑓1 , 𝑓2) = 1.0 −  𝑠𝑖𝑚(𝑓1 , 𝑓2). 

The parameter of HAC [26] is the similarity threshold value. In or-

der to guarantee high accuracy in the first stage clustering, the 

threshold is set to strong similarity. Two cell clusters in a worksheet 

are considered separate when their distance exceeds 0.02. The out-

put of this stage is a set of clusters that contain more than one cell. 

We refer to them as seed clusters, and the cells in these clusters as 

seed cells. The input of the algorithm can be a worksheet, a spread-

sheet or even a family of spreadsheets with similar filenames. 

4.3 Second-stage Clustering 

This subsection explains weak features and our second-stage boot-

strapping clustering algorithm. Weak features are collected from 

the existing literature on spreadsheets to relate similar cells. While 

these features (e.g., layout and labels) can relate similar cells, they 

vary across spreadsheets. We present in the following seven weak 

features currently implemented by our tool. The set of weak fea-

tures can be readily extended and supported by CUSTODES for 

second-stage clustering. 

4.3.1 Weak Clustering Features 

Cell address：A cell is uniquely addressed by its row and column 

indices (x, y). It is common for users to add new cells in a cluster 

along the same row or column. As such, cells in the same row or 

column likely belong to the same cluster. Typically, a cluster 

groups cells either horizontally or vertically. Both extensions of 

clusters can also appear at the same time in a spreadsheet. Our clus-

tering algorithm assumes no prior-knowledge about whether the 

cells in a spreadsheet are clustered along row or column.  

Label: Labels in a spreadsheet can be horizontal or vertical. Hori-

zontal and vertical labels describe cells in a row and a column, re-

spectively. A label (e.g., “TOTAL”) is the string content of a label 

cell. It is sometimes used to describe the computation performed by 

a cell cluster [1]. As such, labels can be a useful clustering feature 

if we can automatically relate each cell to a label. To do that, we 

follow an approach proposed by Abraham and Erwig [1] to relate 

each non-label cell to its nearest horizontal label cell (on the left in 

the same row) and its nearest vertical label cell (above in the same 

column). For example, in Figure 1, the label cell A21 “TOTAL” is 

assigned to cells [E21:H21] as their horizontal label, indicating a 

summation of values. Not all non-label cells have horizontal and 

vertical labels. We ignore meaningless label cells formed by strings 

serving as visual separators such as “=” and “−”. 

Layout: Spreadsheet users may deploy different layout styles to 

visually cluster related cells in the same format [33]. Examples of 

layout styles are font, font size, font color, borders and even back-

ground color. CUSTODES treats font color as well as background 

color as a candidate weak feature of a cell. This feature varies ac-

cording to users’ practices and preferences, and tends to be con-

sistent within the same spreadsheet. 

Alliance: A cell is an alliance of another cell if they are the param-

eters/operands of the same function/operation like SUM, MAX or 

AVG. For example, when a formula cell is evaluated by an opera-

tion “=SUM(R[-10]C:R[-2]C)”, all cells in the range [R[-10]C:R[-

2]C] referenced by the formula cell are alliances. Such alliance re-

lation is referred to as physical area, which can be used to describe 
a conceptual cohesion among cells [9].  

Table: A spreadsheet table serves as an area where data and for-
mula cells are clustered [2]. An example is the rectangular area 

comprising cells [E11:H19] in Figure 1. However, users may not 
always separate unrelated data using tables or organize tables con-

sistently. As such, the containment of a cell by a table is only a 

weak feature for clustering. We follow the approach adopted by 
Abraham and Erwig [2] to extract tables in a given spreadsheet.  

Cell array membership: A cell array clusters a set of contiguous, 

non-empty cells in a column or row that are subject to the same 

computation semantics [19]. A row or column of contiguous cells 

are clustered into a cell array if: (1) none of the cells is empty or 

contains labels, and (2) the row and column indices of their formula 

operands must be within the range of these contiguous cells. A cell 

array must contain at least one formula cell. A cell may at most be 

clustered into one cell array. There are two kinds of cell arrays: 

row-based and column-based, depending on whether clustered cells 

in an array share the same row or column. For example, the cells in 

[E21:H21] in Figure 1 are members of the same cell array.  

Gap template: Templates can be generalized from two or more cell 
blocks formed by consecutive rows or columns of cells that capture 

similar types of data and computation. They share the same visual 
layout, and some of their formula cells in the same relative position 

share the same formula. An example is the two cell blocks [F11:F19] 
and [H11:H19] in Figure 1. Cells F13 and H13 have the same rela-

tive position in their respective cell blocks, and they share the same 
formula. After a template based on similar cell blocks is derived, 

peer cells (e.g., F15 and H15) in the same relative position in their 
own blocks could be associated and clustered. The addresses of 

these peer cells differ by a horizontal or vertical offset. The deriva-
tion of templates as well as the corresponding offsets can be imple-

mented by referencing the spreadsheet template inference mecha-
nism proposed by Abraham and Erwig [2]. We refer to these offsets 

as gap templates. For example, the gap template based on [F11:F19] 
and [H11:H19] models a horizontal offset of two. Note that it is 

possible to derive multiple gap templates from a set of spreadsheet 
cells. A gap template can also be derived from similar cell blocks 

across worksheets and even spreadsheets. 

4.3.2 Bootstrapping Algorithm 

The bootstrapping algorithm (Figure 3) used in CUSTODES is 
adapted from an information retrieval technique, referred to as “Es-

presso”, for computational linguistics [43]. The algorithm was later 
applied by Yoshida et al. [49] to reinforce a two-stage clustering 

that disambiguates person names in Web search results. Given a set 
of seed instances, Espresso learns their patterns and thereby ex-

tracts additional instances over the Web, iteratively. New instances 
and patterns are selected and added according to a reliability func-

tion defined over self-mutual-information values. We adapt Es-
presso by mapping instances and patterns to cells and weak features, 

respectively. Under such mappings, the algorithm is adapted to har-
vest weak features from the (seed) cells in each seed cluster derived 

in the first stage. Remaining (originally non-seed) cells are then 
successively added to seed clusters based on their extracted weak 

features. Algorithm 1 gives the bootstrapping algorithm. A matrix 
multiplication is used to propagate weak features from seed clusters 

to non-seed cells. Like the first-stage clustering, we apply the boot-

strapping algorithm for each worksheet so that a cell can only be 
grouped (or harvested) to a seed cluster in the same worksheet.  



4.3.2.1 Input matrix construction 

Let 𝑭𝑻 denote the weak feature vector, CE denote the cell vector 

(containing both seed and non-seed cells), CL denote the seed clus-

ter vector. Feature-cell matrix 𝑃 ≔ |𝑭𝑻| × |𝑪𝑬| , where 𝑝𝑖,𝑗 = 1 

when 𝑓𝑡𝑖  is contained in 𝑐𝑒𝑗 . Cell-Cluster matrix 𝑹𝑪𝑬 ≔ |𝑪𝑬| ×
|𝑪𝑳|, is a matrix to capture the association strength among cells and 

clusters. For the initial matrix 𝑹𝑪𝑬
(𝟎)

, 𝒓𝒋,𝒌
(𝟎)

= 1 if the cell 𝑐𝑒𝑗 is in the 

seed cluster 𝑐𝑙𝑘 after the first stage clustering. Feature-cluster ma-

trix 𝑹𝑭𝑻 ≔ |𝑭𝑻| × |𝑪𝑳|, is a weighting matrix of weak features and 

clusters.  

4.3.2.2 Algorithm details 

This algorithm contains two major components: (1) matrix multi-

plication to refine cell-cluster association values (Lines 1–3), and 

(2) harvesting non-seed cells to be added to seed clusters (Lines 5–

11). We elaborate on the details below. 

Matrix multiplication (Lines 1–3): Before performing the matrix 

multiplication, we need to prepare two input items 𝑹𝑪𝑬
(𝟎)

 and P. First, 

cells in seed clusters of a size larger than one are identified, giving 

the cell-cluster matrix 𝑹𝑪𝑬
(𝟎)

. These cells, referred to as seed cells 

earlier, are formula cells that exhibit the two strong features as pre-

sented in Section 4.2.1. Second, the weak features of each seed 

cluster are extracted from its seed cells to form a feature-cell matrix 

P. Except for seed cells, label cells and empty cells, data and re-

maining unclustered formula cells are referred to as non-seed cells. 

Line 1 is a matrix multiplication to get an initial feature-cluster as-

sociation weights 𝑹𝑭𝑻
(𝟎)

 by multiplying feature-cell matrix 𝑷 with 

initial cell-cluster matrix 𝑹𝑪𝑬
(𝟎)

. However, it is possible that a feature 

is common to many clusters, resulting in a high weight. For exam-

ple, the same font style is used in many clusters. However, this con-

tradicts to our goal of finding weak features specific to a cluster, 

i.e., features most uniquely characterize a cluster. As such, the 

Ochiai coefficient is calculated for resulting feature-cluster matrix 

𝑹𝑭𝑻 (Line 2). Ochiai coefficient is one of the best performing asso-

ciation measures [5]. This step could be regarded as a re-weighting 

process to put higher weights on features that are strongly related 

to a seed cluster. At Line 3, by multiplying 𝑷𝑻 with 𝑹𝑭𝑻, cluster 

feature weights then propagate back to the cell-cluster matrix and 
new cell-cluster association values are obtained. 

Harvesting non-seed cells (Lines 5–11): In order to harvest non-

seed cells to seed clusters, the algorithm finds the cluster that max-

imizes the association value for each non-seed cell (Line 7). If the 

value is above the specified threshold, this non-seed cell could be 

harvested (Lines 8–9). Intuitively, we want to exclude those cells 

with insignificant associations when compared with the seed cells 

in the cluster. We use a relative difference (Line 15) to compare the 

minimum association value of the seed cells in the same cluster 

with the ready-to-harvest one, and this makes the difference nor-

malized to range [0, 1] and relieves from the need for adopting a 
different threshold for each cluster. 

4.4 Smell Detection 

Let us explain smell detection based on our identified cell clusters. 

4.4.1 Intra-cluster Smelly Suspiciousness 

Our two-stage clustering algorithm identifies the set of weak fea-

tures that uniquely characterize each seed cluster from seed cells, 

and leverages these features to group cells into seed clusters. This 

allows cells to be grouped into a seed cluster even if their strong 

features (i.e., formulas) deviate from those of the seed cells inside 

the same cluster. Since smells likely occur in minority, we utilize 

an outlier detection technique for smell detection. For example, an 

outlier detection in the feature space of the strong features can de-

tect computation-related smells as a cell’s computation is driven by 

its formula.  

We focus on computation-related smells in spreadsheets because 

they are pervasive and can adversely affect spreadsheet correctness. 

To facilitate outlier detection of such smells, strong features are 

mapped onto vectors, and the Euclidian distance in the feature 

space is calculated to determine the degree of deviation. 

Local Outlier Factor (LOF) [12] is a density-based outlier detection 

technique, which assumes that the density around a normal data ob-

ject (inlier) should be similar to the density around its neighbors, 

while the density around an outlier is substantially lower than the 

density around its neighbors. An LOF score is assigned to each 

clustered cell to represent its outlierness. The score is calculated as 

the ratio of the local density of the cell and the average local density 

of its neighbor. The local density of a cell is inversely proportional 

to the average distance to its k-nearest neighbors. A cell can be con-

sidered an outlier if its LOF score is well above 1 [12]. In order to 

use LOF, a parameter k is needed to decide the neighborhood size. 

Here, we follow the rule-of-thumb in the k-nearest neighbor algo-

rithm and assume k to be the square root of the cluster size [27, 35, 

36]. The output of our algorithm is a list of cells ranked in a de-

scending order by their LOF scores, which represent their smell 

suspiciousness. 

Algorithm 1. Bootstrapping algorithm  

Input: Feature cell matrix P, cell cluster matrix 𝑹𝑪𝑬
(𝟎)

, threshold 

Output: Cell clusters 𝑪𝒍𝒖𝒄𝒆𝒍𝒍 

  1: 𝑹𝑭𝑻
(𝟎)

=
𝟏

|𝑪𝑬|
𝑷𝑹𝑪𝑬

(𝟎)
    // Calculate feature-cluster matrix  

  2: 
𝑹𝑭𝑻 = {

𝟏

𝐦𝐚𝐱 𝑶𝒄𝒉𝒊𝒂𝒊
𝒍𝒐𝒈

𝒑(𝒇𝒕,  𝒄𝒆)

𝒑(𝒇𝒕)𝒑(𝒄𝒆)
 𝒊𝒇

𝒑(𝒇𝒕,  𝒄𝒆)

𝒑(𝒇𝒕)𝒑(𝒄𝒆)
> 𝟏

𝟎                                         𝑶𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆
 , 

              (𝐟𝐨𝐫 𝐞𝐚𝐜𝐡 𝒇𝒕 ∈ 𝑭𝑻, 𝒄𝒆𝒍𝒍 ∈ 𝑪𝑬𝑳𝑳) 

  3: 𝑹𝑪𝑬 =
𝟏

|𝑭𝑻|
𝑷𝑻𝑹𝑭𝑻   // Calculate cell-cluster matrix 

  4:  

  5:  method Harvesting (𝑹𝑪𝑬) 

  6:    for each 𝑪𝒍𝒖 ∈ 𝑪𝑳𝑼 do 

  7: 
𝑪𝒍𝒖𝑵𝑺𝒄𝒆𝒍𝒍 = 𝐚𝐫𝐠 𝒎𝒂𝒙𝒄𝒍𝒖𝒓𝑵𝑺𝒄𝒆𝒍𝒍,𝑪𝒍𝒖′, where 

{𝑪𝒍𝒖′ | (𝑪𝒍𝒖′ ∈ 𝑪𝑳𝑼 ⋀ |𝑪𝒍𝒖| > 𝟏) ⋁ 𝑪𝑳𝑼(𝑪𝑬𝑳𝑳)
(𝟎)

} 

  8: if  𝐂𝐨𝐦𝐩(𝑪𝒍𝒖𝑵𝑺𝒄𝒆𝒍𝒍, 𝑪𝒍𝒖) > threshold 

  9: 𝑪𝒍𝒖𝒄𝒆𝒍𝒍 = 𝒂𝒅𝒅(𝑵𝑺𝒄𝒆𝒍𝒍,  𝑪𝒖) //Add non-seed cell to cluster 

10: end if 

11:    end for 

12:  

13: method Comp (𝑺𝒐,  𝑪𝒍𝒖) 

14:    for each 𝑺𝒄𝒆𝒍𝒍 ∈ 𝑪𝑬 do  

15:        𝑺𝒎𝒊𝒏 = 𝐚𝐫𝐠 𝒎𝒊𝒏𝑺𝒄𝒆𝒍𝒍𝒓𝑺𝒄𝒆𝒍𝒍,𝑪𝒍𝒖
 

16:    end for 

17: return 
𝑺𝒐−𝑺𝒎𝒊𝒏

𝑺𝒎𝒊𝒏
 

Figure 3. Algorithm for the second-stage cell clustering 

 



4.4.2 Smell Types Categorization 

In this subsection, we present how we categorize outliers into dif-

ferent types of computation smells.  

Missing formula smell: It occurs at a numeric data cell where a 
formula is expected but missing. It is a smell detected by AmCheck. 

The smell is known as overwriting formula errors in another study 
[9]. Cells suffering from this smell do not exhibit any strong feature, 

and therefore they have high LOF scores. In the motivating exam-
ple (Figure 1), there are four data cells such as cells F17 and F21 

suffering from this smell. CUSTODES clusters these smelly cells 
together with formula cells. This facilitates users to validate the 

smells and their numeric values using the associated formulas. 
Since clustered data cells miss the two strong formula-related fea-

tures completely, they are strong suspects of missing formula 
smells. An optimization of smell detection is to treat all these data 

cells as outliers and thereby save their LOF calculation. This opti-
mization can sometimes improve the outlier detection of dissimilar 

formula smells. We deployed this optimization in our experiments. 

Dissimilar formula smell: A cell’s formula describes its computa-
tion. A formula typically consists of three types of components: cell 

references, constant values and operations. Depending on which 
type of component is smelly, smells can occur in any of the three 

following forms:  

(1) Dissimilar formula references: It occurs when the R1C1 expres-

sion of a formula is dissimilar to its peer cells’ formulas in the same 

cluster. The smell can be characterized by an outlier that deviates 

mainly in the cell dependency strong feature. This kind of smells 

(e.g., cell H21 in Figure 1) is often found to be error-prone [41, 45].  

(2) Dissimilar formula operations: It occurs at a formula cell whose 

set of operations/operators differs from that of the majority cells in 

the same cluster. The smell can be characterized by an outlier that 

deviates mainly in the formula operations feature. Its effect is less 

serious if the different operations have the same computational se-

mantics such as SUM and “+”, an example cell falling into this sub-

category is H32.  

(3) Formula with hard-coded constants: It occurs at a formula cell 

where an operand of its formula is hard-coded with a constant  in-

stead of a cell reference, while it is not the case for most formula 

cells in the same cluster. It is referred to as a qualitative error in 

[45], and especially harmful when users forget to update the con-

stant value in spreadsheets upon modification or reuse. An example 

of this is cell H37 in Figure 1. 

Hermans et al. [28] proposed five other types of formula smells by 

adapting conventional code smells in programs to spreadsheet for-

mulas. These smells occur to cells that subscribe a relatively com-

plex formula. Although formula complexity can degrade readabil-

ity and comprehensibility, complexity smells tend to be less prob-

lematic because formulas may need to be such implemented for 

their intended computations. Due to space, we do not discuss the 

detection and categorization of these five types of smells in this pa-

per. Essentially, they can also be detected as outliers in a feature 

space that models formula complexity such as the number of refer-

ences, number of operations and calculation chains. 

5. IMPLEMENTATION 

This section briefly explains some implementation details. In the 

preprocessing part, a formula cell’s dependency relationship is 

tracked using Excel’s built-in function. We implemented it using 

VBA in macros. The two-stage clustering and smell detection mod-

ules were implemented in Java, and Excel files’ processing was re-

alized on top of Apache POI [8]. Our tool automatically identifies 

cell clusters and highlights them visually to users. Each smelly cell 

is additionally marked by a red right-cornered triangle “” together 

with a comment, describing its smell type and ranking. 

6. EVALUATION 

Our evaluation studies the following two research questions: 

RQ1. How well can our two-stage approach cluster spreadsheet 

cells? We compare the clustering result of CUSTODES with those 

of two existing cell clustering techniques: (1) the cell array tech-

nique from AmCheck [19], and (2) the logical area technique [39] 

whose three cell similarity criteria are commonly used in spread-

sheet visualization, auditing, testing and error categorization. 

RQ2. How well can our outlier-based smell detection detect 

spreadsheet smells? We compare the smell detection result of 

CUSTODES with that of AmCheck [19]. We use the precision, re-

call and F-measure metrics in the comparison. 

6.1 Experimental Subjects 

We evaluated our research questions on 291 worksheets from 70 

spreadsheet files, which were randomly selected from the EUSES 

corpus [21].  These spreadsheets form a representative subset of 

EUSES corpus according to the previous work AmCheck [19]. Be-

fore our experiments, we manually inspected each worksheet to la-

bel all cell clusters. In each cell cluster, we further marked the 

smelly cells and labeled their smell types. This ground truth was 

carefully established by many rounds of cross validations by all co-

authors of this paper and an additional postgraduate student. Table 

1 gives the statistics of the experimental subjects. As shown in the 

table, the subjects are diverse (covering eight different categories) 

and contain more than 20 thousand cells and formulas. Our manual 

inspection of these files found 1,610 cell clusters and 1,974 smelly 

cells. We made our experimental dataset available online for future 

research [17]. 

6.2 Evaluation Metrics 

The performance of cell clustering is evaluated based on four out-

comes of each cell pair’s assignment: (1) a pair of similar cells as-

signed to the same cluster (true positive or TP), (2) a pair of dis-

similar cells not assigned to the same cluster (true negative or TN), 

(3) a pair of dissimilar cells assigned to the same cluster (false pos-

itive or FP), and (4) a pair of similar cells not assigned to the same 

cluster (false negative or FN). Two cells are similar if they should 

belong to the same cell cluster. 

Similarly, smell detection can also have the four outcomes: (1) a 

detected smelly cell is truly smelly (TP), (2) a normal cell (non-

smelly) is detected as normal (TN), (3) a detected smelly cell is 

normal (FP), and (4) a truly smelly cell is detected as normal (FN). 

Table 1. Statistics of our experimental subjects 

Category 
# 

worksheets 
# cells 

# formula 
cells 

# clusters 
# smelly 

cells 

cs101 1 106 40 8 3 

database 60 42,688 6,973 547 1,206 

financial 102 54,734 5,692 533 477 

forms3 5 1,774 734 35 12 

grades 30 23,998 2,571 73 124 

homework 23 12,137 3,878 150 50 

inventory 35 17,082 1,927 125 59 

modeling 35 36,508 4,901 139 43 

Total 291 189,027 26,716 1,610 1,974 

 

 



To study the effectiveness of our clustering approach and compare 

it with existing techniques, we use the following three evaluation 

metrics [18, 38, 49]: 

Precision = 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 Recall = 

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

F-measure = 
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

6.3 Cell Clustering Evaluation Results 

We made no assumption on the optimal threshold value of our two-

stage bootstrapping algorithm (Algorithm 1), and set the threshold 

to default 0.5 in all our experiments. 

Table 2 gives our cell clustering results. In total, CUSTODES de-

tected 1,582 cell clusters. Its average precision, recall and F-meas-

ure are 0.91, 0.89 and 0.90, respectively. For comparison, Am-

Check [19] detected 2,486 cell arrays. Its precision is 0.98, which 

is slightly higher than CUSTODES. However, its recall is only 0.17, 

meaning that it failed to cluster many similar cells. This is because 

AmCheck imposes strong spatial constraints on cell array members 

as well as their referenced cells to achieve high clustering precision. 

As we discussed earlier, such a heuristic-based technique may not 

always perform well, although the heuristic can cluster quite a few 

smelly cells. 

We also compared CUSTODES with the logical area technique 

[39]. The technique adopts three similarity criteria of formula cells 

to find conceptually-cohesive but not necessarily spatial-related re-

gions in spreadsheets. The three similarity criteria are: (1) copy-

equivalence (CE), meaning that a pair of cells share the same R1C1 

formula, (2) logical-equivalence (LE), meaning that the two formu-

las of a pair of cells differ only in absolute cell references or con-

stant values, and (3) structural-equivalence (SE), meaning that the 

formulas of a pair of cells contain the same operations and in the 

same order. 

Table 2 gives the experimental results of the logical area technique. 

As shown in the table, the performance of the three criteria differs. 

CE has the highest precision (0.99), while SE has the highest recall 

(0.79) among the three. The precisions of CE (0.99) and LE (0.93) 

are slightly higher than CUSTODES (0.91) because we try to 

achieve a tradeoff between precision and recall. For example, by 

using weak features in our two-stage bootstrapping algorithm, more 

similar cells can be grouped into the same cluster, facilitating ef-

fective smell detection. 

Figure 4 compares the effect of recall on the number of true smells 

successfully clustered by three logical area criteria and by our CUS-

TODES approach. The light (grey) bars show the recall for the log-

ical area clustering technique with three different similarity criteria, 

respectively. The darker (orange) bars give the recall of our two-

stage clustering approach. Our recall (0.89) outperforms those of 

CE (0.74) and LE (0.73). Although the differences seem not large, 

we found that the clusters detected by using the CE and LE criteria 

are not very useful in smell detection as the cells in these clusters 

are highly consistent. Our experimental results also confirmed this. 

For example, CE is a criterion requiring identical formulas, and 

only cells with the same formula can be aggregated to a cluster. As 

such, no smell can be detected from these clusters. The nine smelly 

cells clustered by the LE criterion can also be clustered by CUS-

TODES. More importantly, the improvement in recall from 0.73 

(LE) to 0.89 (CUSTODES) brings significant benefit of clustering 

nearly 1,800 more true smelly cells that could not be clustered by 

LE. Finally, although SE has a better recall (0.79) than CE (0.74) 

and LE (0.73), its low precision (0.58) indicates that many cells are 

incorrectly clustered. Among the clusters identified by SE, 249 true 

smelly cells can be detected as outliers. In other words, there are 

many smelly cells failing to be clustered using SE. The clusters 

generated by CUSTODES can be more effectively used for smell 

detection as compared with those generated by the three logical 

area techniques. Note that CUSTODES clustered 1,804 smells but 

only detected 1,583 of them (see Section 6.4). 

Based on the above results and comparisons, we derive our answer 

to RQ1: Our two-stage bootstrapping clustering approach is effec-

tive. It outperforms existing clustering techniques in recall while 
preserving a high precision.  

6.4 Smell Detection Evaluation Results 

In order to evaluate the effectiveness of our outlier-based smell de-

tection for two formula-related smells, i.e., missing formula and 

dissimilar formula (see Section 4.4.2), we made comparisons with 

AmCheck [19], UCheck [3], Dimension Inference [14], and the 

built-in error checking of Excel 2013. We enabled all checking 

rules in Excel 2013 except the two rules: (1) cells containing years 

are represented as two digits, and (2) numbers are formatted as text 

or preceded by an apostrophe. This is because the two rules are ir-

relevant to formula-related smell detection. 

Our smell detection reports a score for each cell to represent its out-

lierness in its cluster. As explained in Section 4.4, cells with a score 

less than or equal to 1 are inliers. Hence, in experiments, we con-

sidered those cells with scores larger than 1 smelly or outliers. 

In total, CUSTODES identified 1,582 cell clusters, of which 510 

(32.23%) were considered smelly, i.e., suffering at least one type 

of smell. It further detected 2,443 smelly cells in these problematic 

cell clusters. Among these suspicious cells, 1,583 (64.80%) were 

confirmed as true positives. Table 3 reports more detailed results. 

As listed in Table 1, our 70 spreadsheet subjects in total contain 

291 worksheets, out of which 60 (20.62%) come from the database 

category. These worksheets contribute the largest number of for-

mula cells in our experiments. The result in Table 3 shows that 
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Figure 4. Comparison of recall and true smells clustered 

Table 2. Precision, recall and F-measure of three cluster-

ing techniques 

Clustering technique # clusters Precision Recall F-measure 

AmCheck 2,486 0.98 0.17 0.29 

Logical Area (CE) 1,725 0.99 0.74 0.85 

Logical Area (LE) 1,840 0.93 0.73 0.82 

Logical Area (SE) 823 0.58 0.79 0.67 

CUSTODES 1,582 0.91 0.89 0.90 

 

 

 



these formula cells also account for the largest proportion of the 

detected smells. We do not observe a specific category whose for-

mula cells are significantly more smelly than the others. 

As a comparison, AmCheck detected 2,163 smelly cells in these 

spreadsheet files. 1,231 (56.91%) were confirmed to be true posi-

tives. CUSTODES is capable of detecting 352 more true smelly 

cells than AmCheck. UCheck [3] and Dimension Inference [14] 

were proposed to validate calculation by checking whether there 

are illegal combinations of incompatible units or dimensions as in-

ferred by them. They marked 204 and 1,697 cells as erroneous, re-

spectively. We manually checked these cells and found that only 1 

(0.49%) of the 204 cells reported by UCheck and 11 (0.65%) of the 

1,697 cells reported by Dimension Inference are erroneous or 

smelly. We conjecture that the low precision of UCheck is due to 

its imperfect unit analysis. For example, we observed in our exper-

iments that an addition of a cell labelled as “Indian Point 2” and a 

cell labeled as “Indian Point 3” was marked as erroneous by 

UCheck. Although the two cells have slightly different labels, the 

addition of their values should not be considered an illegal opera-

tion. In fact, the two labels reflect a specific tabulation style by us-

ers. On the other hand, Dimension Inference is not applicable to 

those cells that are not associated with clear dimensions in spread-

sheets. An earlier study [13] also showed that dimensions occur in-

frequently in spreadsheets (only occur in 25% of the formula 

spreadsheets). As a result, Dimension Inference can miss many er-

roneous cells. Moreover, both UCheck and Dimension Inference 

are only applicable to formula cells. As such, smelly cells without 

formulas cannot be detected. As for Excel 2013, it only detected 

143 true smelly cells. Most of these smelly cells were detected by 

three error checking rules: (1) formulas that do not match nearby 

formulas (detected 23 true smelly cells), (2) formula omitting cells 

in a region (detected 37 true smelly cells), and (3) formulas that 

refer to empty cells (detected 81 true smelly cells). 

Figure 5 further compares CUSTODES with AmCheck in terms of 

precision, recall and F-measure in smell detection. CUSTODES 

achieved a precision of 0.65, recall of 0.80, and F-measure of 0.72, 

all higher than those of AmCheck (precision of 0.57, recall of 0.62 

and F-measure of 0.60). These experimental results show that our 

outlier-based smell detection outperforms AmCheck, UCheck, Di-

mension Inference and Excel’s built-in error checking support. 

Based on these results, we derive our answer to RQ2: Our outlier-

based smell detection can effectively locate smelly cells. It signifi-

cantly outperforms existing smell detection techniques. 

7. DISCUSSION 

Figure 6 gives a typical example from our experiments. It is an ex-

cerpt from a EUSES spreadsheet that reports quarterly financial 

data in each fiscal year. The four cell clusters identified by our two-

stage approach are shaded in four different colors. We made two 

observations on the user’s tabulation style: (1) The region of rows 

63, 64 and 65 capture similar type of data and computation as the 

region of rows 67, 68 and 69, where each pair of peer cells (e.g., 

C65 and C69) in rows 65 and 69 share similar computation. This 

favors a weak clustering feature based on a gap template with a 

vertical offset of 4. (2) Users using header information, such as “Pro 

Forma Earning per share” as a summation calculation indicator. 

There are four missing formula smells and one dissimilar formula 

smell detected by our tool (marked by “”). Noticeable smell ex-

amples are cells F67 and F68. Although a spatial contiguous clus-

tering method might cluster them together with F69, they prescribe 

essentially different computations. F69 is a summation of some ver-

tical cells above, while F67 and F68 should follow the same calcu-

lation as F63 and F64 to sum up the cells on their left. This exposes 

the requirement and thus challenge for automatically deciding the 

extension of user table design. CUSTODES tackles this challenge 

by capturing the user’s specific tabulation style in terms of weak 

features. Actually, the two missing formula smells in cells F67 and 

F68 likely reveal real data discrepancies. After applying the for-

mula in cells F63 and F64, cell F67’s value changes from 0.55 to 

0.56, and F68’s value changes from -0.17 to -0.18. No existing au-

tomatic smell detection approaches can detect the two smells/errors. 

The success of clustering F67 and F68 with formula cells (F63 and 

F64) using weak features contributes greatly to the detection of the 
two smells. 

Table 3. Smell detection results compared with existing smell/error detection techniques 

Category 

Smell Detection Results of Different Techniques 

CUSTODES AmCheck UCheck 
Dimension 

Inference 
Excel’s Error Checking 

Detected True Detected True Detected True Detected True Detected True 

cs101 3 3 6 1 0 0 0 0 1 0 

database 1,116 1,066 823 790 158 0 863 4 563 18 

financial 651 317 502 287 0 0 151 1 1,204 70 

forms3 29 10 73 1 0 0 0 0 464 2 

grades 316 94 79 78 0 0 11 0 322 8 

homework 95 47 109 16 0 0 370 0 1,238 6 

inventory 144 27 372 37 34 0 190 2 391 17 

modeling 89 19 199 21 12 1 112 4 798 22 

Total 2,443 
1,583 

(64.80%) 
2,163 

1,231 

(56.91%) 
204 

1 

(0.49%) 
1,697 

11 

(0.65%) 
4,981 

143 

(2.87%) 

 

 
Figure 5. Performance comparison with AmCheck 

 

 

 

 

 

 

 

0.57
0.62 0.60

0.65

0.80
0.72

0.00

0.20

0.40

0.60

0.80

Precision Recall F-measure

AmCheck CUSTODES



8.  RELATED WORK 

There are several approaches proposed to identify spatially, struc-

turally or semantically related blocks or regions of cells in spread-

sheet visualization. Mittermeir and Clermont [39] introduced three 

kinds of “logical areas” to cluster formula cells that satisfy three 

forms of equivalences: copy, logical and structural equivalences. 

Among the three equivalences, copy equivalence that requires iden-

tical formulas is the strongest, and structural equivalence that re-

quires only the same set of operations is the weakest. Sajaniemi [46] 

also employs equivalent formulas to identify cell blocks. While ex-

isting work clusters cells based on formula similarity, our two-stage 

approach goes beyond that and takes advantage of weak features to 

identify cell clusters. The use of weak features enables us to cluster 

smelly cells even though their formulas are dissimilar to their peers. 

Various techniques have been proposed to detect different kinds of 

spreadsheet smells or errors. Unit and type inference is quite a ma-

jor research topic in the last decade. UCheck [3] and dimension in-

ference [14] are proposed to derive unit or dimensional information 

to verify the correctness of calculation by checking whether there 

is any illegal combination of incompatible units. Hermans et al. im-

plemented tools to detect and visualize inter-worksheet smells [29], 

data clones [31], formula smells [30], lookup smells [32] by adapt-

ing the concept of code smells to the spreadsheet domain. Cunha et 

al. [16] presented a catalog of spreadsheet smells by considering 

spreadsheet-specific data statistics features. AmCheck [19] catched 

potential errors caused by ambiguous computation in a cell array. 

AmCheck’s smell detection works in two steps. It first clusters cells 

to cell arrays. AmCheck adopts a simple heuristic to group contig-

uous cells in a row or column into a cluster. A cell array is then 

considered smelly if it contains cells that prescribe inequivalent for-

mulas. CheckCell [11] identifies those data entries that cause ex-

traordinary impact on results as potential data errors. VEnron [20] 

publishes the first versioned spreadsheet corpus to facilitate evolu-

tion analysis. 

Spreadsheet quality is also studied by the information systems com-

munity. Galletta et al. [24] in an empirical study reports that spread-

sheet experts did not outperform novices in identifying formula er-

rors, and that identifying simple spreadsheet errors is non-trivial 

even for practitioners. Another empirical experiment by Nixon and 

O’Hara [40] reports that spreadsheet auditing software can assist 

auditors to detect errors. Anderson [7] in a later study confirms the 

finding but reports that auditing software tools missed many 

spreadsheet errors. The study concludes that both tools and compe-

tent users are needed for spreadsheet error detection. 

This paper differs from the existing techniques. It makes the first 

effort to derive clusters of spreadsheet cells using a two-stage tech-

nique based on strong and weak features. It proposes to detect mul-

tiple types of smells uniformly based on outlier detection in feature 

spaces. In addition to smell detection, there are other pieces of work 

related to smell refactoring [10] and fault localization using smells 

[6], which target at different scopes from our work. 

9. THREATS TO VALIDITY 

A threat to internal validity of our evaluation is that we are not able 

to confirm the ground truth that were manually marked by us, since 

EUSES corpus was collected in the wild without any labeling of 

true smells or errors. We alleviated this by making the data public 

for crosschecking and experiment repeating [17]. Another threat to 

the external validity is the representativeness of experimental sub-

jects used in our evaluation. We chose a set of 70 spreadsheets from 

the EUSES corpus [21]. These spreadsheets are non-trivial, con-

taining 26,716 formulas and 1,610 clusters. They span across major 

application domains categorized by EUSES, which is the most pop-

ular corpus that has been used for spreadsheet evaluation. 

10. CONCLUSION 

In this paper, we have proposed an automatic spreadsheet cell clus-

tering approach by constructing a feature model that is capable of 

extracting invariant tabulation styles as strong features and variant 

tabulation styles as weak features. Two formula-based strong fea-

tures and seven weak features are presented. A two-stage clustering 

technique is proposed to effectively aggregate spreadsheet cells 

into clusters. Our evaluation shows that our clustering technique is 

able to achieve a high precision (0.91) and recall (0.89) at the same 

time, and successfully group smelly cells into their own clusters. 

About one-third of clusters are found to be smelly, confirming pre-

vious findings in the literature that spreadsheets are error-prone. It 

is time-consuming to identify all smells manually. To address this 

issue, we have also proposed an automatic outlier-based smell de-

tection technique. A wide class of smells can be characterized as 

outliers of various feature spaces. Our evaluation results show that 

our smell detection technique achieves large improvements in F-

measure (0.72) as compared to state-of-the-art techniques.  

In conclusion, our CUSTODES approach is effective in cell clus-

tering and smell detection. In future, we plan to further improve 

CUSTODES by identifying more spreadsheet user behaviors and 

modeling them as features. 
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Figure 6. An typical example output from CUSTODES 
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