
Characterizing and Detecting Performance
Bugs for Smartphone Applications

Yepang Liu1, Chang Xu2, and S.C. Cheung1

1The Hong Kong University of Science and Technology
2State Key Lab for Novel Software Technology, Nanjing University

Smartphone Era

1 million+ apps

1/30

Apps for different purposes

App performance is critical

2/30

11,108 of 60,000 Android apps randomly sampled

from Google Play suffer from performance bugs!

App performance is critical

3/30

App performance is critical

3/30

App not respondingÆWrong way

App performance is critical

4/30

Bad
performance

User
complaints

Market
failure

Assuring good performance is NOT easy

• Small team
• No dedicated QA

5/30

Assuring good performance is NOT easy

• Small team
• No dedicated QA

5/30

• Limited bug understanding
• Lack of useful tool support

Assuring good performance is NOT easy

• Fierce competition
• Short time to market

• Small team
• No dedicated QA

5/30

• Limited bug understanding
• Lack of useful tool support

How can we help?

Designing performance
assurance tools

Understanding
performance bugs

6/30

Overview

• Empirical study: understanding performance bug

– Research questions and study design

– Empirical findings and implications

• PerfChecker: a performance bug detection tool

– Tool design and implementation

– Detected bugs and developers’ feedback

Overview

• Empirical study: understanding performance bug

– Research questions and study design

– Empirical findings and implications

• PerfChecker: a performance bug detection tool

– Tool design and implementation

– Detected bugs and developers’ feedback

Research questions

• RQ1: Bug types and impact

• RQ2: Bug manifestation

• RQ3: Debugging and bug-fixing effort

• RQ4: Common bug patterns

7/30

Application and bug selection

8 popular Android apps with well-maintained
bug tracking system and code repository

8/30

Selected apps

Application name Category Size (LOC) Downloads

Firefox Communication 122.9K 10M ~ 50M

Chrome Communication 77.3K 50M ~ 100M

AnkiDroid Education 44.8K 500K ~ 1M

K-9 Mail Communication 76.2K 1M ~ 5M

My Tracks Health & Fitness 27.1K 10M ~ 50M

c:geo Entertainment 44.7K 1M ~ 5M

Open GPS Tracker Travel & Local 18.1K 100K ~ 500K

Zmanim Books & Reference 5.0K 10K ~ 50K

9/30

Application and bug selection

9/30

70 fixed performance bugs labeled by
original developers

8 popular Android apps with well-maintained
bug tracking system and code repository

Empirical study process

70 Performance bugs

Bug reports, comments

Bug fixing patches

Patch reviews

Revision commit logs …

Research questions

Bug types and impacts

Bug manifestation

Debugging and fixing effort

Common bug patterns

10/30

Overview

• Empirical study: understanding performance bug

– Research questions and study design

– Empirical findings and implications

• PerfChecker: a static performance analysis tool

– Analysis tool design and features

– Detected bugs and developers’ feedback

2
4

View my
items

SHOPPING
CART

Three dominant bug types

1. GUI lagging: Significantly reducing the responsiveness and
smoothness of an application’s GUI (75.7%)

11/30

Three dominant bug types

1. GUI lagging: Significantly reducing the responsiveness and
smoothness of an application’s GUI (75.7%)

“Switching tabs is too slow, sometimes can
take 5 – 10 seconds, triggering Application Not
Responding error.” (Firefox bug 719493)

11/30

Three dominant bug types

2. Energy leak: Applications quickly and silently consume
much battery power (14.3%)

12/30

Three dominant bug types

2. Energy leak: Applications quickly and silently consume
much battery power (14.3%)

“My Tracks is a massive battery drain. Battery lost
10% in standby just 20 minutes after a full charge.”

“It is destroying my battery. I will have to uninstall
it if there isn’t a fix soon.” (My Tracks bug 520)

12/30

Three dominant bug types

3. Memory bloat: Applications consume significantly more
memory than necessary (11.4%)

13/30

Three dominant bug types

3. Memory bloat: Applications consume significantly more
memory than necessary (11.4%)

“I went to a few websites, played < 10 minutes,
5.6 MB memory is consumed … causing crashes
on Galaxy S4.” (Chrome bug 245782)

13/30

Three dominant bug types

3. Memory bloat: Applications consume significantly more
memory than necessary (11.4%)

“I went to a few websites, played < 10 minutes,
5.6 MB memory is consumed … causing crashes
on Galaxy S4.” (Chrome bug 245782)

13/30

GUI lagging, energy leak and memory bloat are three dominant
types in our studied performance bugs.

Observation 1: Special user interactions needed to expose
performance bugs (25 / 70)

Manifesting performance bugs

14/30

Manifesting performance bugs

14/30

Zmanim energy leak reproducing steps

• Step 1: Switch on GPS

• Step 2: Configure Zmanim to use current location

• Step 3: Start Zmanim’s main activity

• Step 4: Press “Home” button when GPS is acquiring a location

Manifesting performance bugs

14/30

Zmanim energy leak reproducing steps

• Step 1: Switch on GPS

• Step 2: Configure Zmanim to use current location

• Step 3: Start Zmanim’s main activity

• Step 4: Press “Home” button when GPS is acquiring a location

These bugs make performance testing difficult /

How to trigger performance bugs?

15/30

Zmanim energy leak reproducing steps

• Step 1: Switch on GPS

• Step 2: Configure Zmanim to use current location

• Step 3: Start Zmanim’s main activity

• Step 4: Press “Home” button when GPS is acquiring a location

Sequence

How to trigger performance bugs?

15/30

Zmanim energy leak reproducing steps

• Step 1: Switch on GPS

• Step 2: Configure Zmanim to use current location

• Step 3: Start Zmanim’s main activity

• Step 4: Press “Home” button when GPS is acquiring a location

Sequence Timing (app state)+

Performance oracles

Observation 2: No well-defined performance oracle

• Performance bugs rarely cause fail-stop consequences

16/30

Performance oracles

Observation 2: No well-defined performance oracle

• Performance bugs rarely cause fail-stop consequences

16/30

How do developers judge performance
degradation in reality?

Performance oracles

Three common judgment strategies in practice:

• Manual judgment

16/30

Performance oracles

Three common judgment strategies in practice:

• Manual judgment

• Product comparison

16/30

vs.

K-9 Mail Gmail

Performance oracles

Three common judgment strategies in practice:

• Manual judgment

• Product comparison

• Developers’ consensus

16/30

“Generally, 100 ms is the threshold beyond which
users will perceive slowness in application.”

Performance oracles

Three common judgment strategies in practice:

• Manual judgment (manual effort)

• Product comparison (manual effort)

• Developers’ consensus (not well defined)

17/30

Automated and well-defined oracles are desirable to facilitate
performance testing and analysis.

Performance oracles

Three common judgment strategies in practice:

• Manual judgment (manual effort)

• Product comparison (manual effort)

• Developers’ consensus (not well defined)

17/30

General oracles may not exist. Bug specific oracles are still helpful.
(Zhang et al. CODES+ISSS’12, Liu et al. PerCom’13, TSE’14)

Common bug patterns

Observation: More than one third of performance bugs are

amenable to automated detection.

We observed three common bug patterns:

• Long running operations in main threads

• Wasted computation for invisible GUI

• Inefficient callbacks (frequently invoked)

18/30

1. Long running operations in main threads

How to keep your applications responsive?

“Android applications normally run entirely on a single thread. By

default, it is the UI thread or main thread, which drives the user

interface event loop. Any method that runs in the main thread

should do as little work as possible.” (Android documentation)

19/30

1. Long running operations in main threads

2
4

View my
items

SHOPPING
CART

19/30

Long running operations will prevent the main thread
from handling user events timely

2. Wasted computation for invisible GUI

A dilemma:

• One great feature of Android is multitasking

• Potential drawback: bad apps conducting useless computation in
background can eat up precious battery life

“I have noticed there are a few people who have phones where
there is software running in the background that just sort of
exhausts the battery quickly.” (Larry Page, Google’s co-founder)

20/30

“When Fennec is in the background, these things should be

suspended ideally: timers / JavaScript, animated images, Dom

events, audio / video, flash plugins.” (Firefox bug 736311)

Firefox energy leak:
• Video keeps running on

background tabs

20/30

2. Wasted computation for invisible GUI

3. Inefficient frequently-invoked callbacks

21/30

Android application

Callback 1 Callback 2

Callback n

3. Inefficient frequently-invoked callbacks

21/30

Android application

Callback 1 Callback 2

Callback n

Frequently-invoked callbacks
should be highly efficient.

22/30

Text 1

Text 2

Text 3

Text 4

Text 1

Text 2

Text 3

Text 4Sc
ro

lli
ng

ListView callback example

Old item

New item

Text 1

Text 2

Text 3

Text 4

Text 1

Text 2

Text 3

Text 4Sc
ro

lli
ng

Old item

New item

ListView callback example

22/30

public View getView(int pos, View recycledView, ...)
• Operation 1: item layout inflation
• Operation 2: inner view updating

Text 1

Text 2

Text 3

Text 4

Text 1

Text 2

Text 3

Text 4Sc
ro

lli
ng

Old item

New item

public View getView(int pos, View recycledView, ...)
• Operation 1: item layout inflation
• Operation 2: inner view updating

ListView callback example

Efficiency is critical (tens of invocations during a scrolling)

22/30

Heavy operations!

Observation: List items have identical layout

public View getView(int pos, View recycledView, ...)

22/30

Text 1

Text 2

Text 3

Text 4

Text 1

Text 2

Text 3

Text 4Sc
ro

lli
ng

View holder design pattern

Old item

New item

System recycler

public View getView(int pos, View recycledView, ...)System recycler

Text 1

22/30

Text 1

Text 2

Text 3

Text 4

Text 1

Text 2

Text 3

Text 4Sc
ro

lli
ng

View holder design pattern

Old item

New item

Observation: List items have identical layout

Idea: Recycle old item and cache inner view references for reuse
Recycle

public View getView(int pos, View recycledView, ...)System recycler

Text 1
Reuse

22/30

Text 1

Text 2

Text 3

Text 4

Text 1

Text 2

Text 3

Text 4Sc
ro

lli
ng

View holder design pattern

Old item

New item

Observation: List items have identical layout

Idea: Recycle old item and cache inner view references for reuse
Recycle

Violating view holder design pattern

23/30

//Simplified from Firefox bug 735736

public View getView(int pos, View recycledView, ViewGroup parent) {

View item = mInflater.inflate(R.layout.listItem, null);

TextView txtView = (TextView) item.findViewById(R.id.text);

ImageView imgView = (ImageView) item.findViewById(R.id.icon);

txtView.setText(DATA[pos]);

imgView.setImageBitmap((pos % 2) == 1 ? mIcon1 : mIcon2);

return item;

}

Violating view holder design pattern

//Simplified from Firefox bug 735736

public View getView(int pos, View recycledView, ViewGroup parent) {

View item = mInflater.inflate(R.layout.listItem, null);

TextView txtView = (TextView) item.findViewById(R.id.text);

ImageView imgView = (ImageView) item.findViewById(R.id.icon);

txtView.setText(DATA[pos]);

imgView.setImageBitmap((pos % 2) == 1 ? mIcon1 : mIcon2);

return item;

}

Recycled item not used at all
item inflation and inner view updating on each call!

23/30

Consequence: bad scrolling performance!

Yepang Liu

(735636)

Overview

• Empirical study: understanding performance bug

– Research questions and study design

– Empirical findings and implications

• PerfChecker: a performance bug detection tool

– Tool design and implementation

– Detected bugs and developers’ feedback

PerfChecker

• Static analysis for performance bug detection

24/30

.apk .class

Analysis
Report

PerfChecker

Warnings & suggestions

or

Bug patterns

PerfChecker

24/30

• Static analysis for performance bug detection

• Fully automated and easy to use

Input Output

.apk .class

Analysis
Report

PerfChecker

Warnings & suggestions

or

Bug patterns

Implementation

25/30

.apk .class

PerfChecker

or

Code analysis engine: Soot

Bug patterns

Performance bug checkers

• Long running operations in main threads
• View holder pattern violations

Analysis
Report

Application subjects

Latest version of 29 popular open-source Android apps

• Covering 12 different categories

• 1+ million lines of Java code in total

Application name Category Size (LOC) Downloads

c:geo Entertainment 37.7K 1M ~ 5M

Osmand Travel & Local 77.4K 500K ~ 1M

Firefox Communication 122.9K 10M ~ 50M

FBReaderJ Books & Reference 103.4K 5M ~ 10M

Bitcoin Wallet Finance 35.1K 100K ~ 500K

OI File Manager Productivity 7.8K 5M ~ 10M

… … … …

26/30

Analysis results

• PerfChecker can finish analyzing each application in a
few seconds to a few minutes

27/30

Analysis results

• PerfChecker detected 126 previously-unknown issues in
18 of the 29 analyzed applications

27/30

Application name
Bug pattern instances

View holder pattern
violation

Long running operations
in main threads

Ushahidi 9 2

Firefox 1 0

FBReaderJ 6 6

OI File Manager 1 0

… … ...

Analysis results

• 68 issues (54.0%) were confirmed as real performance
bugs by original developers

Application name
Bug pattern instances

View holder pattern
violation

Long running operations
in main threads

Ushahidi 9 2

Firefox 1 0

FBReaderJ 6 6

OI File Manager 1 0

… … ...

27/30

Analysis results

• 20 critical performance bugs were quickly fixed by
original application developers

27/30

Application name
Bug pattern instances

View holder pattern
violation

Long running operations
in main threads

Ushahidi 9 2

Firefox 1 0

FBReaderJ 6 6

OI File Manager 1 0

… … ...

Feedback from developers

• Developers are interested in performance analyzers

28/30

Henry (Ushahidi developer)

“Thanks for reporting this … Just curious, where

is this static code checker? Anywhere I can play

with it as well?”

Feedback from developers

• Developers act quickly with concrete suggestions

28/30

“Thanks a lot for reporting the problems.

The ViewHolder pattern has just been added to

the BookmarkListAdapter in 8c9c429.”

George (OI File Manager developer)

https://github.com/openintents/filemanager/commit/8c9c4292caecb9dbfa0fc43ab7bef33eee81241f

One of our checkers merged into Android Studio (for IntelliJ)

Android Studio 0.5.2 Release Log
Posted on Mar 20, 2014 by Tor Norbye

• New Lint check:

Ensures that list view adapters use
the View Holder pattern (to make
scrolling smoother) …

Latest news

29/30

Conclusion

• We discussed several characteristics of performance bug

• Performance bug detection tools are helpful to developers

• Future work on improving PerfChecker

– More bug patterns to boost its detection capability

– Improve the effectiveness of bug detection algorithms

30/30

For empirical study data and tool runnable, please visit:
http://sccpu2.cse.ust.hk/perfchecker/

http://sccpu2.cse.ust.hk/perfchecker/

Thank you -

