
A Comprehensive Evaluation of Q-Learning Based Automatic Web GUI Testing

Yujia Fan1, Siyi Wang1, Sinan Wang2, Yepang Liu2,∗, Guoyao Wen3, Qi Rong3

1Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China
2Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technology, Shenzhen, China

3Huawei Inc., China
12132331,12010339,wangsn@mail.sustech.edu.cn, liuyp1@sustech.edu.cn, wenguoyao,rongqi1@huawei.com

*corresponding author

Abstract—Recently, reinforcement learning (RL) based au-

tomatic Web GUI testing techniques are gaining popularity

in both academia and industry as they can enable more

intelligent exploration of web applications’ states. However,

the existing RL-based techniques often incorporate special

features, such as DFA-guided state recovery or contextual

input data generation, making the effectiveness of RL itself

unclear. Moreover, while these techniques mostly employ Q-

learning (QL), a model-free RL method, they were evaluated

with different experimental settings, which could lead to unfair

comparisons. Motivated by the two observations, we propose a

generic QL-based automatic Web GUI testing framework, and

conduct the first systematic evaluation, which considers four

QL specific configurations, on two open-source benchmark

web applications and one industrial portal website. Based on

the experimental results, we discuss several findings regarding

the effectiveness of QL-based automatic GUI testing. We be-

lieve that our findings can provide useful guidance to industrial

practitioners and shed light on future research on leveraging

RL to improve automatic Web GUI testing.

Keywords–Automatic GUI Testing; Web Testing; Reinforce-
ment Learning; Empirical Evaluation

1. INTRODUCTION

Modern web technology provides users convenient and unified

software applications across different platforms (e.g., desktop

and mobile) [1]. Due to the continuous prosperity and wide

usage of web applications in our daily life, the quality assur-

ance for these applications (or websites) becomes essential.

As network-based software products, web applications can be

tested by traditional unit testing for the backend’s business

logic [2] or by user interactions with the frontend [3]. Alter-

natively, since web applications are made on top of the Hyper

Text Transfer Protocol (HTTP), they can also be tested by the

data abstraction (i.e., request and response datagrams) defined

by the HTTP specification. However, these testing methods

couple with the software’s underlining development techniques

or require writing test scripts, thus bringing extra maintenance

efforts to developers.

The aforementioned test methods heavily rely on the knowl-

edge of the website under test (WUT for short) at the

implementation level, such as the source code or the API

specifications. This major requirement limits their usages for

general web testing. Although different websites vary in their

functionalities, their user-end interaction patterns are generally

similar to each other. On a typical website, a user will click a

button for triggering specific functionality, input text contents

in editable areas, control the scroll bar to navigate on the

web page, etc. This high-level abstraction of user interaction

provides opportunities to design and implement generic web

testing tools.

Automatic Web GUI testing explores the WUT without manual

interference during the testing process. Its goal is to achieve

a sufficient coverage criterion on the WUT with the given

time budget. Crawljax [4] is a classic early-stage technique

for automatic Web GUI testing. However, its content crawling

strategy is less intelligent in discovering promising elements

that may trigger new web states. This innate limitation is

recently tackled by the reinforcement learning (RL) based

exploration strategy. For example, Zheng et al. proposed

WebExplor [5], the first automatic Web GUI testing technique

driven by reinforcement learning. Later, Sherin et al. proposed

QExplore [6], which is also driven by RL and is capable of

generating context-sensitive input data for exploring deeper

web pages. Similar to web applications, desktop and mobile

apps can also be explored by RL-based techniques [7], [8].

These existing research works indicate the great potential for

RL-driven GUI testing for software quality assurance.

However, these existing techniques mostly utilize special fea-

tures during the exploration in the WUTs, making the contribu-

tion of the RL algorithm unclear. For the aforementioned two

techniques, WebExplor employs an on-the-fly deterministic

finite automaton (DFA) construction process and utilizes the

DFA for recovering from the failing states. QExplore also

builds a DFA-like graph, but it never uses the graph for

assisting its web exploration procedure. Meanwhile, QExplore

can generate contextual input data for form fields, which

is not implemented by most other techniques. Even without

these special features, the RL itself is rarely evaluated in a

comprehensive manner. Both WebExplor and QExplore adopt

the QL algorithm, a model-free RL approach, for driving

automatic GUI testing, but their algorithmic configurations and

experimental settings are misaligned. Also consider WebEx-

plor and QExplore as examples, the former takes a constant

discount factor γ = 0.95 while the latter will adaptively choose

this parameter during exploration. Actually, for most QL-

based automatic GUI testing techniques, including those for

desktop and mobile applications, their settings can vary in state

abstractions, action representations, reward functions, and so

on (Table I summarizes their differences). Furthermore, these

12

2023 10th International Conference on Dependable Systems and Their Applications (DSA)

2767-6684/23/$31.00 ©2023 IEEE
DOI 10.1109/DSA59317.2023.00013

works evaluate their implemented tools on different WUTs

with different time budgets, making their comparisons unfair.

This paper aims to investigate the real effect of QL-based

automatic Web GUI testing techniques, thus to provide practi-

tioners empirical supports about how RL techniques can help

improve the quality assurance process and maintain depend-

able web systems. To motivate our work, we surveyed recent

research works about RL-based automatic GUI testing and

summarized how they differ in several aspects. Based on the

result of our literature review, we propose a generic automatic

GUI testing framework for web applications, as well as four

configurable components in the framework. We set several

options inspired by related works for each component and

conduct our comprehensive evaluation on three subjects with

217 configurations. After analyzing the experimental results,

we offer practical advice for practitioners and researchers on

using RL-based Web GUI testing tools effectively.

This paper makes the following three contributions:

• We survey nine recent RL-based automatic GUI testing

techniques, and summarize their differences.

• We propose a generic automatic Web GUI testing frame-

work driven by QL, with four configurable components.

• We conduct the first comprehensive experiment to inves-

tigate how QL can improve the performance of automatic

Web GUI testing, and discuss our findings for practitioners

and future researches.

2. BACKGROUND

2.1 Markov Decision Process

The problem of RL is often described as a decision-making

process, in which an intelligent agent takes actions in the

environment for earning reward. It is generally formalized as

a Markov decision process (MDP) [16]. An MDP is defined as

a 5-tuple <S,A,P, r, γ> where S , the state space, is a set of

states representing how agent observes from the environment

at different time moment. At each state, the agent takes an

action from the action space A. This action typically results

in the change of the environment, causing state transition

observed by the agent. This is described by the transition
function P . After state transition, the environment will provide

an immediate reward to the agent based on a reward function
r, and the agent will adapt its strategy in order to guide future

decision-making.

The goal of RL is to find a policy π that guide the agent

to choose a sequence of actions ai ∈ A (i = 0, 1, . . . , T)
that maximizes the return at the specific time t. This return is

denoted Gt and represented as the accumulative reward with

a discount factor γ ∈ [0, 1]:

Gt = rt + γrt+1 + γ2rt+2 + ... =
T∑

k=0

γkrt+k (1)

The action-value function Qπ(s, a) represents the expected

return if the agent follows the policy π and executes action a
at state s. By some simple mathematical derivations [17], the

bellman equation Qπ(s, a) can be obtained, which describes

the relationship between the values of the current state-action

pair and the next state-action pair.

Qπ(s, a) = Eπ [Gt|St = s,At = a]

= r(s, a) + γ
∑

s′∈S
P(s′|s, a)

∑

a′∈A
π(a′|s′)Qπ(s

′, a′) (2)

Qπ(s, a) tells how good can be an action performed in the

certain state, which helps decision-making of the agent. As

a result, an RL problem can be solved by training this Q-

function to approximate the real action-value function implic-

itly defined in the environment.

It is worth mentioning that, the action space can either be state-

independent or state-dependent (denoted as As). For example,

a Block Maze robot in the puzzle only has four directions

to explore in all time, no matter where its position is [18].

As for GUI testing, the action set depends on the number of

interactable elements in the current user interface [5].

2.2 Q-Learning

In most RL problems, the transition function P is stochas-

tic and implicit. This means, the agent cannot obtain any

information about which state will the environment transfer

to before the action is executed. In the web testing scenario,

without accessing the source code, an agent cannot predict the

change of web page before executing GUI actions. Therefore,

the agent can only learn sampled data by interacting with the

environment and observing the state transitions.

Q-learning [19] is a widely-adopted model-free RL approach

in GUI testing [5], [7], [8]. It does not require the state

transition probability distribution in advanced. The core data

structure of Q-learning is called a Q-table. The rows of Q-table

represent all the states in the environment and the columns

represent the actions that can be taken in a given state. In

Q-table, each entry Q(s, a) (i.e., the Q-value) is continuously

updated to approximate the real action-value function. At each

time step t, the agent can choose action at based on the Q-

values of the current state st according to certain policy. After

executing the chosen action, the agent receives reward rt and

reaches to next state st+1. And then it can update Q-value

Q(st, at) using the following formula:

Q(st, at)← Q(st, at)+α[rt+γmax
a′ Q(st+1, a

′)−Q(st, at)] (3)

Apparently, the Q-values can tell how good an action is in

the given state. However, the agent cannot always choose the

action having the greatest Q-value, since doing so may suffer

from a local optimal and lose the change of exploring more

unseen states. Such behavior policy should be avoid, especially

in the early stage of training. A more frequently-used policy

is ε-greedy, which is proposed to balance the exploration

and exploitation in a transition-independent decision-making

scenario [17]. Following this policy, the agent randomly selects

an action from the action set with a probability of ε to explore

more unseen states, and chooses the “best” action with 1−ε
to exploit prior experience:

13

TABLE I
SUMMARY OF EXISTING RL-BASED AUTOMATIC GUI TESTING TECHNIQUES

Tool Year AUT RL Algorithm State Abstraction Action Definition Reward Behavior Policy Hyperparameters

AutoBlackTest [7], [9] 2014 desktop Q-learning elements set
simple operation or

complex operations
GUI change ε-greedy

ε = 0.8
α = 1
γ = 0.9

TSETAR [10], [11] 2016 desktop Q-learning elements set valid operations curiosity maximum
α = 1

γ ∈ {0.2, 0.5, 0.95}
QBE [12] 2018 Android Q-learning exploration extent operation categories

GUI change or

crash detection
ε-greedy

ε = 0.005
γ = 0.9

ClassicQ [13] 2018 Android Q-learning elements set valid operations
GUI change and

curiosity
ε-greedy

self-adaptive ε
α = 1
γ = 0.9

QDorid [14] 2019 Android DQN elements set operation categories GUI change ε-greedy self-adaptive ε
Q-testing [8] 2020 Android Q-learning LSTM embedding valid operations GUI change ε-greedy γ = 0.99

Image-Based [15] 2020 web A3C snapshot pixels of snapshot new state found actor network γ = 0.99

WebExplor [5] 2021 web Q-learning HTML tags valid operations curiosity Gumbel-softmax
α = 1

γ = 0.95

QExplore [6] 2023 web Q-learning elements set valid operations curiosity maximum
α = 1

self-adaptive γ

at =

{
argmax

a′
Q(s, a′) with probability 1−ε,

random action with probability ε.
(4)

In Equation 3, rt + γmaxa′ Q(st+1, a
′) consists of the im-

mediate reward rt and the predicted value maxa′ Q(st+1, a
′).

The latter term is sampled by policy maxQ, which is different

from the behavior policy for choosing action. Such off-policy
algorithm is more convenient as it can reuse previous training

samples and tend to have smaller sample complexity [17]. Due

to this reason, Q-learning is widely used in practice, especially

in the GUI testing scenario.

3. RELATED WORK

In this section, we survey recent research work about auto-

matic GUI testing driven by RL techniques. To better compare

each work, we break down the testing process into several key

components, and discuss how these work implement them in

their approaches. They are summarized in Table I.

3.1 RL Algorithm

The process of automatic GUI testing can be regarded as an

MDP problem. For general GUI testing, the application under

test (AUT) can be regarded as the environment where agents,

i.e., the testing programs, continuously perform actions and

receive feedback and reward scores from the environment.

This problem formulation not only applies for websites [5],

[6], [15] but also for desktop applications [7], [9], [11] and

mobile apps [8], [12]–[14]. This problem can be solved by

different kinds of RL algorithms. However, given the fact

that the testing process is mostly conducted at the GUI front-

end while the source code is not always available, model-

free methods are preferred. This is why QL, as one of

the typical model-free RL methods, is widely adopted by

recent works regarding automatic GUI testing [5]–[9], [11]–

[13]. Besides, some works adopt deep reinforcement learning

methods for their capability of representing complex state and

action spaces. For example, Vuong et al. [14] utilized deep Q-

network (DQN) to approximate the WUT’s behavioral model

thus to guide the agent’s action selection. Eskonen et al. [15]

proposed an image-based approach driven by asynchronous

advantage actor-critic (A3C) RL algorithm, in which multiple

deep neural networks are responsible for valuing states and

detecting available actions.

3.2 State Abstraction

State is a snapshot representation of the environment (i.e.

application under test) observed by the testing agent. Ulti-

mately, a state abstraction should preserve sufficient knowl-

edge about the current environment and discard most irrelevant

information (e.g., changes of advertisements). However, due to

the dynamic nature of GUI applications, state abstraction can

easily result in state space explosion thus limit an RL agent’s

performance [20]. To address this issue, AutoBlackTest [9]

represents the state using simplified visible elements in the

current GUI, such as the number of items in a listbox or

the length of strings in a textarea, while the detail contents

are ignored. Similarly, TESTAR [10] collects values of all

stable properties of the widgets in the current screen for state

abstraction. Vuong et al. continuously proposed ClassicQ [13]

and QDorid [14] to interact with the Android app and generate

test cases based on an on-the-fly generated model. They define

a state by the activity name (the GUI class of Android apps)

and the set of GUI events available on the corresponding

screen. QBE [12] divides states into five categories based

on the number of enabled actions in the current GUI, which

makes the trained model universal for different Android apps.

Q-Testing [8] novelly utilizes a neural network to measure the

similarity between two states for determining whether they

are in the same scenario, thus merging similar states. For

web applications, the HTML code can precisely represent web

states as it encodes structural characteristics (the DOM tree)

of the web pages. For this reason, WebExplor [5] analyzes

the page’s front-end HTML code, converts it to a sequence

of tags and calculates the similarity between two sequences

14

Algorithm 1: Q-learning based automatic web testing

Input: Entry web page p, hyperparameters α, γ, ε, τ ,

fail state f , Q-table Q = [q(f, af)]

1 s := getStateAbstraction(p)
2 A := detectAction(p)
3 Initialize q(s, a) for all a ∈ A and add them into Q
4 repeat
5 a := chooseAction(s,Q, ε, τ)
6 failed , p′ := executeAction(a, p)
7 if failed then
8 s′ := f
9 else

10 s′ := getStateAbstraction(p′)
11 if s′ is new state then
12 A′ := detectAction(p′)
13 Initialize q(s′, a′) for all a′ ∈ A′ and add them

into Q

14 r := getReward(s, a, s′)
15 q(s, a)← q(s, a) + α[r + γ max

a′∈As′
q(s′, a′)− q(s, a)]

16 if s′ = f or no state transition for a while then
17 p← reset()
18 s← getStateAbstraction(p)
19 else
20 p← p′

21 s← s′

22 until time budget exhausts

to identify unique states. QExplore [6] represents state as the

collection of attribute values of the interactive DOM elements

in the web application.

3.3 Action Definition

Most of the aforementioned works directly define interactable

GUI elements together with GUI events as the concept of

action in MDP [5], [6], [8], [10], [11], [13]. Unlike them,

AutoBlackTest [9] defines two types of action: simple action

and complex action. The former refers to atomic GUI actions

executed on a single widget, such as button click or text input;

while the latter represents a workflow of simple actions, such

as form fields filling and submitting. QBE [12] and QDorid

[14] both adopt a categorized representation of actions. The

former defines system events and GUI events and divides

them into several subcategories, such as click, swipe, or menu;

the latter classifies actionable components on the screen into

four groups, like input or navigation, and sends UI events

according to their belonging groups. Eskonen et al. propose

an image-based approach [15], which uses GUI snapshot as

input. Their work defines actions as the pixels in the snapshot

while actions will be chosen based on the aggregation of per-

pixel probabilities.

3.4 Reward

In order to help the testing agent effectively exploring the

GUI application, testers need to design reasonable reward

function that tells how “good” is an action on the given

state. A part of techniques leverage on the extent of GUI

change (i.e. proportion of new widgets to all of the widgets)

to estimate the quality of an applied action [7]–[9], [12]–

[14]. Besides GUI change, some techniques set the inverse

number of times that an action has been executed as reward to

encourage exploration. Their intuition is that rarely executed

actions have more potential to trigger unvisited states, thus

inspire the agent’s curiosity [5], [6], [10], [11], [13]. In order

to define platform-specific testing objective, QBE [12] also

introduces a new reward function for Android crash detection

in its testing framework. Additionally, these basic rewards

can be combined for multiple testing objectives. For example,

ClassicQ [13] sums up a GUI change term and an execution

frequency term (i.e., curiosity) as its receiving reward values.

3.5 Behavior Policy and Hyperparameters

Considering how to balance the choices of exploring new

states and exploiting past experience, majority of the QL-based

methods employ ε-greedy strategy to select action based on

Q-values in current state. The parameter ε can either be a fixed

value or be dynamically changed during testing. ClassicQ and

QDorid start with ε = 1 to maximize exploration and then

gradually decrease it until a final minimum value of 0.5 to

follow the experience. WebExplor measures the weights of

valid actions in relevant state using Gumbel-Softmax method

[21], and converts the weight value to probability to increase

the randomness of action selection. As shown in the updating

formula of Q-values at Equation 3, there are two more hy-

perparameters: discount factor γ and learning rate α. In most

works, both of them are fixed but different numerical values,

as shown in Table I. On the contrary, QExplore calculates γ
based on the available actions in DOM states. Specifically, it

utilizes an exponentially decreasing discount, such that state

with fewer actions will receive greater γ, thus encourages the

agent favors future reward rather than immediate reward at

the state. Unlike traditional RL problems in which agents are

trained in offline mode, most RL-based automatic GUI testing

techniques make the training and running intertwined. This

requires the agent can learn from the environment as soon as

possible, leading to a preference of greater learning rate α.

4. Q-LEARNING BASED TESTING FRAMEWORK

4.1 Overview

As previously discussed, RL-based methods widely applied to

drive automatic GUI testing, especially for web applications.

However, these RL-based methods mostly add special modules

such as restart strategy or input generation algorithms to

achieve better functionality exploration capability. On the con-

trast, the RL framework itself is rarely experimented in isola-

tion, despite the fact that it has many configurable components

and most work adopt different algorithmic configurations.

Taking the most popular RL algorithm, QL, as an example,

15

the QL-based automatic GUI testing (QL-testing for short)

methods vary in terms of state abstraction, action definition,

reward function, hyperparameters, and behavior policy, as

shown in Table I. However, the real effects of these variants

are rarely evaluated and discussed.

Based on existing work, we summarize a generic workflow

of QL-testing, as shown in Algorithm 1. It accepts multiple

inputs and will repeat web GUI exploration in a given time

budget. The algorithm only illustrates the general workflow of

GUI exploration. Though it is flexible to add arbitrary testing

objectives into the workflow, for example, recording coverage

[22], or detecting presentation failures [23].

To start GUI exploration, an entry web page p, typically the

index URL of the WUT, should be passed into the workflow. It

also requires four hyperparameters for configuring algorithmic

preference of QL, which will be introduced in §4.5. To deal

with failed interactions (e.g., 404 status code, web crashing,

or entering out-of-domain pages), a fail state f is introduced

for error recovery routine. Accordingly, we set af as the sole

action in f , i.e., Af = {af }. Since valid action is generally not

available when the testing procedure fails, we implement af
as a restart operation. In GUI testing, interactable elements are

often distinct among different GUI pages. In other words, the

available actions are state-dependent in our context. Therefore,

we construct the Q-table as a key-value mapping, where key

is a pair of state and action (s, a), and value is the Q-value

representing the expected return of applying action a in state

s. For fail state, the Q-value q(f, af) is set to a large negative

constant so that the QL-agent will avoid choose actions that

are tend to fail once the fail state is encountered.

QL-agent first abstracts the entry page into state s (Line 1)

and detects a set of valid actions A for s (Line 2). As it is

the first state during exploration, the agent needs to initialize

Q-values for all actions in this state in the Q-table (Line 3).

After initialization, the agent repeats the following exploring

procedure until the time budget exhausts. Given the current

state s and the Q-table Q, the agent will choose an action

a from all available actions As stored in the Q-table, and

the action will be chosen according to the behavior policy

defined by the Q-table and hyperparameters ε or τ (Line

5). Then, it executes action a in the current web page p
(Line 6), which is accomplished by sending corresponding

GUI events to the web browser. The action execution can

result in changes in the environment, typically the transition

of web pages. Occasionally, some failures may occur and the

agent should handle such fail state for continuing exploration.

The function getStateAbstraction returns a flag failed
indicating whether action a was successfully applied, and the

resulting web page p′. If the execution is failed, we set the

next state s′ as the fail state f (Line 8); otherwise, the agent

will observe s′ by abstracting the new web page p′ (Line 10).

If the state s′ is an unseen state, we should detect all available

actions in it and initialize their Q-values (Lines 11-13).

The algorithm then calculates a numeric reward for guiding

agent’s exploration. This reward is based on the state s, the

applied action a and the resulting state s′ (Line 14). With

this reward, the agent will update the corresponding Q-value

q(s, a) according to Equation 3 (Line 15).

To continue exploration, the agent should determine whether

the previous action results in a fail state, or the exploration

procedure traps in a same state, i.e., no state transition, for

a while (Line 16). In such case, we will reset web browser

and re-compute state abstraction, while the Q-table itself will

remain for preserving knowledge about the WUT to the agent

(Line 17-18). The reset function can be implemented by

restarting from the entry page, the least-visited page, etc. No

matter which cases, their entries are already presented in the

Q-table, so the initialization process will not be executed at

this step. If no failures were detected, the next web page p′

and its state s′ will be continuously explored in the following

iteration (Line 20-21).

In this testing framework, the method of state abstrac-

tion getStateAbstraction, the behavior policy of choosing

next action chooseAction, the formula of reward function

getReward and the four hyperparameters are configurable (we

underscore them in the algorithm for highlighting). We will

introduce the details in the later subsections.

4.2 State Abstraction

In web testing, the environment can not be directly perceived

by the agent due to its highly complex and dynamic content

space. Instead, it requires a state abstraction module which

converts a web page in WUT into a simplified representation

that RL agent can memorize and make decisions. When de-

signing such a state abstraction method, one needs to take two

aspects into consideration. On the one hand, an abstract rep-

resentation should contain sufficient information of a certain

web page such that the agent can divide different web states in

a reasonable way. On the other hand, the granularity of state

abstraction can also affect the effectiveness of web testing.

For a coarse abstraction method (e.g., URL-based abstraction),

two loosely-related web pages may be categorized as the

same state, which can result in missing critical interactions

or misjudging that whether a state is visited before during the

exploration process. On the contrast, a fine-grained abstraction

method may preserve too much insignificant information about

the web page, such that the number of states to maintain will

increase dramatically, causing state explosion problem [24].

We implemented two methods for state abstraction in our

framework, adopted by previous works about QL-testing [5],

[6]. The next two subsections will introduce them in detail.

4.2.1 Tag Sequence of HTML

The first method is to extract tag sequence from HTML

document as a simplified representation. Each web page is

associated with an HTML document, where the visible ele-

ments to users are those tags enclosed by the <body> and

</body> tags. This abstraction method does not care about

detailed differences between two web pages, such as figures

or texts, but simply preserve the tag hierarchy that define the

web page structure. For instance, the abstract representation

of following HTML document,

16

<!DOCTYPE HTML>
<html>

<head><title >Title </title ></head>
<body>

<div style="font -size :16px">
<p>Paragraph </p>

</div>
button1
button2

</body>
</html>

can be reduced to its serialized tag sequence:

<div><p></p></div><a><a>

The state abstraction method can determine whether two web

states are the same by simply comparing their tag sequences.

4.2.2 Set of Elements

Another method is to represent a state by the set of unique

interactable elements detected on the GUI. Such kind of

“Elements Set” abstraction can also be employed in testing

Android apps [14]. In this method, a web state is represented

as: s = {e1, e2, ..., en}, where ei are all interactable elements

detected from state s’s GUI. In a web page, GUI elements,

especially interactable elements (i.e. buttons, input areas),

often reflect functionalities on the given state. From the QL

algorithm’s perspective, as Q-table should maintain state-

action pairs, this kind of abstraction can guarantee that each

action in the state is always valid.

Usually, an element in an HTML document can be uniquely

identified with XPath locator [25], so an element can be stored

as its XPath string at implementation level. As such, the

abstract representation of the example above will be a set of

two XPaths of the two <a> elements.

4.3 Reward Function

Reward is a numerical value that tells the agent how “good”

or “bad” an action is in a given state. A good reward function

helps calculate immediate reward after a web action is applied

to achieve more effective web testing. In this subsection, we

will discuss two existing reward functions and their variants.

4.3.1 State Change

From viewpoint of GUI testing, a state changes more mean

to meet more new functionalities of WUT, thus should be

more preferable to the agent. Such kind of reward prefers

actions that can lead to significant change between the current

state and the next state. Therefore, we can compare two

consecutive states to calculate the extent of change as reward

[7]. Obviously, for different state abstraction methods, the

definitions of state changes are also different.

When states are abstracted as sequences of tags, Gestalt

pattern matching [26], a string-matching algorithm, is used to

calculate their similarity sim(s, s′). In web testing, the action

that leads to more perceivable changes is preferable. Thus we

use 1 − sim(s, s′) as a reward to encourage agent to choose

actions triggering much-dissimilar states.

If states are abstracted as their element sets, considering new

actions came out in the next state, more new actions mean

the previous state changes much more. Therefore, the reward

function in this case is given by the formula [13]:

r =
|s′\s|
|s′| (5)

4.3.2 Curiosity

The notion of curiosity has been proposed to address the
problem of coarse reward in RL, which encourages the agent
to explore diverse states [27]. From perspective of action,
exercising diverse action is more likely to visit varying states,
so we can guide the agent to select the action with lower
executing frequency [10]. At the implementation level, the
agent will maintain a table to record the number of times
each action has been executed, denoted by N(a), and use its
reciprocal value as a reward:

r =
1

N(a)
(6)

4.3.3 Hybrid

In addition to single aspect, ClassicQ has its reward taking
both state change and curiosity into consideration [13]. Merely
using state change will be facing a dilemma of jumping back
and forth between two greatly vary states, while applying
curiosity may waste time on uninterested actions. Therefore,
they can be combined to overcome their own limitations. A
simple combination is to take their summation:

r =
|s′\s|
|s′| +

1

N(a)
(7)

Furthermore, we can define other variants base on these simple
reward functions. For example, Equation 8 shows a piecewise
form of reward function. According to the definition, if the
agent discovers a new state, which is not visited before during
web testing, we can give it a large reward value. Otherwise,
we simply use the curiosity reward function for encouraging
fewer executed actions.

r =

{
rnew state s′ is a new state,

1
N(a)

otherwise. (8)

4.4 Behavior Policy

Behavior policy concerns how to choose an action in a given

state. It often faces a problem of balancing “exploiting” past

experience or “exploring” unvisited states. The former means

agent will choose action under the guidance of Q-table, while

the latter means it randomly chooses from valid actions in the

current state. As Q-values can tell an agent which actions to

be preferable, totally rely on such guidance can result in sub-

optimal behaviors and fail to accumulate maximal reward [17].

Therefore, exploration becomes essential. While exploitation

directly utilizes information from Q-table, exploration is usu-

ally realized by introducing some degree of randomness to

extend the agent’s search space.

Our testing framework implements two types of behavior poli-

cies adopted by previous works. Both of them take advantages

of Q-table and randomness to balance the choices between

exploitation and exploration, as illustrated below.

4.4.1 ε-greedy

An effective and popular behavior policy in RL, especially

for QL, is ε-greedy, where ε is the probability of randomly

choosing actions, as shown in Equation 4. Also note that the

extreme values of ε enable some special behaviors to the agent.

17

For example, if ε = 1, the agent behaves similarly to a random

agent (or a Monkey tester [28]). If ε = 0, the agent will always

choose the action with highest Q-value, which can lead to

falling into a local optimum.

4.4.2 Softmax

One major limitation of ε-greedy is that, when it takes explo-
ration decision, it chooses equally among available actions.
This means the probability of choosing the worst action is the
same as choosing the next-to-best action. On the other hand, it
will also exploit the same action if its Q-value dominates the
other alternatives. A solution to these problems is to assign
weighted probabilities to each actions, with respect to their
Q-values in the given state. This strategy takes the place of
both uniform sampling and greedy choice, which implicitly
addresses the exploration-exploitation dilemma. Usually, their
weights are calculated by the following Softmax function [17]:

p(s, a) =
eQ(s,a)/τ∑
a′ eQ(s,a′)/τ (9)

It presents how to calculate the probability of an action a in

the state s, where τ is a positive value named temperature.

With lower temperature, the difference in selection probabili-

ties for actions having different Q-values will be greater. In the

extreme situation as τ → 0, Softmax action selection becomes

the same as greedy strategy. On the other hand, with higher

temperature, the selection probabilities for actions with differ-

ent Q-values will be more similar. As τ → ∞, the selection

probabilities for all actions will be nearly equal, resulting in

a strategy that closely resembles random exploration.

4.5 Hyperparameters

Besides ε and τ employed in behavior policies, there are two

more adjustable hyperparameters, α and γ, in QL.

The learning rate α controls how fast the agent modifies its

estimates [29]. The Q-values in Q-table represent expected

returns performing corresponding actions in a given state.

Hence they can guide agent to make decisions, and they are

updated based on the environment’s feedback once an action

is performed. After action execution, the agent receives an

immediate reward from the environment, and calculates an

expected returns for updating Q-value following Equation 3.

The extent of update can be controlled by α. When α = 0,

the Q-value never changes, which means the agent can not

learn any knowledge from experience. In web testing, since

the training and testing phases are intertwined, most works

tend to set α close or even equal to 1, as shown in Table I.

Our framework leaves learning rate configurable and testers

can control the agent’s behavior by turning its value.

When calculating an expected return, the maximum Q-value of

next state is multiplied by a discount factor γ ranging in [0, 1]
(Equation 3). The discount factor determines the importance

of future rewards. When it is close to 0, the agent prefers

immediate rewards than future rewards, and vice versa. By

adjusting this hyperparameter, we can influence the behavior

of the QL-agent, and control how much the agent values

future rewards over immediate rewards. It is worth noting

that, QExplore [6] adopts a self-adaptive gamma based on

the numbers of actions in a state.

5. EXPERIMENTAL SETUP

5.1 Implementation

To support industrial testing requirements, we design a set of

composable APIs such that human testers can specify algorith-

mic configuration in a low-code fashion. We implement our

testing framework on top of Selenium-Java [30] in roughly

17.5k lines of Java code. Currently, our framework supports

multiple UI event types [31], such as click or text input on

supported DOM elements. The framework will run the main

testing loop in a pre-defined time duration, except two cases:

the agent enters an out-of-domain URL, or no actions can

be found on the current page. In either cases, the agent will

generate a fail case (i.e., line 16 in Algorithm 1) and reset the

test process. The agent will also be restarted if it traps in the

same state for 50 iterations.

We run all the experiments in multiple identical desktop

computers, each of them equips a Core i7-8700 processor and

32GB RAM. All the devices are connected to the same net-

work switch for the sake of a consisting network environment.

5.2 Research Questions

To motivate our research and boost the experiments, we

proposed the following research questions:

• RQ1 (Performance of Q-Learning): How is the perfor-

mance of QL-testing, compared to a random baseline?

• RQ2 (Sensitivity of Settings): How do different experiment

settings affect the performance of QL-testing?

• RQ3 (Subjects Deviation): How does QL-testing perform

on different subject websites?

• RQ4 (Testing Time): How is the QL-testing agent’s per-

formance over time?

5.3 Subject Websites

We conduct a comprehensive evaluation of QL-testing using

three subjects: Splittypie [32], PetClinic [33], and a large com-

mercial portal website. Splittypie and PetClinic are popular

open-source web applications used to evaluate testing tools [5],

[34]. The portal website is chosen as a complex environment

that is representative of many real-world business websites.

5.4 Evaluation Metrics

To evaluate the effectiveness of the QL-agent with different

configurations, we utilized three metrics:

• For the two open-source websites, we use Istanbul to

instrument the backend of the websites and retrieve the

coverage information during the testing process

• For each subject, we record the number of interacted and

detected elements during testing process. Since obtaining

a full set of elements of each website is not feasible,

we unify detected elements across all testing processes as

the denominator for element coverage rate, divided by the

number of interacted elements for each test process.

• As the primary goal of web testing is to identify and report

errors, we counted the number of unique errors from the

console logs in each test process.

18

�������

�	
�����������

������ ��

����� ����

����� ��

���������������
�	�	
�����

�������	�

������

�����������������
�����
��
�
��������

�
	����
�
�
	�

�
�����
������ ���	�

���������������
�
�������	
��

������	����	����

� ����

����

��

���	���

�	�
�� �� �� �!����"�����

Figure 1. Overview of our experimental configurations

�

�����
���������	

� �

������
��
���	

� �

������	��
�	����

� ��

���������������

�������	�
���

�������

�����������
��

���������
����

�	��������

������

���������

�����

� 	
 ����� ����

�
 ����� ���� ����

�
�
 ���

���� ����

�
 ���

�� ���

� �����������	
��

� ��

Figure 2. The 217 configurations of components’ instances

5.5 Configurations

Figure 1 shows our framework with four components and

Figure 2 shows the 216 configurations in our experiment, plus

an additional random baseline method.

To compare the effect of different state abstraction methods,

we set two options: one is tag sequence extracted from HTML

document [5], another is set of unique interactable elements

detected at a given DOM tree [6]. We call them Tag Sequence

of HTML (TS) and Set of Element (SE).

Two earlier works adopted GUI change scope [7] and ac-

tion execution times [10] to construct the immediate reward.

The former prefers the actions that bring significant change

between consecutive states. The idea of the later is based

on notion of curiosity, which is also employed by followup

tools [5], [6], [11]. Additionally, ClassicQ [13] takes both

aspects into consideration. Therefore, we set three reward

functions, namely State Change (SC, Equation 5), Curiosity

(CR, Equation 6) and Hybrid equation (HB, Equation 7).

Considering how to leverage Q-values, most related works

[8], [9], [12]–[14] leverage ε-greedy as their behavior policy,

which balances exploration and exploitation by adjusting value

of ε. For example, AutoBlcakTest [9] sets ε = 0.8. Unlike

other tools, TSETAR [11] and QExplore [6] directly select

the action with the maximum Q-value, which is equivalent to

setting ε = 0. We also include an option ε = 0.5, such that

exploration and exploitation strategy can be taken with equal

probability. This results in three ε-greedy behavior policies,

corresponding to ε values of 0 (G0), 0.5 (G5), and 0.8 (G8).

Besides, we also use traditional Softmax function to further

study the effect of temperature τ . Similar to WebExplor [5], an

optional value is τ = 1. As we set 10 as the initial Q-value, we

also allow τ = 10. The third option of τ is 5 as a compromise

value between 1 and 10. This leads to three Softmax-based

behavior policies, which correspond to temperature 1 (S1), 5

(S5), and 10 (S10).

Most works [5], [6], [9], [11], [13] let learning rate α = 1
so that QL-agent can learn from environment more quickly.

In curious about what will happen if α is smaller, we set two

options for α: 0.1 (lr0) and 1.0 (lr1). Similarly, based on the

options adopted by previous works [9], [11]–[13], we set three

values of discount factor γ: 0.1 (df1), 0.5 (df5), 0.9 (df9).

Meanwhile, we set a random baseline, in which the agent

randomly chooses actions on the current web page.

6. RESULTS AND DISCUSSION

Each of the 216 configurations were tested on the three subject

websites, and each testing process is repeated three times to

ensure the results’ robustness, which leads to 1,944 data points.

For the random baseline, we conducted ten independent test

runs on each website, resulting in 30 data points. The duration

for each test run was set to 30 minutes. Additionally, for the

portal website, due to its complex page structure and contents,

we selected two configurations and extended the time budget

to 10 hours. Meanwhile, we also ran the random baseline for

10 hours, resulting in three sets of 10-hour data. In total, our

experiments required (216×3+10)×3×0.5+3×10 = 1, 017
hours of workload. In all the test runs, experiment data was

recorded at a regular interval of 30 seconds. Upon analyzing

the results, we bold our findings that aim to provide actionable

advice to developers.

6.1 RQ1: Performance of Q-Learning

We draw the distributions of element coverage in our experi-

ments, as shown in Figure 3. For example, the box plot for TS
in Figure 3(a) illustrates the distribution of element coverage

rate for all the 108 configurations (324 data points) used to

test Splittypie with Tag Sequence of HTML state abstraction.

Likewise, the box plot for random in Figure 3(a) is that for

ten tests with random baseline on Splittypie.

Figure 3 indicates that the performance of the QL-testing
has a higher upper limit but a wider variance than
the random baseline. While QL consistently outperforms

the random baseline on Splittypie, this observation does not

necessarily hold on PetClinic and portal website. However, the

best performance of QL-agent on the latter two websites is

much better than random baseline. For example, on PetClinic,

QL-based method can achieve a maximal element coverage

of 75.14% with configuration (SE, SC, G0, lr1, df9), while

random selection can only obtain a mean element coverage

of 35.12% within a narrow range. Our results suggest that

19

(a) Splittypie

(b) PetClinic

(c) portal website

Figure 3. Distributions of element coverage for each component.
On Splittypie, the maximal element coverage is 59.62% with con-
figuration (TS, CR, G0, lr0, df9) and maximal coverage by random
is 7.45%. On PetClinic, the maximal element coverage is 75.14%
with configuration (SE, SC, G0, lr1, df9) and maximal coverage by
random is 39.88%. On portal website, the maximal element coverage
is 20.45% with configuration (SE, SC, G0, lr0, df1) and maximal
coverage by random is 6.91%.

the effectiveness of QL-based testing is contingent on the

employed configuration and how well it fits the specific WUT.

We also observe similar results on the other metric.

Answer 1: QL-testing performance fluctuates greatly across

different configurations, but can be significantly improved

over a random baseline with proper configurations.

6.2 RQ2: Sensitivity of Settings

For pairwise options of the same component, we determined

which one yields better performance, by comparing the distri-

butions of their testing metrics (e.g., element coverage shown

in Figure 3). To this end, we conducted a set of one-sided

Mann-Whitney U-test [35]. Specifically, if p-value < 0.05, we

reject the null hypothesis and consider one distribution to be

stochastically greater than another. Table II presents the results

of the statistical tests, the highlighted options indicate them

significantly outperform the others in pairwise comparison. For

example, TS can achieve better branch coverage than SE state

abstraction on Splittypie, and so on.

Table II reveals that all subjects highlighted options in the

state abstraction component for all metrics, indicating that

it has a great impact on the performance of QL-testing.

Specifically, TS is superior than SE for all the three metrics

TABLE II
RESULTS OF ONE-SIDED MANN-WHITNEY U-TEST

Branch Coverage Element Coverage Reported Errors

Splittypie PetClinic Splittypie PetClinic portal Splittypie PetClinic portal

TS SE TS SE TS SE TS SE TS SE TS SE TS SE TS SE

SC CR SC CR SC CR SC CR SC CR SC CR SC CR SC CR

SC HB SC HB SC HB SC HB SC HB SC HB SC HB SC HB

CR HB CR HB CR HB CR HB CR HB CR HB CR HB CR HB

G0 G5 G0 G5 G0 G5 G0 G5 G0 G5 G0 G5 G0 G5 G0 G5

G0 G8 G0 G8 G0 G8 G0 G8 G0 G8 G0 G8 G0 G8 G0 G8

G0 S1 G0 S1 G0 S1 G0 S1 G0 S1 G0 S1 G0 S1 G0 S1

G0 S5 G0 S5 G0 S5 G0 S5 G0 S5 G0 S5 G0 S5 G0 S5

G0 S10 G0 S10 G0 S10 G0 S10 G0 S10 G0 S10 G0 S10 G0 S10

G5 G8 G5 G8 G5 G8 G5 G8 G5 G8 G5 G8 G5 G8 G5 G8

G5 S1 G5 S1 G5 S1 G5 S1 G5 S1 G5 S1 G5 S1 G5 S1

G5 S5 G5 S5 G5 S5 G5 S5 G5 S5 G5 S5 G5 S5 G5 S5

G5 S10 G5 S10 G5 S10 G5 S10 G5 S10 G5 S10 G5 S10 G5 S10

G8 S1 G8 S1 G8 S1 G8 S1 G8 S1 G8 S1 G8 S1 G8 S1

G8 S5 G8 S5 G8 S5 G8 S5 G8 S5 G8 S5 G8 S5 G8 S5

G8 S10 G8 S10 G8 S10 G8 S10 G8 S10 G8 S10 G8 S10 G8 S10

S1 S5 S1 S5 S1 S5 S1 S5 S1 S5 S1 S5 S1 S5 S1 S5

S1 S10 S1 S10 S1 S10 S1 S10 S1 S10 S1 S10 S1 S10 S1 S10

S5 S10 S5 S10 S5 S10 S5 S10 S5 S10 S5 S10 S5 S10 S5 S10

lr0 lr1 lr0 lr1 lr0 lr1 lr0 lr1 lr0 lr1 lr0 lr1 lr0 lr1 lr0 lr1

df1 df5 df1 df5 df1 df5 df1 df5 df1 df5 df1 df5 df1 df5 df1 df5

df1 df9 df1 df9 df1 df9 df1 df9 df1 df9 df1 df9 df1 df9 df1 df9

df5 df9 df5 df9 df5 df9 df5 df9 df5 df9 df5 df9 df5 df9 df5 df9

on Splittypie, while the latter performs better on the other two

WUTs. The reward function plays a significant role in QL-

testing performance on Splittypie and portal website, where

CR outperforms the other reward functions. Meanwhile,

the behavior policy affects QL-testing on Splittypie and
PetClinic more, with lower randomness (either lower ε or
τ) parameters leading positive impact.
Additionally, a learning rate 0.1 can be more effective than

that of 1.0. Having lower discount factor also tend to achieve

better performance metrics than higher ones.

Answer 2: State abstraction has the greatest impact on QL-

testing performance, followed by behavior policy and re-

ward functions. Priority should be given to state abstraction

when designing QL-based Web GUI testing techniques.

6.3 RQ3: Subjects Deviation

In RQ2, we have observed that the performance of the same

settings of QL-testing on different WUTs varied. To answer

RQ3, we further analyze the relationship between configura-

tion combinations and website characteristics. Specifically, for

a performance metric of a website, we extract configurations

that rank in the top 5% and bottom 5%, determine the

proportion of each option, and present the element coverage

results in Table III. For example, among the configurations

corresponding to the top 5% element coverage, 48% used CR

as reward function, while 27% used SC and 24% used HB.

As shown in row State Abstraction of Table III, TS state

abstraction performs well on Splittypie while is disastrous for

PetClinic and portal websites, which leads us to conduct a

deeper analysis how the mode of state abstraction impact on

QL-testing. By scrutinizing the process of the QL agent with

TS testing on PetClinic, we observe a phenomenon whereby

the TS remains unchanged when triggering the pop-up menu.

As a result, the QL agent misses new interactive elements

that are crucial to exploration and fails to expand the Q-table.

20

TABLE III
DISTRIBUTIONS OF OPTIONS IN TOP 5% OR BOTTOM 5%

Component Option

Branch Coverage Element Coverage Reported Errors

Top 5% Bottom 5% Top 5% Bottom 5% Top 5% Bottom 5%

Splittypie PetClinic Splittypie PetClinic Splittypie PetClinic portal Splittypie PetClinic portal Splittypie PetClinic portal Splittypie PetClinic portal

State Abstraction
TS 86% 0% 0% 100% 94% 0% 3% 11% 100% 100% 15% 0% 0% 26% 99% 100%

SE 14% 100% 100% 0% 6% 100% 97% 89% 0% 0% 85% 100% 100% 74% 1% 0%

Reward Function

SC 26% 34% 41% 47% 27% 44% 41% 38% 41% 45% 18% 40% 47% 47% 48% 55%

CR 43% 41% 9% 28% 48% 31% 31% 9% 26% 0% 70% 38% 25% 3% 28% 0%

HB 31% 25% 50% 25% 24% 25% 28% 53% 32% 55% 12% 23% 28% 49% 25% 45%

Behavior Policy

G0 37% 66% 15% 41% 33% 75% 9% 26% 35% 9% 15% 38% 16% 16% 41% 21%

G5 3% 6% 26% 6% 15% 3% 13% 30% 3% 6% 12% 19% 19% 25% 7% 14%

G8 6% 0% 27% 0% 6% 0% 16% 30% 3% 15% 21% 4% 22% 29% 1% 16%

S1 20% 19% 12% 16% 27% 22% 13% 0% 12% 27% 21% 27% 16% 10% 22% 12%

S5 26% 9% 6% 13% 15% 0% 19% 6% 24% 15% 18% 8% 16% 3% 13% 14%

S10 9% 0% 14% 25% 3% 0% 31% 9% 24% 27% 12% 4% 13% 16% 16% 24%

Learning Rate
lr0 74% 16% 40% 47% 70% 22% 56% 38% 53% 61% 52% 23% 41% 30% 45% 48%

lr1 26% 84% 60% 53% 30% 78% 44% 62% 47% 39% 48% 77% 59% 70% 55% 52%

Discount Factor

df1 29% 22% 29% 16% 36% 28% 25% 19% 21% 33% 30% 19% 19% 21% 29% 36%

df5 43% 44% 27% 41% 36% 50% 34% 28% 32% 42% 39% 44% 25% 32% 28% 33%

df9 29% 34% 44% 44% 27% 22% 41% 53% 47% 24% 30% 38% 56% 47% 43% 31%

Different from PetClinic, TS is less effective on the portal

website on account of the length of tag sequence, which is

too large to store and makes a great influence on computing

the change rate between two states. As a result, the immediate

reward calculation is inefficient when using the SC or HB

reward function, which is related to the mode of state abstrac-

tion. In conclusion, improper state abstraction limits the
effectiveness of the QL agent with an incomplete Q-table
and also reduces efficiency by consuming considerable
computing and storage resources.

Regarding the behavior policy, it presents a trend that in-
creased exploitation can lead to excellent performance on
two small-scale open-source websites. Synthesize all metrics,

the top two behavior policies are G0 and S1 on Splittypie

and PetClinic, which turns out that lower randomness (either

lower ε or τ) helps QL-agent explore WUTs in a guided

manner. We select test processes with great performance on

each subject and check the clicks of actions in Q-table. On

Splittypie and PetClinic, more than 95% and 89% of actions

in the Q-table have been executed, with over 50% and 47%

executed two or more times. In contrast, the click rate on the

portal is only 10%, with only 0.5% of actions clicked two

or more times. The experimental results confirm that on the

two small-scale websites, Q-table is able to gather information

and guide the agent effectively, suggesting that behavior policy

can be inclined to follow the Q-table’s guidance. However, for

the large-scale websites, Q-table has not acquired sufficient

knowledge, indicating that increased randomness is more

conducive to exploration.

Additionally, combining with certain reward functions, the
behavior policy G0 carries a potential risk of unwanted
behaviors. During the testing process, it was observed that an

agent configured with a combination of G0 and HB(or SC)

became stuck in a loop of navigation between two webpages.

On the one hand, HB and SC place high value on state

changes, resulting in a high reward for actions that navigate

between two distinct webpages. On the other hand, the QL-

agent with G0 only selects the action with the highest Q-value,

which further increases the reward accumulation.

(a) Splittypie

(b) PetClinic

(c) portal website

Figure 4. Element coverage of QL-testing and random baseline over time

Answer 3: There is no one-size-fits-all option for effective

QL-testing on all websites. Therefore, configurations that

fit the features of the WUT deserve to be carefully chosen

in practice.

6.4 RQ4: Testing Time

Figure 4 shows the growing curves of element coverage

achieved by different testing agents. For example, Figure

4(a) displays the change of element coverage on Splittypie.

Here we select two QL configurations that exhibit outstanding

performance (QL-good), two that show poor performance

(QL-bad) and two different results run by the random baseline.

For two open-source websites, the exploration reaches

21

Figure 5. Element coverage on portal website in 10 hours

saturation within 30 minutes, as indicates by the plateauing

of the curves. Compared to the QL-bad and random baseline,

the coverage rate of QL-goods increase more rapidly and

reach a higher value eventually. However, unlike the previous

works [5], [6], all QL-testing agents present inefficiency in

further exploring the WUTs. This finding suggests that the
exploration capability of QL-testing is still limited, and

auxiliary modules (e.g., DFA in WebExplor, or contextual

input generation in QExplore) are necessary to further improve

the effectiveness.

For the portal website, the element coverage continues to

increase within 30 minutes, indicating that it has not yet

reached saturation. To further test it, we used the two QL

configurations that perform well and run them in a time budget

of 10 hours. We also run the random for the same duration.

The resulting element coverage curve is shown in Figure 5.

Even with a longer time budget, the element coverage of QL-

testing agent is still increasing. It indicates that extending

the testing time can indeed improve the testing sufficiency

on large-scale websites. However, it also shows the limitation

of such single-threaded testing agents, no matter what their

underlining driven algorithms are.

Answer 4: QL-testing can quickly reach saturation when

exploring small-sized WUTs. Adding time budget can in-

deed improve test adequacy on large websites.

7. THREATS TO VALIDITY

There are three potential threats to the validity of our study.

Firstly, although we attempt to ensure consistent network

conditions during web testing, network issues and the inherent

randomness of Q-learning may still have influenced the results.

While we conduct three repeated experiments to reduce un-

certainties, we cannot totally eliminate them.

Secondly, there is a time lag between the moment of state

abstraction and that of action selection during testing. It may

lead to the selected actions being unavailable due to incom-

plete web rendering. Although we attempted to detect whether

the web page is fully loaded and avoid interactions during

dynamic DOM changes, these tasks are very challenging.

These limitations may affect the validity of our results.

Additionally, we only used three WUTs. Even though the

two open-source websites have being widely used in related

research works, and the portal website is representative as

a complex real-world web application. However, it may still

limit the generalizability of our findings.

8. CONCLUSION AND FUTURE WORK

In this paper, we surveyed nine recent RL-based automatic

GUI testing techniques and systematically evaluated QL-based

automatic Web GUI testing on top of a generic testing frame-

work. According to the experiment results on two open-source

benchmark websites and one industrial portal web application,

we discussed several findings regarding the effectiveness of

QL-based web testing. In the future, we plan to extend our

testing framework to support more powerful RL algorithms,

such as deep-RL [14] or multi-agent RL [36]. We also plan

to evaluate other variants of RL configuration, such as state

abstraction by near-duplicate detection [37] or self-adaptive

hyper-parameters [6].

ACKNOWLEDGMENT

The authors thank Chuan Jiang and Yirui He for their con-

tributions of developing the system prototype used in this

study. The authors also thank the DSA 2023 reviewers for

their valuable comments. The work is partially supported by

Huawei and the Guangdong Basic and Applied Basic Research

Fund (Grant No. 2021A1515011562).

REFERENCES

[1] S. Yu, C. Fang, Y. Yun, and Y. Feng, “Layout and im-

age recognition driving cross-platform automated mobile

testing,” in 2021 IEEE/ACM 43rd International Confer-
ence on Software Engineering (ICSE). IEEE, 2021, pp.

1561–1571.

[2] N. Alshahwan and M. Harman, “Automated web appli-

cation testing using search based software engineering,”

in 2011 26th IEEE/ACM International Conference on
Automated Software Engineering (ASE 2011). IEEE,

2011, pp. 3–12.

[3] M. Leotta, M. Biagiola, F. Ricca, M. Ceccato, and

P. Tonella, “A family of experiments to assess the impact

of page object pattern in web test suite development,” in

2020 IEEE 13th International Conference on Software
Testing, Validation and Verification (ICST). IEEE, 2020,

pp. 263–273.

[4] A. Mesbah, E. Bozdag, and A. Van Deursen, “Crawling

ajax by inferring user interface state changes,” in 2008
eighth international conference on web engineering.

IEEE, 2008, pp. 122–134.

[5] Y. Zheng, Y. Liu, X. Xie, Y. Liu, L. Ma, J. Hao, and

Y. Liu, “Automatic web testing using curiosity-driven

reinforcement learning,” in 2021 IEEE/ACM 43rd In-
ternational Conference on Software Engineering (ICSE).
IEEE, 2021, pp. 423–435.

[6] S. Sherin, A. Muqeet, M. U. Khan, and M. Z. Iqbal,

“Qexplore: An exploration strategy for dynamic web

applications using guided search,” Journal of Systems
and Software, vol. 195, p. 111512, 2023.

[7] L. Mariani, M. Pezzè, O. Riganelli, and M. Santoro,

“Autoblacktest: a tool for automatic black-box testing,”

in Proceedings of the 33rd international conference on
software engineering, 2011, pp. 1013–1015.

22

[8] M. Pan, A. Huang, G. Wang, T. Zhang, and X. Li,

“Reinforcement learning based curiosity-driven testing of

android applications,” in Proceedings of the 29th ACM
SIGSOFT International Symposium on Software Testing
and Analysis, 2020, pp. 153–164.

[9] L. Mariani, M. Pezzè, O. Riganelli, and M. Santoro,

“Automatic testing of gui-based applications,” Software
Testing, Verification and Reliability, vol. 24, no. 5, pp.

341–366, 2014.

[10] S. Bauersfeld and T. Vos, “A reinforcement learning

approach to automated gui robustness testing,” in Fast
abstracts of the 4th symposium on search-based software
engineering (SSBSE 2012), 2012, pp. 7–12.

[11] A. I. Esparcia-Alcázar, F. Almenar, M. Martı́nez,

U. Rueda, and T. Vos, “Q-learning strategies for action

selection in the testar automated testing tool,” 6th In-
ternational Conferenrence on Metaheuristics and nature
inspired computing (META 2016), pp. 130–137, 2016.

[12] Y. Koroglu, A. Sen, O. Muslu, Y. Mete, C. Ulker,

T. Tanriverdi, and Y. Donmez, “Qbe: Qlearning-based

exploration of android applications,” in 2018 IEEE 11th
International Conference on Software Testing, Verifica-
tion and Validation (ICST). IEEE, 2018, pp. 105–115.

[13] T. A. T. Vuong and S. Takada, “A reinforcement learning

based approach to automated testing of android applica-

tions,” in Proceedings of the 9th ACM SIGSOFT Inter-
national Workshop on Automating TEST Case Design,
Selection, and Evaluation, 2018, pp. 31–37.

[14] ——, “Semantic analysis for deep q-network in android

gui testing.” in SEKE, 2019, pp. 123–170.

[15] J. Eskonen, J. Kahles, and J. Reijonen, “Automating

gui testing with image-based deep reinforcement learn-

ing,” in 2020 IEEE International Conference on Auto-
nomic Computing and Self-Organizing Systems (ACSOS).
IEEE, 2020, pp. 160–167.

[16] M. Morales, Grokking deep reinforcement learning.

Manning Publications, 2020.

[17] R. S. Sutton and A. G. Barto, Reinforcement learning:
An introduction. MIT press, 2018.

[18] Y. Zheng, X. Xie, T. Su, L. Ma, J. Hao, Z. Meng, Y. Liu,

R. Shen, Y. Chen, and C. Fan, “Wuji: Automatic online

combat game testing using evolutionary deep reinforce-

ment learning,” in 2019 34th IEEE/ACM International
Conference on Automated Software Engineering (ASE).
IEEE, 2019, pp. 772–784.

[19] C. J. Watkins and P. Dayan, “Q-learning,” Machine
learning, vol. 8, pp. 279–292, 1992.

[20] Y. Bengio, A. Courville, and P. Vincent, “Representation

learning: A review and new perspectives,” IEEE trans-
actions on pattern analysis and machine intelligence,

vol. 35, no. 8, pp. 1798–1828, 2013.

[21] E. Jang, S. Gu, and B. Poole, “Categorical reparametriza-

tion with gumble-softmax,” in International Conference
on Learning Representations (ICLR 2017). OpenReview.

net, 2017.

[22] S. Artzi, J. Dolby, S. H. Jensen, A. Møller, and F. Tip,

“A framework for automated testing of javascript web

applications,” in Proceedings of the 33rd International
Conference on Software Engineering, 2011, pp. 571–580.

[23] S. Mahajan, B. Li, P. Behnamghader, and W. G. Halfond,

“Using visual symptoms for debugging presentation fail-

ures in web applications,” in 2016 IEEE International
Conference on Software Testing, Verification and Valida-
tion (ICST). IEEE, 2016, pp. 191–201.

[24] L. P. Kaelbling, M. L. Littman, and A. W. Moore,

“Reinforcement learning: A survey,” Journal of artificial
intelligence research, vol. 4, pp. 237–285, 1996.

[25] M. Leotta, A. Stocco, F. Ricca, and P. Tonella, “Robula+:

An algorithm for generating robust xpath locators for

web testing,” Journal of Software: Evolution and Pro-
cess, vol. 28, no. 3, pp. 177–204, 2016.

[26] J. W. Ratcliff and D. E. Metzener, “Pattern-matching-

the gestalt approach,” Dr Dobbs Journal, vol. 13, no. 7,

p. 46, 1988.

[27] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell,

“Curiosity-driven exploration by self-supervised predic-

tion,” in International conference on machine learning.

PMLR, 2017, pp. 2778–2787.

[28] “Monkey,” 2018. [Online]. Available:

https://developer.android.com/

[29] E. Even-Dar, Y. Mansour, and P. Bartlett, “Learning rates

for q-learning.” Journal of machine learning Research,

vol. 5, no. 1, 2003.

[30] SeleniumHQ. selenium: A browser automation

framework and ecosystem. [Online]. Available:

https://github.com/SeleniumHQ/selenium/

[31] W3c working draft: Ui events. [Online]. Available:

https://www.w3.org/TR/uievents/

[32] Splittypie: easy expense splitting. [Online]. Available:

https://github.com/tsubik/splittypie/

[33] Angular 11 version of the spring petclinic sample ap-

plication. [Online]. Available: https://github.com/spring-

petclinic/spring-petclinic-angular

[34] M. Biagiola, A. Stocco, F. Ricca, and P. Tonella,

“Diversity-based web test generation,” in Proceedings
of the 2019 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2019, pp. 142–

153.

[35] N. Nachar et al., “The mann-whitney u: A test for

assessing whether two independent samples come from

the same distribution,” Tutorials in quantitative Methods
for Psychology, vol. 4, no. 1, pp. 13–20, 2008.

[36] K. Zhang, Z. Yang, and T. Başar, “Multi-agent rein-

forcement learning: A selective overview of theories and

algorithms,” Handbook of reinforcement learning and
control, pp. 321–384, 2021.

[37] R. Yandrapally, A. Stocco, and A. Mesbah, “Near-

duplicate detection in web app model inference,” in Pro-
ceedings of the ACM/IEEE 42nd international conference
on software engineering, 2020, pp. 186–197.

23

