
THE HONG KONG UNIVERSITY OF SCIENCE AND TECHNOLOGY

A Survey of Context-Aware Pervasive Applications:
From Development Support to Quality Assurance

PhD Qualifying Exam Report

Abstract ‒ Pervasive applications aim to provide unobtrusive and reliable com-

puting services by seamlessly integrating devices into end users’ everyday life.

As an important branch of pervasive computing, context-aware applications

continuously sense environmental changes and automatically adapt their be-

haviors. In recent years, such kind of computing paradigm is becoming more

and more popular with the proliferation of versatile mobile devices and increas-

ing deployment of pervasive infrastructures. However, due to the distributed

nature and heterogeneity of context sources, building and maintaining a con-

text-aware application is a non-trivial task. Researchers have identified quite a

few critical challenges for systematic engineering of these applications, ranging

from modeling to quality assurance. In this survey, we focus on reviewing exist-

ing research works related to development support and quality assurance. For

development support, we will introduce some famous middleware infrastruc-

tures, development toolkits as well as typical design strategies. For quality as-

surance, we will cover context quality enhancement, testing and software model

checking approaches. In the final section of this survey, we will point out some

promising research directions in this area.

Student: Yepang Liu

Supervisor: Shing-Chi Cheung

Submission Date: December 28, 2011

1

Table of Contents

1. Introduction ... 2

2. Preliminaries ... 2

2.1 Context Preliminaries ... 2

2.1.1 Context Definition and Classification .. 2

2.1.2 Context Modeling ... 3

2.1.3 Context Acquisition ... 4

2.2 Context-Aware Application Architecture and Modeling 5

2.2.1 Three-Layered Architecture .. 5

2.2.2 State Transition System Model .. 6

3. Development Support .. 7

3.1 Context-Aware Middleware .. 7

3.1.1 Gaia Meta-Operating System ... 8

3.1.2 SOCAM: Service-Oriented Context-Aware Middleware 10

3.1.3 CARISMA: Context-Aware Reflective Middleware System for Mobile

Applications ... 12

3.1.4 RCSM: Reconfigurable Context-Sensitive Middleware......................... 13

3.2 Development Toolkit and Methodology .. 14

3.2.1 The Context Toolkit ... 14

3.2.2 Model-Based Development .. 16

4. Quality Assurance ... 17

4.1 Context Management .. 17

4.1.1 Context Inconsistency Detection .. 18

4.1.2 Context Inconsistency Resolution ... 20

4.2 Model Checking ... 21

4.3 Testing Context-Aware Pervasive Applications .. 22

4.3.1 Applying Metamorphic Testing .. 22

4.3.2 Extending Conventional Data Flow Testing Criteria 23

4.3.3 Automated Context-Aware Test Generation ... 24

5. Possible Research Directions .. 26

6. Conclusion .. 27

2

1. INTRODUCTION

Pervasive computing, first introduced by Mark Weiser in 1991, depicts a vision where

the most profound technologies weave themselves into the fabric of everyday life and

are indistinguishable from it [Weiser 1991]. As an important branch of pervasive

computing, context-aware applications continuously sense environmental changes,

and adapt their behaviors accordingly [Abowd et al. 1999; Dey et al. 2001]. In recent

years, the proliferation of mobile devices and increasing deployment of pervasive in-

frastructures, context-aware applications are becoming increasingly popular [Two

forty four a.m. LLC 2011; Crafty Apps 2011; Inizziativa Networks 2011].

Context-aware applications have some characteristics, which distinguish them

from their conventional counterparts. Firstly, they are context-driven. Context

changes are intrinsically unpredictable, and the quality of sensed contextual data is

hard to control [Xu et al. 2010]. Secondly, the applications are distributed in nature.

Contextual data are gathered from heterogeneous sources. The supporting infra-

structure typically contains a wide range of networked devices [Román et al. 2002].

Thirdly, the self-adaptation of context-aware applications is guided by a set of rules,

also known as policies [Capra et al. 2003; Sama et al. 2010a]. This resembles expert

systems. These characteristics make context-aware applications attractive because

the applications can automate certain tasks and provide services imperceptibly.

However, they also pose huge challenges for developing and maintaining such appli-

cations [Abowd 1999; Kramer et al. 2007; Cheng et al. 2009; Kulkarni et al. 2010].

Over the past two decades, worldwide researchers have done extensive research to

tackle these challenges.

In this survey, we look in depth at the challenges, and the research efforts that

target at addressing them. Our survey serves as a guideline for researchers who

want to conduct research to make context-aware applications more powerful and re-

liable.

2. PRELIMINARIES

In this section, we introduce the preliminaries about context-aware pervasive appli-

cations to lay the groundwork for this survey. Accurate definition, modeling and ac-

quisition approaches will be presented in section 2.1. Common architecture and mod-

eling technique of context-aware applications will be discussed in section 2.2.

2.1 Context Preliminaries

2.1.1 Context Definition and Classification

How to accurately define context to confine its scope is one of the key questions facing

researchers at the very beginning of the exploration in this area [Baldauf et al. 2007].

Hull et al. [1997] defined context as the aspects of the current situation. Dey [1998]

referred to context as the end user’s location, orientation and emotional state etc.

However, definitions by analogy, as in the former one, or by enumeration, as in the

latter one, will both cause unnecessary confusions as they only captured part of the

nature of context. The first formal and accurate definition was given by Abowd et al.

in 1999.

“Context is any information that can be used to characterize the situ-

ation of an entity. An entity is a person, place, or object that is con-

sidered relevant to the interaction between a user and an application,

including the user and applications themselves”.

3

Based on this definition, we can further classify contexts into two major categories,

i.e. external and internal [Prekop and Burnett 2003]. External contexts refer to the

environment’s physical characteristics that can be measured by sensors, such as il-

luminance and temperature. Internal contexts specify the logic characteristics of the

concerned entities, such as the activity and emotional state of the end user. Internal

context are normally provided by end users or interpreted from information captured

by sensors. For example, CyberDesk interprets the end users’ emotional status by

monitoring their activities [Dey 2000]. Due to the uncertainty introduced by context

interpretation, many applications [Two forty four a.m. LLC 2011; Crafty Apps 2011;

Inizziativa Networks 2011; Want et al. 1992; Abowd et al. 1997; Cheverst et al. 2000;

Sumi et al. 1998] prefer to use external contexts such as the location data collected

from GPS sensors, or user specified internal contexts like preference profiles. Read-

ers should be alerted that interpretation is not the only source that causes context

uncertainty. Sensor’s reliability, heterogeneity of context sources and many other

factors can pose threats to the quality of contexts.

2.1.2 Context Modeling

During the designing phase of a context-aware application, the developers need to

consider carefully how to represent context. When choosing a context model, they

should take the following common factors into account [Baldauf et al. 2007].

— Simplicity. Software engineers prefer a simple and yet effective solution to the

problem at hand. A simple modeling technique will ease both the development and

maintenance of context-aware applications.

— Flexibility. A good context model should be flexible enough in the sense that it is

not limited to some specific types of context. A flexible model thus can be adjusted

to fit into most applications and ease the future extension.

— Expressiveness. Application designers aim to find a modeling technique, which is

capable of expressing complex context and yet simple enough for implementation.

Such a context model has a direct impact on the capability of the application under

designing.

Existing literature contains various types of context modeling techniques [Baldauf

et al. 2007]. We list some representatives and discuss their own characteristics in

terms of simplicity, flexibility, and expressiveness.

— Key-Value Pair. Being the simplest model, key-value pairs are adopted by a wide

range of projects [Schilit et al. 1994; Strang et al. 2004]. However, the expressive-

ness of this model is restricted. A key-value pair can neither easily encode the lev-

el of certainty nor express complex context. For example, the context describing

that “Tim enters the conference room where Ken and Tom are probably having a

heated discussion” cannot be easily modeled by key-value pairs. As a result, con-

text reasoning based on key-value pairs is also limited.

— Object-Oriented Model. Object-oriented approaches provide good encapsulation

and reusability. A context object hides the details of context acquisition, aggrega-

tion and reasoning. It offers the outside world a simple interface for accessing con-

text [Cheverst et al. 1999]. This model is highly extensible. For instance, engineers

can freely incorporate new features into an inherited context class or combine

some classes to create a composite one when needed.

— Markup Scheme Model. Markup scheme based models commonly use a hierarchy

of class instances and their properties to represent contexts. Contexts modeled in

4

this form can be easily understood by human beings and quickly parsed by com-

puters. In particular, user specified contexts, known as user preference profiles,

are supported by standard specifications such as Composite Capability/Preference

Profiles (CC/PP) [W3C 2004a].

— Ontology Based Model. Compared with markup schemes, ontology provides a

higher level of abstraction [Gu et al. 2005; Xu et al. 2004;]. It provides a vocabu-

lary for representing knowledge and describing situations in a specific domain.

Most importantly, context reasoning becomes easy. We use an example adapted

from SOCAM [Gu et al. 2005] to express a simple context that “Tim is in the con-

ference room”. Fig. 1 presents a partial ontology written in Web Ontology Lan-

guage (OWL) [W3C 2004b]. Developer can encode rules to facilitate context reason-

ing. For instance, if there are more than two people in a conference room where

the noise level is high, then they is probably a meeting going on. Reasoning may

introduce uncertainty. Therefore, a confidence level is often attached to some high

level contexts, and applications should be able to handle the uncertainty.

— Logic Based Model. Logic based models have the highest level of formality among

all techniques discussed in this section. McCarthy et al. [1997] first proposed logic

based modeling technique, where contexts are represented as expressions or facts.

A formal logic system is applied to manipulate contexts by adding, deleting and

updating facts. Logic systems internally support inference as well as being highly

expressive. Although modern context-aware applications [Two forty four a.m. LLC

2011; Crafty Apps 2011; Inizziativa Networks 2011; Helsinki 2005] seldom directly

adopt a logic based context model, similar formalisms always form the theoretical

foundation for context reasoning or self-adaptation (see Section 2.2.1).

2.1.3 Context Acquisition

Context-aware applications continuously sense environmental changes. Acquiring

contexts in an efficient and reliable way is the first step toward high application

quality. We discuss the merits and demerits of some representative context acquisi-

tion techniques below [Baldauf et al. 2007].

— Direct Sensor Access. Applications can directly retrieve raw data from physical or

virtual sensors. Virtual sensors normally refer to some web services, such as

online calendar or weather forecast [Gu et al. 2005]. With this acquisition tech-

nique adopted, the application needs to handle all communications details. The

software components will be tightly coupled and therefore difficult to maintain.

— Middleware Infrastructure. Middlewares are widely adopted in the modern con-

text-aware applications [Kjæ r 2007]. They hide the sensing details and provide a

<rdf:RDF xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”

xmlns:rdfs=”http://www.w3.org/2000/01/rdf-schema#”

xmlns:owl=”http://www.w3.org/2002/07/owl#”

xmls: example=”http://cse.ust.hk/context/example#”

>

…

<example: Person rdf:ID=”Tim”>

<rdfs:locatedIn rdf:resource=”#conference_room”>

</example:Person>

…

</rdf:RDF>

Fig. 1. A partial ontology example

5

simple interface for the upper layer application. Some middleware also takes care

of context quality enhancement [Xu et al. 2004], ontology-based reasoning [Gu et

al. 2005], context policy conflict resolution [Capra et al. 2003] and so on. Particu-

larly, Salber et al. [1999] proposed the concept of context widgets, which mediate

between the environment and the application. A widget provides contexts in a cer-

tain format to the application, and can be replaced by another one which offers the

same service without affecting the application layer. For example, a location widg-

et based on GPS can be changed to another one based on cellular networks.

In recent years, the advance in mobile technology catalyzed the emergence of

handheld devices that are equipped with a variety of sensors, and powerful operat-

ing systems. Building context-aware applications for these terminals becomes eas-

ier. Developers simply need to call some APIs to obtain the contexts in need.

Therefore, they can focus more on the business logic.

— Context Server. Context server is a centralized approach for managing context

data. A context server retrieves raw data from sensors and performs some neces-

sary computation. Applications contact the server to obtain the context in need in

a synchronous or asynchronous way (see Section 2.2.1). The technique can greatly

reduce network overhead, and facilitates the mobile terminals that have limited

computational resources. However, with this technique adopted, backups should

be available as the “single point failure” poses huge challenge to the whole system.

— Networked Service. Networked service is the distributed counterpart of the con-

text server. The service components may distribute over the entire system network

[Gu et al. 2005]. A service component advertises its services through broadcasting

or other similar ways. Service discovery techniques are applied for other compo-

nents in the system to locate the needed service. This technique is more reliable

than context server at the expense of higher network overhead.

2.2 Context-Aware Application Architecture and Modeling

2.2.1 Three-Layered Architecture

Context-aware applications differ from their conventional counterparts in the need to

handle context data retrieval, management and self-adaptations [Cheng et al. 2009;

Korpipaa et al. 2003; Dey 2000]. In order to reduce development and maintenance

costs, a multi-layered design is widely adopted as it is based on the “separation of

concerns” principle [Sama et al. 2010b]. Although different applications have their

own uniqueness in architecture, a three-layered design is commonly adopted.

As presented in Fig. 2, there are mainly three layers in a common design, namely

physical infrastructure layer, context-aware middleware layer and the application

Application

Context-Aware Middleware

Physical Infrastructure

Context Manager Adaptation Manager

Raw Data Retrieval

Processing

Storage/Management

Event Observer

Rule Evaluator

Action Trigger

Fig. 2. Common three-layered design

6

layer. Application layer deals with the business logic. Physical infrastructure layer

contains networked sensors and other distributed devices. Middleware consists of two

important components.

— Context Manager. Context manager retrieves raw data from the physical infra-

structure in a synchronous or asynchronous way. Synchronous means the context

manager periodically requests context data from the physical infrastructure. This

works well when the application only needs information from a small number of

sensors, but does not scale to large systems due to high network and computation

overhead. Context manager working in an asynchronous style subscribes to the

physical infrastructure for interesting context data. The context manager will re-

ceive a message when such context data occurs. Of course, this style requires the

physical infrastructure to offer subscription service.

After obtaining raw context data, the context manager will perform necessary

processing to ease the computation in upper layers. For example, it may translate

a Wi-Fi access point’s (AP) IP address to the AP’s identifier. A context manager al-

so performs other management tasks according to an application’s requirements.

In some applications, valuable historical contexts should be stored and managed

for a long time.

— Adaptation Manager. Context-aware applications adjust their operations based on

context changes. Developers or end users have freedom to control the self-

adaptation by explicitly or implicitly configuring rules. A rule in context-aware

applications resembles those used in expert systems. Typically, a rule in “if-then”

form contains two parts. Triggering condition is specified in “if” clause. Action is

specified in “then” clause. Normally the condition is expressed in disjunctive nor-

mal form, and each rule has only one action. The semantics of a rule is that if cur-

rent context satisfies the triggering condition, then the action should be carried

out. Based on this consensus, we can see that an adaption manager should at least

contain three modules: event observer, condition evaluator, and action trigger.

As a conclusion, Fig. 3 presents a systematic view of such event-condition-action

(ECA) computing paradigm. The context manager retrieves and processes raw con-

text data. After observing interesting context changes, the adaptation manager eval-

uates the conditions of active rules, and triggers the action of the satisfied rule.

2.2.2 State Transition System Model

The ECA computing paradigm makes it suitable to model a context-aware applica-

tion as a state transition system, which is also called an Adaptation Finite-State Ma-

chine (A-FSM) in literature [Sama et al. 2010a]. Self-adaptations imply transitions

Physical

environment

Rule 1

Rule 2

…

Rule n

Context

Manager

Raw data
Interesting

event

Pick a rule

take actionsAdaptation

Manager

Fig. 3. Event-condition-action computing paradigm

7

from the current state to the new state. As an application only has a limited number

of rules in practice, the number of stable states in the transition system is finite.

A state transition system is a tuple <S, C, A, T>. S is a finite set of stable states. C

is a finite set of conditions. A is a finite set of actions. Transition T ⊆ S × C × S × A is

a quaternary relation. If p, q ∈ S, c ∈ C and a ∈ A, then (p, c, q, a) ∈ T represents that

there will be a transition from state p to state q if condition c is satisfied by an incom-

ing event and the action a will be performed with the state transition. Let us consider

a trivial but realistic example. Suppose an application in a smart phone is able to

obtain current location and surrounding Bluetooth devices information from some

context sources. The business logic is specified by two rules, which can be naturally

translated to “if-then” form.

— Rule 1. Enable the silent mode when a Bluetooth device “Office_PC” is detected, or

the phone’s GPS is enabled and the current location is reported as “Office”.

— Rule 2. Enable the ring mode when a Bluetooth device “Home_PC” is detected, or

the phone’s GPS is enabled and the current location is reported as “Home”.

We can identify two stable states from the rules. The device is in silent mode in

“Office” state, and ring mode in “Home” state. Fig. 4 gives a pictorial illustration of

the state transition system model for the example application. Circles in the figure

represent states and arrows correspond to state transitions. Lines above arrows de-

scribe conditions specified in rules, and lines below them define associated actions.

3. DEVELOPMENT SUPPORT

Developing context-aware applications has many challenges due to their distributed

nature, unpredictable environmental dynamics, and the use of unconventional sen-

sors. Extensive and intense research has been done for more than two decades to

ease the development of such applications. Most of the efforts focus on two areas.

Some research projects aim to provide infrastructural support by designing context-

aware middlewares [Bellavista et al. 2003; Capra et al. 2003; Chan and Chuang 2003;

Gu et al. 2005; Mckinley et al. 2005; MSU 2007; Román et al. 2002; Xu et al. 2004;

Yau et al. 2002]. Other projects target at offering direct support by providing toolkits

or design guidance [Salber et al. 1999; Biegel and Cahill 2004; Julien and Roman

2006; Zhang and Cheng 2006a]. Although their targets vary, those projects share

similar methodology. In this section, we are going to discuss how they can help the

development of context-aware applications.

3.1 Context-Aware Middleware

Traditional middlewares provide complete transparency of the underlying techniques

and the running environment. Instead, context-aware middleware infrastructures

have to balance between context-awareness and transparency. Applications should be

aware of the changes in their running environment, and adjust their behaviors ac-

General

Office

Home

Condition: Bluetooth.Devices.contains(Office PC) || GPS.Location = Office

Action: Enable the silent mode

Condition: Bluetooth.Devices.contains(Home PC) || GPS.Location=HOME

Action: Enable the ring mode

Fig. 4. State transition system example

8

cordingly. However, they need not care about the details of context sensing, commu-

nications among distributed devices in the physical infrastructure. For this reason,

different middlewares offer a common set of services: (1) context acquisition, pro-

cessing, (2) situation monitoring, (3) action triggering. On the other hand, different

middlewares have their own uniqueness. We will introduce some representative mid-

dlewares below.

3.1.1 Gaia Meta-Operating System

Gaia is one the earliest context-aware middleware infrastructures [Romá n et al.

2002]. It extends traditional operating system to facilitate the construction of active

spaces. An active space is a physical space coordinated by a responsive context-based

software infrastructure. Users in an active space interact with their physical and dig-

ital environments seamlessly.

3.1.1.1 Gaia Architecture

Fig. 5 presents the architecture of Gaia. The Gaia kernel comprises component

management core (CMC), and a set of components providing basic services for the

upper layer applications. CMC dynamically manages all Gaia components and appli-

cations. Applications in active spaces are highly distributed, and require remote

component execution and management. Therefore, Gaia is built on top of Corba to

provide a stable infrastructure for distributed object interaction.

— Event Manager. In active spaces, events, such as a user’s entering or a compo-

nent’s crash, should be monitored, and distributed to interested parties. The event

manager, built upon Corba’s event service, implements a decoupled communica-

tion model based on suppliers, consumers, and channels. A default set of channels

notifies interested parties about basic events such as new services and component

liveness. Applications can also define channels to disseminate their state changes.

Decoupling event suppliers and consumers enables the event manager to offer re-

liable services. If some event supplier crashes, it can be replaced by a replica with-

out affecting other components in the active space.

— Context Service. The context service component (CSC) supports both synchronous

and asynchronous context acquisition. Interested parties in the active space query

or register with CSC to obtain context data. The context infrastructure comprises

a set of context providers, including sensors and higher-level context providers.

Higher-level context is inferred from the context data captured by sensors. CSC

uses a registry to maintain a list of available context providers. The applications

are supposed to use this registry to find providers of the contexts they desire.

Context in Gaia is modeled in first order logic. Atomic contexts are expressed as

first order predicates in the following form: Context(<Context Type>, <Subject>,

<Relator>,<Object>). The subject is any entity with which the context is con-

Component management core

Space

repository

service

Event

manager

service

Context

file

system

Presence

service

Context

service

Application framework

Active space applications

G
a
ia

 K
er

n
el

Fig. 5. Gaia architecture

9

cerned. The object is a property of the subject, and the relator associates the sub-

ject and object. For example, Context(temperature, room 4208, is, 25o C) repre-

sents that the current temperature in room 4208 is 25o C. Complex contexts can be

constructed by combining atomic contexts using logic operators.

— Presence Service. In active spaces, presence service updates the presence infor-

mation of entities. Gaia defines four major types of entities, namely applications,

services, devices and people. Its digital entity presence subsystem updates the

presence of application and services. Applications and services periodically send

heartbeat signal to indicate their presence. If they fail to send the signal, they are

assumed to be no longer available. Physical entity presence subsystem manages

device and people’s presence information through monitoring them. Video camera

and other different sensors can be used in this subsystem.

— Space Repository. The space repository component (SRC) manages the resources

in the active space. Resources include all softwares and hardwares in the active

space, such as displays or a PDF viewer. Built upon Corba Trader, SRC relies on

presence service component to learn about an entity’s entering or leaving. For each

resource in the active space, SRC maintains a description XML file, which con-

tains the resource’s properties. For example, a description file for a display will

contain its highest resolution. When applications initiate, they are able to use con-

straint query language to find resources they desire, such as execution node.

— Context File System. End users in active space are highly mobile, and thus manu-

ally transferring personal files is troublesome. Context file system (CFS) assists

users in making personal storage available in their current location. In CFS, each

file is attached with context such as “situation: seminar”. CFS aggregates files

based on their associated context, and presents context as directories. For example,

all files related to “seminar” are put in “situation: seminar” directory. In this sense,

CFS constructs a virtual directory hierarchy.

CFS is able to work in two modes: file mode and context mode. In file mode, us-

ers can browse files as in a traditional file system. In context mode, data is orga-

nized by user or application defined properties and current context. Users need not

care about the physical location of their data. After a file is associated with context,

it belongs to a virtual directory. Users can simply use query language to access

files. For example, they can type in “/type:/pdf/situation:/ubi-seminar” to obtain all

PDF files related to ubi-seminar. From this point of view, CFS is a hybrid system

with both data base and file system features.

3.1.1.2 Developing Applications Upon Gaia

Active space applications receive contexts from heterogeneous sources, present their

status using different devices, and automatically adapt to environmental changes.

Developing such applications is challenging [Kramer et al. 2007; Cheng et al. 2009].

Gaia provides an application framework to ease this task. The framework consists of

— A distributed component-based infrastructure. The infrastructure follows the tra-

ditional Model-View-Control design, and provides functionality for manipulating

application component bindings.

— A mapping mechanism for customizing applications to active spaces. Application

developers need to define an application generic description (AGD), and an appli-

cation customized description (ACD). AGD contains a description of application

components, the minimum and maximum number of instances allowed, and com-

10

ponent requirements such as audio input. ACD describes the execution nodes and

initiation parameters of application components.

— A set of policies that defines rules for customizing several aspects of applications.

The application framework relies on policies to address reliability, mobility, adap-

tation, and related issues. Developers and users can choose to use default policies

or define their own.

3.1.2 SOCAM: Service-Oriented Context-Aware Middleware

SOCAM is a distributed middleware, which provides efficient support for context dis-

covery, acquisition, interpretation, and dissemination [Gu et al. 2005]. SOCAM uses a

central context interpreter to gain context data from distributed providers, and offer

it in a processed form to the clients. In SOCAM, contexts are modeled in first-order

predicate calculus, and represented as domain ontology instances. Note that in Sec-

tion 2.1.2, we classify SOCAM’s context modeling approach as ontology based tech-

niques. In fact, ontology has the power to express first-order predicates. So it is not

contradictory that the theory foundation of context modeling is first-order logic, but

contexts are represented as ontology instances. Before discussing SOCAM’s architec-

ture, we introduce its context modeling and classification as we think they are very

typical.

3.1.2.1 Context Ontology Design

SOCAM’s adopts a hierarchical design. There are two types of ontologies, namely gen-

eralized and domain specific ontology. Generalized ontology represents general con-

texts for all pervasive domains. For example, the “Device” ontology describes the

properties of a general device. Domain specific ontology defines the details of general

concepts and their properties for a particular domain. For example, we can inherit

“Device” and define a “hands-free-phone” ontology for an automobile domain. The

Context

Direct Context

Indirect Context (Deduced)

Sensed Context

Defined Context

From physical sensors

From virtual sensors (web service, information server etc.)

Fig. 6. SOCAM context classification

Physical Sensors

Virtual Sensors

(Web Services,

Information Serves)

External Context

Provider

Internal Context

Providers

Context Reasoner

Context

Knowledge Base

Context

Database

Service Locating

Service

Context-Aware Service Context-Aware Service

Application Layer

Middleware Layer

Sensing Layer
C

o
n

te
x
t

In
te

r
p

r
e
te

r

Fig. 7. SOCAM architecture

11

separation of domains will significantly reduce the scale of context data, and ease

context processing in each domain.

3.1.2.2 Context Classification

As illustrated in Fig. 6, in SOCAM, contexts are classified into two categories, namely

direct context and indirect context. Indirect context is deduced from direct ones based

on logic reasoning (see Section 3.1.2.3). Direct contexts include user-defined ones like

user preference, and those sensed from physical or virtual sensors.

SOCAM classifies contexts in a fine granularity because different contexts have dif-

ferent temporal characteristics. A defined context may be valid for a long time, while

a sensed context can easily be obsolete. By knowing such differences, SOCAM is able

to provide better context management to enhance context quality, and perform con-

text reasoning to maintain context consistency. Moreover, SOCAM also identifies the

dependence between contexts. After knowing context dependence, SOCAM can adopt

techniques such as Bayesian Network to reason about uncertain context.

3.1.2.3 SOCAM Architecture

SOCAM middleware comprises three major components: context provider, context in-

terpreter, and service locating service. In this sub-section, we discuss the characteris-

tics of each component, and how they communicate with each other.

— Context Provider. Similar to the context service component in Gaia (see Fig. 5),

the context providers in SOCAM hide the low level sensing details from upper lay-

ers. Internal context providers collect contexts within a domain. Similarly, exter-

nal providers collect contexts outside a domain. After processing, they provide con-

texts as ontology instances to the outside world.

— Context Interpreter. The context interpreter consists of a context reasoner and a

context knowledge base. The context reasoner performs logic reasoning to deduce

indirect contexts, and also maintains context consistency in knowledge base. Mul-

tiple reasoners can be incorporated to SOCAM, and each reasoned can have its own

inference rules.

The context knowledge base provides a set of APIs for the applications to query,

and edit contexts. Defined contexts are loaded at system initiation time, and

sensed contexts are loaded at runtime. In order to guarantee the freshness of con-

text data, SOCAM updates each piece of context periodically. Sensed contexts are

updated more frequently than defined context.

The context reasoning is based on first-order logic. There are two types: ontolo-

gy reasoning, and user-defined-rule-based reasoning. Ontology reasoning checks

class consistency, implied relationship, and assures inter-ontology relations.

SOCAM’s ontology reasoning supports all the RDFS entailments described by the

RDF Core Working Group, and OWL Lite. An example rule is presented below.

— Transitive Property: (?P rdf:type owl:TransitiveProperty), (?A ?P ?B),

(?B ?P ?C)(?A ?P ?C).

Ontology reasoning is important. For example, it can find out inconsistency

when class A is a subclass of B, B is a subclass of C, but C is a subclass of A. The

reasoning based on user-defined rules resembles ontology reasoning. The differ-

ence is that the inference rules are customized by users (see example in Section

2.1.2). Based on these rules, Socam is able to perform reasoning in different mode,

including forward chaining, backward chaining, and hybrid mode.

12

— Service Locating Service. In SOCAM, distributed context providers register with

the service locating service component. The context interpreter, SOCAM’s context

server, uses the service locating service to locate context providers. Context pro-

viders in pervasive environment are subject to change. So the service locating ser-

vice component in SOCAM has the ability to handle dynamic changes of context

providers.

Finally, these distributed components communicated with each other based on

Java RMI, which supports inter-operability between heterogeneous platforms, and

provides a certain level of security.

3.1.2.4 Developing Applications Upon SOCAM

Developing context-aware applications on top of SOCAM is easy. The first step is to

use service locating service to locate the context interpreter. SOCAM supports both

synchronous and asynchronous context acquisition. The second step is to follow the

ECA computing paradigm (see Section 2.1.1), and define a set of rules. The rules

specify which method to invoke (action), when interesting event happens (condition).

These rules are loaded into the context reasoner at system initiation time, and can be

changed at runtime. One interesting thing is that one application can also register

with the service locating service to provide services to other applications.

3.1.3 CARISMA: Context-Aware Reflective Middleware System for Mobile Applications

CARISMA differs from Gaia and SOCAM for its uniqueness in reflection capability

and conflict resolution mechanism [Capra et al. 2003]. Each application built upon

CARISMA keeps its profile as meta data in the middleware. A profile consists of pas-

sive and active part. Passive part specifies the actions, which should be performed by

middleware upon the occurrence of some interesting events. Active part defines the

relations between the services used by the application, and the policies that should

be taken when delivering services [Kjæ r 2007]. In this section, we discuss how

CARISMA uses reflection to adjust middleware behavior, and an microeconomic

mechanism to resolve policy conflicts.

Application

Middleware

Reflective API Application Profiles

(a)

End-users

uses

Application

provides

User interface

uses

Middleware

provides

Reflective API

(b)

User preference

Application profile

Fig. 8. CARISMA's reflective model

% Alice % Bob % Claire

MessagingService MessagingService messagingService

plainMsg plainMsg plainMsg

battery < 40% bandwidth > 50%

encryptedMsg compressedMsg

battery > 40% bandwidth < 50%

Fig. 9. Inter-profile conflict example

13

3.1.3.1 The Reflective Model

CARISMA regards itself as a dynamically customizable service provider. It exposes

some meta information, which defines its behavior, to applications. Application uses

meta interface to modify the meta information in order to adjust CARISMA’s behav-

ior. As presented in Fig. 8 (a), application can modify its profile through a set of re-

flective APIs.

Since engineers cannot foresee all situations when designing a context-aware ap-

plication for a highly dynamic environment, the end users should be granted with the

permission to modify the application profile. CARISMA suggests developers to pro-

vide a friendly interface to end users. End users configure their own preference

through the interface, and the application monitors such changes to modify its profile

kept in the middleware accordingly. Such a layer of abstraction is necessary and very

useful as end users wish to customize their application in an easy way. Fig. 8 (b) il-

lustrates this interaction process.

3.1.3.2 The Microeconomic Mechanism

The reflective model offers flexibility for developers and end users to customize the

middleware. However, it also opens door for conflicts. Consider a situation where

several researchers are participating in a conference, and they would like to com-

municate with each other using the messaging service of their PDA, provided by the

conference organizer. Suppose the messages can be delivered in three modes: plain,

compressed, or encrypted. Alice and Claire have customized their application, and

Bob choose the default setting. The modified profiles are given in Fig. 9. For example,

Alice’s PDA will send messages in plain text when the battery level is low and in en-

crypted form otherwise. A conflict will arise when Claire’s bandwidth is lower than

50% and Alice’s battery level is higher than 40%.

Interestingly, CARISMA adopts a microeconomic mechanism as its dynamic con-

flict resolution strategy. The auction protocol works in the following way. The mid-

dleware plays the role of the auctioneer. The applications are agents, and the good

they are competing for is the execution of the policy they want most. When there is a

conflict, each agent submits a sealed bid for each possible policy. The aim of the mid-

dleware is to choose a policy with the highest sum of bids received to satisfy the larg-

est number of applications involved in the conflict.

Context

expression

Method

signature
+

Context-sensitive interface for object O

(expressed in CA-IDL)

Context-sensitive application object O

Context-independent implementation of object O

(C++, C#, or Java etc.)

CA-IDL compiler

(can generate ADCs in

different languages,

such as C++, C#, Java)

Customized ADC for object O

Fig. 10. ADC customization

14

3.1.4 RCSM: Reconfigurable Context-Sensitive Middleware

RCSM is designed as a middleware to facilitate the development and runtime opera-

tions of context-aware applications [Yau et al. 2002]. Like other middlewares, RCSM

frees applications from context monitoring and situation detection. Developers only

need to specify a context-sensitive interface, and then can concentrate on the context-

independent implementation. As we have introduced many similar characteristics of

context-aware middlewares, in this section we briefly discuss RCSM’s uniqueness.

Fig. 11 presents the architecture of RCSM. Core components of RCSM consist of

adaptive object containers (ADCs), and the RCSM object request broker (R-ORB). An

ADC provides context awareness by offering runtime context monitoring, and detec-

tion services. R-ORB provides transparency over ad hoc communications among de-

vices in the underlying network. We skip the details of R-ORB as it is not the focus of

this survey.

Applications in RCSM are modeled as context-sensitive objects. Each context sen-

sitive object O contains an interface expressed in the context-aware interface descrip-

tion language (CA-IDL). The interface contains a set of context expressions, which

declares what kind of events are interesting, and the corresponding method signa-

tures, which specify the actions to take upon the occurrence of interesting events.

The object implementation is independent from contexts, and therefore can be devel-

oped in a conventional way.

RCSM customizes a unique ADC for each context sensitive object to provide con-

text-awareness service. Fig. 10 sketches the ADC customization process. The CA-IDL

compiler takes as input the context-sensitive interface of an object O, and outputs a

customized ADC for O.

3.2 Development Toolkit and Methodology

Apart from providing infrastructural support, some other research projects propose

design methodologies or build toolkits to facilitate the development of context-aware

application. We introduce two typical works in this section.

3.2.1 The Context Toolkit

Context Toolkit is one of the earliest research projects targeting at facilitating rapid

development of context-aware applications [Salber et al. 1999]. A context widget, like

Optional components

Core Components

Context-sensitive application objects

Adaptive object containers (ADCs)

(providing awareness of context)

RCSM object request broker (R-ORB)

(providing transparency over ad hoc communication)

Transport layer protocol for ad hoc networks

RCSM ephemeral group

communication service
Other services

O
p
er

at
in

g
 S

ys
te

m

Sensors

Fig. 11. RCSM architecture

15

a GUI widget, is a reusable software component that provides applications with ac-

cess to context information in their operating environment.

3.2.1.1 How Context Widgets Helps Developers?

Context widgets mediate between physical environment and applications. The follow-

ing features of a context widget benefits software developers.

— Transparency over context sensing details. Like the aforementioned middlewares,

a context widget hides the complexity of service discovery and context acquisition.

An identity presence widget, which monitors the presence of people, can gather in-

formation using Active Badges [Want et al. 1992], video cameras, or other tech-

niques. However, the details are transparent to applications.

— Context abstraction. Raw context data, such as altitude and longitude collected

from GPS receiver might not be meaningful to upper layer applications. A context

widget provides the service to translate them to a location name. Of course, in real

world application, context abstraction goes beyond simple translation. For exam-

ple, a context widget is able to perform probability-based logic reasoning to deter-

mine the on-going activity in a room.

— Reusability and customizability. A context widget is reusable. Once built, it can be

utilized by a wide range of applications. Applications can also customize the con-

text widgets, or combine several widgets into a composite one. For example, an ac-

tivity widget might rely on a few identity presence widgets to infer the current sit-

uation in a conference room.

From the developer’s point of view, a context widget class comprises a set of at-

tributes and call back functions, as illustrated in Fig. 12 (a). Developers implement

the call backs to handle interesting events.

3.2.1.2 Context Toolkit Implementation Details

Having introduced how context widgets can help rapid development of context-aware

applications, we briefly discuss Context Toolkit’s other characteristics.

— Widget Composition. Widget composition plays an important role in application

development for several reasons. First, composite widgets provide richer information

by aggregating contexts. Second, composing widgets helps context reasoning as we

mention earlier. Third, composite widgets provides context of high quality. Compari-

son and consolidation of the contexts provided by different widgets helps to reduce

the chance of receiving corrupted or inconsistent context.

— Communication Mechanism. A widget consists of multiple heterogeneous genera-

tors and interpreters as presented in Fig. 12 (b). These components need to com-

municate with each other. Besides, communication also exists between different

widgets, or even different applications. Context Toolkit adopts a simple mechanism

Widget Class IdentityPresence

Attributes

Location

Identity

Timestamp

Location the widget is monitoring

ID of the last user sensed

Time of the last arrival

Callbacks

PersonArrives(location, identity, timestamp)

PersonLeaves(location, identity, timestamp)

Triggered when a user arrives

Triggered when a user leaves

Widget

G1 G2

I

(a) (b)

Fig. 12. Context widget example

16

for communication, only assuming the underlying system supports TCP/IP and

HTTP protocol. Messages are encoded in XML, which can be parsed efficiently by ex-

isting tools, such as DOM or SAX.

3.2.2 Model-Based Development

Context-aware applications are essentially self-adaptive. Developing such softwares

is challenging [Kramer et al. 2007; Cheng et al. 2009]. In order to construct a reliable

self-adaptive program, engineers have to guarantee that the program behavior satis-

fies certain expected properties before, during, and after adaptations. Model checking

can be used to verify the satisfaction of properties in the expense that a formal pro-

cess is adopted in the whole development process [Zhang and Cheng 2006a; 2006b].

Zhang and Cheng [2006a] proposed an approach to construct formal models for adap-

tive programs. Based on the general concept that a program can be presented as fi-

nite state automaton, they define an adaptive program as a program whose state

space can be separated into a number of disjoint regions (each region is also viewed

as a program), each of which exhibits a different steady-state behavior, and operates

in a different domain. States and transitions involved in an adaptation are defined as

elements of an adaptation set. As presented in Fig. 13 (a), a simple adaptation corre-

sponds to an adaptation set. Note that, S and T in the figure does not necessarily re-

fer to distinct programs. They could be the same piece of program with disjoint state

spaces. Adaptation time point is of vital importance to the program correctness.

Zhang and Cheng [2006a] proposed a concept of quiescent state, and proved that ad-

aptation should take place in this state. The formal development process consists of

six steps.

— Step 1. Identify the global safety and liveness properties. Global invariants are

those properties which should always be satisfied, regardless of the adaptions.

Normally such properties are expressed in a high-level logic language such as lin-

ear temporal logic.

— Step 2. Identify different domains. After each adaptation, the adaptive program

enters a new domain, where it will behave differently.

— Step 3. Identify local safety and liveness properties. Local properties refer to the

properties that should be satisfied in each individual domain.

— Step 4. Build a finite state automaton model for the program in each domain.

Simulate the model to verify that local properties are satisfied.

— Step 5. Enumerate possible environmental changes, and build models for the

adaption of a program from the old domain to the new one. Simulate the adaption

process to verify that global invariants are satisfied, and the adaption successfully

leads the program to the new domain. There are three typical adaptation styles,

which help build adaptation models, as presented in Fig. 13 (b).

S TM

.One-point adaption

.Guided adaption

Overlap adaption

Source program timeline

Target program timeline

S: source program

T: target program

M: adaptation set

(a) (b)

Fig. 13. Adaption styles

17

— One-point Adaptation. When the triggering condition is satisfied, the source pro-

gram completes, and the target program starts. The single transition takes no

time. In this style, the task for engineers is to locate the quiescent state that is

suitable for adaptation.

— Guided Adaptation. When an adaptation is requested, the source program enters a

restricted mode with limited functionalities, and keeps running until reaching a

quiescent state. The key task for engineers is to identify what functionalities

should be blocked in the restricted mode.

— Overlap Adaptation. Overlap adaption happens when the adaption consists of a

sequence of transitions. This is typical when the adaptive program is multi-

threaded. Each thread takes one-point or guided adaptation to finish transition.

Because these transitions happen at different time, the behavior of the source and

target program exists at the same time.

This formal approach is expensive. All program specifications have to be formal-

ized. The program models must be built and modified iteratively. Visual inspection

and automated model checking must be performed each time the model is changed.

Although real world developers seldom adopt such a process, it still provides a great

guideline to build trustworthy self-adaptive softwares.

4. QUALITY ASSURANCE

Quality assurance plays a key role in development process of a software product. Un-

like conventional applications, a context-aware application incorporates the contex-

tual information in its operating environment as part of its input. A wide range of

problems emerges due to this added context-aware capability. There problems pose

huge challenges to assuring the developed context-aware applications are of high

quality. In this section, we introduce some representative problems, and possible so-

lutions.

4.1 Context Management

In context-aware pervasive applications, contexts have a few characteristics, which

distinguish them from the data used in conventional software [Xu and Cheung 2005].

— Highly dynamic. Because the application’s operating environment keeps changing

all the time, context may be generated in streams, and therefore easily obsolete.

— Offered by heterogeneous sources. The physical infrastructure of context-aware

applications is distributed in nature. Contexts are often offered by a wide range of

sensing units whose features such as data format and precision differ.

— Uncertainty. As mentioned in Section 2.1.1, context may be uncertain due to sev-

eral reasons. Low reliability of sensor, context reasoning are two major sources of

uncertainty.

The natural imperfectness of context leads to the common emergence of context

inconsistency in real world applications [Griswold et al. 2004; Xu and Cheung 2005].

These inconsistencies reflect a contradictory understanding of the application’s oper-

ating environment. For example, Dr. Green’s mobile phone senses that he is now in

the operating theater. A short moment later, the phone senses that a call has been

missed. These two pieces of context may contradict with each other, because mobile

phones are mostly not allowed to be used in operating theaters in avoidance of mag-

netic interference and distraction. Context quality directly affects the behavior of

18

context-aware applications. Therefore, inconsistencies will cause unexpected results.

How to guarantee the quality of context challenges both industry and academia. In

this subsection, we will introduce the state-of-the-art research efforts towards effi-

cient and effective context management.

4.1.1 Context Inconsistency Detection

The goal of context management is to enhance context quality. The first step towards

this goal is an efficient approach to detecting context inconsistencies. Context incon-

sistency is a sematic phenomenon instead of a syntactic one [Xu and Cheng 2005]. A

set of high level constraints must be identified at prior. The constraints normally

consist of a set of common sense rules, such as physical laws, and domain-specific

rules provided by experts or end users. Such constraints are expressed as formal logi-

cal formulas. First-order logic, and linear temporal logic are good choices because of

their high expressiveness and moderate complexity. One should realize that these

constraints are only necessary conditions of consistent contexts. Satisfying them does

not guarantee the perfect quality of contextual data, but violating any one of them

indicates an inconsistency.

4.1.1.1 A Representative Context Consistency Checking Technique

Xu and Cheng [2005] were the first to target at context consistency checking, also

known as inconsistency detection. The algorithm is based on semantic matching. In

their work, context is represented as seven-field data structure ctx = (subject, predi-
cate, object, time, area, certainty, freshness). The first three fields resemble those of

the first-order predicate model in Gaia (see Section 3.1.1). Time represents the effec-

tive period of the context. Area records the place with which the context is associated.

Certainty is straight forward, and freshness indicates the context’s generation time.

Pattern pat i Pattern pat j…

Interesting patterns

Instance ins i Instance ins j…

Sematic matching Sematic matching

Constraints

Fig. 14. Consistency checking model

Andrew : subject Room 4208 : object
enters : predicate

time : 9 am on Dec 14, 2011

area : Room 4208

certainty : 95%

freshness : 10 seconds ago

person : subject 4th floor room : object

go into : predicate

time : in December

area : Academic building

certainty : 80%

freshness : 5 minutes ago

Instance

Pattern

Fig. 15. Semantic matching example

19

A context instance is defined by instantiating all field, while a context pattern is de-

fined by instantiating some but not all fields. A semantic matching occurs if all field

values in a context instance are unifiable with their counterparts in a context pattern.

We use a simple example In Fig. 15 to illustrate this concept. Details about unifica-

tion rules can be found in Xu et al’s work [2005].

Based on semantic matching, one can design algorithms for consistency checking.

Domain experts or experienced end users will pre-define some interesting applica-

tion-specific context patterns, and constraints, as shown in the consistency checking

model in Fig. 14. Generally speaking, consistency checking is matching a set of valid

contexts with a complex context comprising a few context patterns, and checking

whether any constraint is violated by the matched context instances.

4.1.1.2 Towards More Efficient Approaches

The previous section introduces a representative approach to detecting context incon-

sistency. Based on the proposed model in Fig. 14, many concrete checking algorithms

can be derived. Unlike conventional software artifacts that tend to remain un-

changed over a short period, contexts are highly dynamic and may change rapidly.

Inconsistencies should be resolved with best effort before contexts are propagated

into computations. Therefore, timely detection is crucial. Xu et al. [2006; 2010] fur-

ther proposed more efficient algorithms. According to their taxonomy, the checking

algorithms are divided into two categories, namely non-incremental, and incremental,

as presented in Fig. 16. The differences between them are explained below.

— Non-incremental checking. When there are context changes, the whole set of con-

straints are re-checked to discover all detectable inconsistencies.

— Incremental checking. The algorithms in this category are based on the observa-

tion that not all constraints are related to context changes. For example, location

contexts have nothing to do with the constraint for temperature. Therefore, only a

subset of constraints needs to be rechecked. The developers need to design a way

to identify the constraint subset. There are some conservative strategies proposed

in literature. UML Analyzer [Egyed 2006] associates a constraint with an instance
scope consisting of all instances of software artifacts that were accessed by the

constraint. When the designer changes an UML artifact, its associated constraints

will be rechecked. Of course, a new artifact may lead to the recheck of all con-

straints that could possibly relate to it.

Incremental algorithms can be further divided into entire constraint checking

and partial constraint checking, depending on whether the entire constraint is re-

checked. Xu et al. [2010] pointed out that it is not necessary to re-check a whole

constraint formula while the context changes only relate to a sub-formula. They

proposed a sound algorithm to identify the part of a constraint that need to be re-

checked upon context changes. Partial constraint checking is the most efficient one

in the existing literature. It helps to timely detect inconsistencies in a transport

network where a new context comes every 60ms in average with a miss rate of on-

ly 0.1%.

Constraint checking

Non-incremental checking

Incremental checking
Entire constraint checking

Partial constraint checking

Fig. 16. Constraint checking algorithms

20

4.1.2 Context Inconsistency Resolution

Efficient algorithms can be used to detect most inconsistencies at runtime before con-

texts are fed into computation [Xu et al. 2010]. Manual resolution is impractical albe-

it human beings are much better at resolving semantic problem than machines. Au-

tomatic resolution techniques therefore are desirable. Similar to the test oracle prob-
lem, no generic approaches exist to pinpoint problematic contexts when inconsistency

occurs in a set of contexts. In the literature, there are mainly the following two types

of strategies.

— Heuristics-based approach. Domain experts or end users can define heuristic rules

to resolve inconsistencies based on certain assumptions. Bu et al. [2006] suggested

discarding all contexts involved in an inconsistency. Chomicki et al. [2003] pro-

posed to discard the latest context that conflicts with existing ones. Both of the two

heuristics are easy to implement, and immediately resolve inconsistencies. How-

ever, experiments based on real world contextual data show that they will cause a

loss of useful contexts by 20% to 40% [Xu et al. 2008]. The application behavior

would deviate much from what is expected. Xu et al. [2008] further proposed an

enhanced heuristic for inconsistent resolution. Their strategy suggests that the

context participating the most frequently in inconsistencies is more likely to be

problematic, and should be discarded. This strategy is based on the observation

that there is a time window between the generation and the usage of a context. If

the contexts are always used at the generation time, the size of time window will

be 0, and this strategy work the same as discarding the latest context [Chomicki et

al. 2003]. This strategy is proved to be sound based on two assumptions: (1) a set
of expected contexts never cause any inconsistency; (2) If a set of contexts causes
inconsistencies, then at least one problematic context occurs more frequently in in-
consistencies than any expected context. Experiments show that the first assump-

tion always holds, and the second one holds in 91.7% of all cases. In addition, this

strategy helps maintain 96.5% expected contexts and remove 84.7% problematic

ones.

— Analytical approach. Context inconsistency resolution has a direct impact on an

application’s behavior. Different strategies have diverse adverse effects. Given a

set of alternatives, it would be desirable if there is an efficient way to find out the

strategy that causes the least adverse impact. Xu et al. [2007] worked towards this

target, and proposed an abstract model of their on-impact oriented resolution

strategy, as shown in Fig. 17. The required properties formally specify the neces-

I

C

S1

Sn

C1’

Cn’

E

P

E

R1’

Rn’

…… ……

C Available contexts I Context Inconsistency

Si Resolution strategy Ci’ Resolved contexts

P Required properties E Property evaluation

Ri’ Evaluation result

Fig. 17. Impact-oriented resolution

21

sary conditions of correct application behavior, such as an application will get ex-

pected contexts after requesting them. On-impact oriented approach evaluates all

alternatives’ adverse impact on the application’s behavior, and chooses the strate-

gy with least impact to resolve inconsistency. There are two major challenges in

building a tool based on this approach. Firstly, formally specified correctness prop-

erties are generally unavailable. Secondly, efficient impact evaluation algorithms,

which guarantee timely inconsistency resolution, are difficult to design. For the

latter, one can get useful hints from the partial constraint checking approach pro-

posed by Xu et al. [2010]. Generally speaking, this is an interesting area worth

deep exploration.

4.2 Model Checking

Context management techniques work at context level to enhance the quality of con-

text-aware application. However, the applications are still error prone, and relies on

uncertain data [Sama et al. 2010b; Cheng et al. 2009; Esfahani et al. 2011]. In this

section, we explored the problems in logic level that jeopardize the correct behavior of

applications, and discuss possible solutions.

The behavior of context-aware applications is driven by contexts. How the appli-

cation reacts to context changes is explicitly or implicitly determined by a set of user-

configured rules. The user here includes both software developers and end users. A

rule typically is defined as rule = (currentState, predicate, newState, action, priority).
Predicate, expressed as a logic formula over a set of propositional variables, specifies

the triggering condition of a rule. Example of rules can be found in Section 2.2.2 . As

mentioned there, such rule-based context-aware applications can be models as state

transition systems.

Configuring a set of rules without logic errors is by no means an easy job. Sama et

al. [2008b; 2010a] identified five patterns of faults that commonly occur due to mis-

configurations of rules and asynchronous context update. The patterns are

— Non-determinism. This type of faults happens when the current context changes

satisfy the predicate of multiple rules with the same priority. The application is

not able to determine which rule to trigger. It may randomly pick one, which may

not be expected by the rule designer.

— Dead predicate. Rule designers may mistakenly set a rule whose predicate is in-

ternally contradictory, and therefore can never be satisfied. This tends to happen

when the rules contain complex predicates.

— Dead state. If all the rules with the same starting state are unsatisfiable, this

state itself is a dead state. When application enters this state, it will no longer

have a chance to transit to other states.

— Unstability. Unstability occurs when the context changes cause continuous adap-

tations without stops, such that the application fails to stabilize in one state.

— Unreachable state. A state is unreachable if and only if the application can never

transit to that state from the initial state.

Detecting and resolving these logic faults timely will prevent undesired conse-

quences. Sama et al. [2010a] proposed a set of algorithms to detect faults by checking

the state transition system model. The model can be derived via analyzing the rule

set. In the following, we use a running example to help readers get familiar with the

model checking process. The algorithm used in the example is an enumerative ver-

22

sion. Readers can refer to the original paper for more efficient symbolic algorithms

[Sama et al. 2008a; 2010a].

In the running example, we use the rules mentioned in Section 2.2.2. The corre-

sponding state transition system model is presented in Fig. 4. We can translate the

two rules into more formal representations.

— Rule 1 = (general, BTOfficePC ˅ LOCOffice, office, enable silent mode, 0)

— Rule 2 = (general, BTHomePC ˅ LOCHome, home, enable ring mode, 0)

The logic variable BTOfficePC evaluates to true if and only if the Bluetooth device

“Office PC” is detected in range. Other variables are defined similarly, and we set

both priorities to 0. All together, we have four logic variables (BTOfficePC, LOCOffice,

BTHomePC, LOCHome). There are 16 possible value combinations, ranging from all

false’s to all true’s, if we ignore the dependencies among variables. An enumerative

algorithm for non-determinism detection will go through each value combination.

When it reaches a combination in which both BTOfficePC and BTHomePC are true, it

will conclude that if the current state is general, the situation corresponding to the

value combination will lead to non-determinism.

4.3 Testing Context-Aware Pervasive Applications

Unlike conventional software whose behavior is included inside the implemented

programs, context-aware applications register part of their program logic in the mid-

dleware layer. Traditional testing strategies, such as data-flow testing are not effec-

tive in revealing errors. Researchers pointed out a list of challenges, which render

the traditional testing approaches not effective [Satoh 2003; Tse et al. 2004; Lu et al.

2006; Wang et al. 2007; Lu et al. 2008]. They proposed a set of novel approaches to

addressing the challenges. In this section, we are going to introduce state-of-the-art

research efforts.

4.3.1 Applying Metamorphic Testing

Context-aware middlewares take care of context detection, situation monitoring as

well as action invocation, and therefore include part of the program logic. The multi-

layered design is error prone [Sama et al. 2010b; Tse et al. 2004], and testing applica-

tions atop such middlewares has at least the following challenges.

— Race conditions. Middlewares and erroneous application layer program units can

both change the value of some context variables. Due to environmental changes,

an update from middleware may hide some computation errors, and thus make

certain faults undetectable.

— Non-testable nature of situational conditions. Applications subscribe to middle-

ware for interesting situations by setting conditions. Missing situations or situa-

tion relaxation can hardly be revealed by testing.

— Unforeseeable combination of contexts. Context changes come in an unforeseeable

manner. Corresponding actions therefore can be triggered in any order. This

makes the control flow of context-aware applications extremely complex.

To address the challenges, they proposed to apply metamorphic testing (MT). MT

was originally proposed to tackle the test oracle problem [Chen et al. 1998]. Instead

of relating a program output to its input, MT relates multiple input-output pairs via

well-defined relations, known as metamorphic relations. MT suggests that even if a

test case does not cause any failure, follow-up test cases can be derived using meta-

23

morphic relations. If any input-output pairs violate the relation, the program under

test must contain errors. MT is normally used together with some test case selection

strategy, which is able to generate an initial test set.

Isotropic properties of context can be used to construct metamorphic relations. For

instance, similar context changes would entail similar responses from the application

under test [Tse et al. 2004]. We need to consider another question: when applying

metamorphic testing, who is going to identify such metamorphic relations? In reality,

we can expect application designers or experienced QA team to define these relations.

Therefore, the power of this technique relies on the quality of the set of metamorphic

relations, and the initial test set.

4.3.2 Extending Conventional Data Flow Testing Criteria

Data flow testing is a white-box testing technique that examines the life cycle of data

variables to detect improper use of data values due to implementation errors

[Badlaney et al. 2006]. In data flow testing, an adequacy criterion is used to guide the

test generation or selection process. Commonly used criteria are: all-def, all-uses, all-

du-paths. However, traditional data flow testing is not effective in revealing errors in

context-aware middleware-based applications. Lu et al. [2006; 2008] pointed out

some challenges [Lu et al. 2006; 2008]. For instance, data flow in such applications

will be affected by environment and context inconsistency resolution services. To

make the presentation clear, let’s first formally define context-aware middleware-

based application. We can define such an application as a triple <C, A, S>, where C is

a set of context variables, A is a set of adaptive actions, and S is a set of situations.

For each situation s = <Cs, p, a> ϵ S, we have a ϵ A, Cs ⊆ C, and p is a triggering

condition of s. Middleware takes care of situation detection, and invokes correspond-

ing actions, i.e. application layer program units. Now, it is time to discuss some of the

challenges.

— When traditional data-flow testing computes def-use associations, it focuses on the

application layer program units, and fails to consider the definitions or uses of con-

text variables in the middleware. Therefore, if one mistakenly sets a situation

condition, traditional data-flow technique are very likely to miss the error.

— In a conventional program, the value of variables can only be changed by the pro-

gram itself. However, in a context-aware application, the value context variables

can also be updated by the environment. Traditional techniques fail to consider

this type of variable definitions.

— Due to unforeseeable context changes and the ECA computing paradigm, the ap-

plication layer program units can be invoked in a non-deterministic order. In other

words, combinatorial explosion will be encountered. So it is hard to construct a

control flow graph for analyzing def-use associations.

To address these challenges, Lu et al. [2006] identified two novel types of def-use

associations. They are

— Def-Situ Association. The definition of a context variable occurs in application lay-

er program unit, or the context value is updated by environment. The usage occurs in

a situation condition, which is evaluated to true by middleware. Of course, the path

from definition to usage is def-clear with respect to the context variable.

— Pairwise Context-Aware DU Association. This association corresponds to the cir-

cumstance where both the definition and usage of variables, not restricted to context

variables, occur in application layer program units. Pairwise means we consider all

24

possible combinations of two program units. Consider an action pair <ai, aj>. This

association contains two subtypes. In the first type, definition occurs in ai, and usage

occurs in aj. In the second type, both definition and usages occur in the same action.

Based on the new def-use associations, Lu et al. [2006] extend traditional data-flow

testing by defining the following adequacy criteria.

— All Situations. This criterion requires every triggering condition to be evaluated to

true at least once.

— All Def-Situ Association. This criterion requires the test set to cover all def-situ

associations. It subsumes all situations criterion.

— All Pairwise Context-Aware DU Associations. This criterion requires the test set

to satisfy the def-situ association criterion, and cover all pairwise context-aware du

associations. It subsumes the previous two criteria.

In the most recent work, Lu et al. [2008] further proposed a set of testing adequa-

cy criteria for testing context-aware application with inconsistency resolution ser-

vices. Their observation is that context inconsistency resolution will affect data flow.

For example, a discarding context service will restore the definition of a context vari-

able to the previously killed one. Therefore, the effect on def-use associations of con-

text inconsistency resolution services should be taken into account, and new type of

associations should be defined. We do not detail this piece of work, as it adopts the

same research pattern with their previous one [Lu et al. 2006].

4.3.3 Automated Context-Aware Test Generation

Incorporation of context-awareness into pervasive applications introduces a new in-

put space, which can affect the application’s behavior at any time during the applica-

tion’s execution. This new input space refers to the unforeseeable contextual infor-

mation. It is challenging to anticipate all context changes, and when such changes

can affect the application’s behavior. For this reason, traditional testing approaches

based on control-flow or data-flow are not effective enough to discover errors which

only occur during a specific sequence of context changes. Wang et al. [2007] first pro-

Action Action

ContextHandler ContextHandler…

…

SubscribeTo

Application Layer

ContextManager

StartThread

Run Run

NotifySubscriberr NotifySubscriber

RegisterHandler RegisterEvent

Widget

Sensor

Context information

Interesting Event

Middleware Layer

Fig. 18. A typical architecture of context-aware applications

25

posed to take this issue into consideration, and presented a novel approach to im-

prove the effectiveness of existing test suite. Their technique assumes a typical archi-

tecture of context-aware applications, as presented in Fig. 18.

In the architecture, applications implement the context handler for each type of

event in which they are interested. Applications register the handlers as call backs

with middleware, and register their interested events with a widget, which is a

wrapper of physical sensors. When the widgets detect the occurrence of interesting

events, it will notify the context manager residing in middleware. Context manager

locates the corresponding handler, and starts a thread to notify the application. Then

the context handler will take actions to adapt to the context change, i.e., interesting

event. From this architecture, we can see that an effective testing technique should

consider the streaming and unpredictable nature of contextual data, and the parallel

handling of context changes.

Wang et al. [2007] proposed to use existing static analysis techniques to identify con-

text-aware program points where context changes may affect the program behavior,

and systematically manipulate the contextual data fed into the application to in-

crease the application’s exposure to context variations. Fig. 19 presents an overview

of their approach.

— Context-aware program points (capp) identifier. This component identifies con-

text-aware program points by analyzing the application source code. It relies on

side effect analysis to identify statements dependent on reading or writing contex-

tual data object fields. It also uses escape analysis to locate statements reading or

writing objects shared among context handler threads. The identifier outputs a set

Capps

Identifier

Program

Instrumentor

Context

ManipulatorContext

Driver

Generator

Annotated

Graph

Adequacy

Criteria

Context-aware

program (P)

P’

Test Suite (T)

Feedback on coverage

Context drive set

Data flow

Achieved coverage

& test case extensions

Fig. 19. Overview of automated test generation

Exit

Exit

capp1

capp3

capp4

Exit

Exit

0

capp2

capp5

capp6

Handler 1 Handler 2

Fig. 20. Two example handlers

26

of inter-procedural control flow graphs, in which capp nodes are annotated, as

shown in Fig. 20.

— Context driver generator. This component explores potential context handler

thread interleavings, and generates a set of context drivers, which fulfills certain

coverage criterion. A context driver is a sequence of capp nodes, which will be used

to drive the test execution. For example, a traversal across the two handlers in Fig.

20 could generate (capp1, capp2). This driver will try to pause the execution of

handler 1 at capp1, and start the execution of handler 2 in order to reach capp2. In

other words, it explores one possible thread interleaving. Different coverage crite-

ria can be defined. We introduce one example here. StoC-k requires the drivers to

cover all possible combinations of k switches between handlers. For instance, a set

D = {(capp1, capp2), (capp5, capp3), (capp3, capp3), (capp5, capp5)} satisfies StoC-1,

because it covers all possible 1-switches between handler 1 and hander 2, i.e., {1 to

2, 2 to 1, 1 to 1, 2 to 2}. Of course, the last two switches are between two different

handler threads, which happen to handle the same type of context.

— Program instrumentor. This component instruments the original program P by

incorporating a scheduler to enable context manipulation. More specifically, it in-

serts a call to enterScheduler() function before each capp, and a call to exitSched-

uler() after each capp. The function enterScheduler() determines whether the next

capp should be executed according to a context driver. If no, the current handler

thread will wait for its turn to come. If yes, the capp will be executed and the ex-

itScheduler() function will notify other waiting handler threads, and mark the

capp as executed.

— Context manipulator. This component takes the instrumented program P’, a set of

context drivers, and the original test suite as inputs. It runs each test case on P’,
and tries to drive the execution towards the interesting scenarios defined by each

context driver. It is possible that the manipulator fails its mission. For example,

when executing the test case, none of the capps in the context driver is encoun-

tered. In this case, the achieved coverage could be lower than expected. If that

happens, a new set of context drivers can be generated to guide the manipulation

again in order to expose the application to more scenarios.

This automated approach can be generalized to test a wide range of context-aware

applications, which adopt similar architecture to the one in Fig. 18. Of course, if test

cases are not available, this approach needs to work with other testing techniques,

which help generate an initial test suite.

5. POSSIBLE RESEARCH DIRECTIONS

Extensive research has been done to ease the development of context-aware applica-

tions, and enhance their quality. With the advance of mobile technologies, and the

increasing deployment of infrastructures that support pervasive computing, context-

awareness will be incorporated into a wide range of applications. In the future, there

are many possible directions to go. We list a few of them in this section.

— Context-aware applications are commonly driven by rules. In order to help end

users to configure a rule set without any logic errors, light-weight checking algo-

rithms should be designed. We conjecture that future context-aware applications

will contain a checking component, which guarantees the consistency of rules de-

fined by end users.

— Context-aware applications commonly adopts ECA computing paradigm, and

therefore resembles event-driven applications. When analyzing such applications,

27

enumerating all possible handler invocation sequences is impossible, given limited

computational resource. Therefore, what kind of critical handler interactions

should be explored remains an unsettled problem.

— Simulation is a good way to test context-aware applications. Because of the unpre-

dictable nature of context, any context change is possible. Effective simulation

should consider the model of the end user’s environment. As long as the environ-

ment model is available, simulation can be done to see whether applications re-

spond to context changes as expected. Applications developed for a specific domain,

such as a museum tour side, can benefit a lot from this technique.

6. CONCLUSION

In this survey, we have studied a wide range of research projects related to context-

aware pervasive applications. We introduced several typical middleware infrastruc-

tures and toolkits, which facilitate the development and runtime operations of con-

text-aware applications. We also introduced some useful techniques that help en-

hance the application quality. Over the past two decades, the idea of incorporating

context-awareness into applications has been widely spread. In the future, more work

has to be done to further improve the reliability of such applications. In this way,

context-aware applications will truly facilitate every end user’s daily life by providing

services imperceptibly.

REFERENCE

ABOWD, G. D. 1999. Software engineering issues for ubiquitous computing. In Proceedings of the 21st
International Conference on Software Engineering (ICSE’99). ACM, Los Angeles, CA, 75-84.

ABOWD, G. D., ATKESON, C. G., HONG, J., LONG, S., KOOPER, R., AND PINKERTON, M. 1997.

Cyberguide: a mobile context-aware tour guide. Wirel. Netw. 3, 5, 421-433.

ABOWD, G. D., DEY, A. K., BROWN, P. J., DAVIES, N., SMITH, M., AND STEGGLES, P. 1999. Towards

a better understanding of context and context-awareness. In Proceedings of the 1st International Sym-
posium on Handheld and Ubiquitous Computing (HUC'99), Springer-Verlag, London, UK, 304-307.

BALDAUF, M., DUSTDAR, S., AND ROSENBERG, F. 2007. A survey on context-aware systems. Int. J.
Ad Hoc Ubiquitous Comp. 2, 4, 263-277.

BADLANEY, J., GHATOL, R., AND JADHWANI, R. 2006. An introduction to data-flow testing. Tech. Rep.

TR-2006-22, Department of Computer Science, North Carolina State University, Raleigh, NC.

BELLAVISTA, P., CORRADI, A., MONTANARI, R., AND STEFANELLI, C. 2003. Context-aware middle-

ware for resource management in the wireless Internet. IEEE Trans. Soft. Engr. 29, 12, 1086-1099.

BIEGEL, G., AND CAHILL, V. 2004. A framework for developing mobile, context-aware applications. In

Proceedings of the 2nd International Conference on Pervasive Computing and Communications
(PerCom’04). IEEE, Washington, DC, 361-365.

BU, Y., GU, T., TAO, X., LI, J., CHEN, S., AND LV, J. 2006. Managing quality of context in pervasive

computing. In Proc. the 6th International Conference on Quality Software, Beijing, China, 193-200.

CAPRA, L., EMMERICH, W., AND MASCOLO, C. 2003. CARISMA: context-aware reflective middleware

system for mobile applications. IEEE Trans. Soft. Engr. 29, 10, 929-944.

CHAN, A. T. S., AND CHUANG, S. 2003. MobiPADS: a reflective middleware for context-aware mobile

computing. IEEE Trans. Soft. Engr. 29, 12, 1072-1085.

CHEN, G., AND KOTZ, D. 2000. A survey of context-aware mobile computing research. Tech. Rep.

TR2000-381, Department of Computer Science, Dartmouth College, Hanover, NH.

CHEN, T.Y., CHEUNG, S.C., AND YIU, S. M. 1998. Metamorphic testing: a new approach for generating

next test cases, Technical Report HKUST-CS98-01, Department of Computer Science, Hong Kong Uni-

versity of Science and Technology, Hong Kong.

CHENG, B. H. et al. 2009. Software engineering for self-adaptive systems: a research roadmap. Software
Engineering for Self-Adaptive Systems. Springer-Verlag, Berlin, Heidelberg.

CHEVERST, K., DAVIES, N., MITCHELL, K., FRIDAY, A., AND EFSTRATIOU, C. 2000. Developing a

context-aware electronic tourist guide: some issues and experiences. In Proceedings of the SIGCHI con-
ference on Human Factors in Computing Systems, ACM, New York, NY, 17–24.

CHEVERST, K., MITCHELL, K., AND DAVIES, N. 1999. Design of an object model for a context sensitive

tourist GUIDE. Computers and Graphics 23, 6, 883-891.

28

CHOMICKI, J., LOBO, J., AND NAQVI, S. 2003. Conflict resolution using logic programming. IEEE Trans.
on Knowledge and Data Engineering 5, 1. 244-249.

CRAFTY APPS 2011. Tasker 2011. http://tasker.dinglisch.net/.

DEY, A.K. 1998. Context-aware computing: The CyberDesk project. In Proceedings of the AAAI, Spring
Symposium on Intelligent Environments, Menlo Park, CA.

DEY, A.K. 2000. Providing Architectural Support for Building Context-Aware Applications. PhD thesis,

Georgia Institute of Technology.

DEY, A. K. 2001. Understanding and using context. Personal and Ubiquitous Computing 5, 1, 4-7.

EGYED, A. 2006. Instant consistency checking for the UML. In Proceedings of the 28th International Con-

ference on Software Engineering. 381–390.

ESFAHANI, N., KOUROSHFAR, E., AND MALEK, S. 2011. Taming uncertainty in self-adaptive software.

In Proceedings of the 19th International Symposium on the Foundations of Software Engineering
(FSE’11). ACM, Szeged, Hungary, 234-244.

GRISWOLD, W. G., SHANAHAN, P., BROWN, S. W., BOYER, R., RATTO, M., SHAPIRO, R. B., AND

TRUONG, T. M. 2004. ActiveCampus: Experiments in Community-Oriented Ubiquitous Computing.

Computer 37, 10, 73-81.

GU, T., PUNG, H. K., AND ZHANG, D. Q. 2005. A service-oriented middleware for building context-aware

services. Journal of Network and Computer Applications 28, 1, 1-18.

Helsinki 2005. ContextPhone. http://www.cs.helsinki.fi/group/context/.

HULL, R., NEAVES, P., AND BEDFORD-ROBERTS, J. 1997. Towards situated computing. In Proceed-
ings of the International Symposium on Wearable Computers.

INIZZIATIVA NETWORKS 2011. Sweet Dreams 2011. https://market.android.com/details?id=com.inizz.

JULIEN, C., AND ROMAN, G. C. 2006. EgoSpaces: facilitating rapid development of context-aware mobile

applications. IEEE Trans. Softw. Engineering 32, 5, 281-298.

KJÆ R, K. E. 2007. A survey of context-aware middleware. In Proceedings of the 25th Conference on
IASTED International Multi-Conference: Software Engineering (SE’07). ACTA Press, Anaheim, CA,

148-155.

KORPIPAA, P., MANTYJARVI, J., KELA, J., KERANEN, H., AND Malm, E.J. 2003. Managing context

information in mobile devices. IEEE Pervasive Computing 2, 3, 42-51.

KRAMER, J., AND MAGEE, J. 2007. Self-managed systems: an architectural challenge. In Proceedings of
Conference on Future of Software Engineering (FOSE’07). Minneapolis, MN, 259-268.

KULKARNI, D., AND TRIPATHI, A. 2010. A framework for programming robust context-aware applica-

tions. IEEE Trans. Softw. Engr. 36, 2, 184-197.

TWO FORTY FOUR A.M. LLC 2011. Locale 2011. http://www.twofortyfouram.com/.

LU, H., C HAN, W.K., AND TSE, T.H. 2006. Testing context-aware middleware-centric programs: a data

flow approach and an RFID-based experimentation. In Proceedings of the 14th International Symposi-
um on Foundations of Software Engineering (FSE’06). ACM, Portland, Oregon, USA, 242-252.

LU, H., C HAN, W.K., AND TSE, T.H. 2008. Testing pervasive software in the presence of context incon-

sistency resolution services. In Proceedings of the 30th International Conference on Software Engineer-
ing (ICSE '08). ACM, Leipzig, Germany, 61-70.

MCCARTHY, J., AND BUVAC 1997. Formalizing context (expanded notes). In Working Papers of the
AAAI Fall Symposium on Context in Knowledge Representation and Natural Language. American As-

sociation for Artificial Intelligence, Menlo Park, California, 99–135.

MCKINLEY, P. K., STIREWALT, R. E. K., CHENG, B. H. C., DILLON, L. K., AND KULKARNI, S. 2005.

RAPIDware: component-based development of adaptive and dependable middleware. Project Rep., De-

partment of Computer Science and Engineering, Michigan State University, East Lansing, Michigan.

MSU 2007. RAPIDware: Component-Based Development of Adaptable and Dependable Middleware.

http://www.cse.msu.edu/rapidware/.

PREKOP, P., AND BURNETT, M. 2003. Activities, context and ubiquitous computing. Special Issue on
Ubiquitous Computing Computer Communications 26, 11.

ROMÁ N, M., HESS, C. K., CERQUEIRA, R., RANGANATHAN, A., CAMPBELL, R. H., AND

NAHRSTEDT, K. 2002. A middleware infrastructure for active spaces. 2002. IEEE Pervasive Compu-
ting 1, 4, 74-83.

SALBER, D., DEY, A. K., AND ABOWD, G. D. 1999. The context toolkit: aiding the development of con-

text-enabled applications. In Proceedings of the SIGCHI Conference on Human factors in computing
systems: the CHI is the limit (CHI '99). ACM, New York, NY, 434-441.

SAMA, M., ELBAUM, S., RAIMONDI, F., ROSENBLUM, D. S, AND WANG, Z. 2010a. Context-aware

adaptive applications: fault patterns and their automated identification. IEEE Trans. Softw. Engr. 36,

5, 644-661.

SAMA, M., RAIMONDI, F., ROSENBLUM, D., AND EMMERICH, W. 2008a. Algorithms for efficient sym-

bolic detection of faults in context-aware applications. In Proceedings of 23th International Conference
on Automated Software Engineering – Workshop, 1-8.

SAMA, M., ROSENBLUM, D. S, WANG, Z., AND ELBAUM, S. 2008b. Model-based fault detection in con-

text-aware adaptive applications. In Proceedings of the 16th International Symposium on Foundations
of Software Engineering (FSE’08). ACM, Atlanta, Georgia, USA, 261-271.

29

SAMA, M., ROSENBLUM, D. S, WANG, Z., AND ELBAUM, S. 2010b. Multi-layer faults in the architec-

tures of mobile, context-aware adaptive applications. J. Syst. Softw. 83, 6, 906-914.

SATOH, I. 2003. A testing framework for mobile computing software. IEEE Trans. Softw. Engr. 29, 12,

1112- 1121.

SCHILIT, B., ADAMS, N., WANT, R. 1994. Context-aware computing applications. In the Workshop on
Mobile Computing Systems and Applications, 85-90.

STRANG, T., AND LINNHOFF-POPIEN, C. 2004. A context modeling survey. In First International
Workshop on Advanced Context Modeling, Reasoning and Management (UbiComp 2004).

SUMI, Y., ETANI, T., FELS, S., SIMONET, N., KOBAYASHI, K., AND MASE, K. 1998. C-map: Building a

context-aware mobile assistant for exhibition tours. In Community Computing and Support Systems,
Social Interaction in Networked Communities, Springer-Verlag, London, UK, 137–154..

TSE, T.H., AND YAU, S.S. 2004. Testing context-sensitive middleware-based software applications. In the

Proceedings of the 28th Annual International on Computer Software and Applications (COMPSAC ’04).
IEEE, Washington, DC, 458-466.

W3C 2004a. Composite Capability/Preference profiles (CC/PP): Structure and Vocabularies 1.0.

http://www.w3.org/TR/CCPP-struct-vocab/.

W3C 2004b. OWL Web Ontology Language. http://www.w3.org/TR/owl-features/.

WANG, Z., ELBAUM, S., AND ROSENBLUM, D. S. 2007. Automated generation of context-aware tests.

In Proceedings of the 29th International Conference on Software Engineering (ICSE '07). IEEE, Wash-

ington, DC, USA, 406-415.

WANT, R., HOPPER, A., FALCÄ O, V., AND GIBBONS, J. 1992. The active badge location system. ACM
Trans. Inf. Syst. 10, 1, 91-102.

WEISER, M. 1991. The computer for the 21st century. Scientific American 265, 3, 94-104.

XU, C., AND CHEUNG, S. C. 2005. Inconsistency detection and resolution for context-aware middleware

support. In Proceedings of the 13th International Symposium on Foundations of Software Engineering
(FSE’05). ACM, Lisbon, Portugal, 336-345.

XU, C., CHEUNG, S. C., AND CHAN, W. K. 2006. Incremental consistency checking for pervasive context.

In Proceedings of the 28th International Conference on Software Engineering (ICSE'06). ACM, Shang-

hai, China, 292-301.

XU, C., CHEUNG, S. C., CHAN, W. K., AND YE, C. 2007. On impact-oriented automatic resolution of

pervasive context inconsistency. In Proceedings of the 15th International Symposium on the Founda-
tions of Software Engineering (FSE '07). ACM, Dubrovnik, Croatia, 569-572.

XU, C., CHEUNG, S. C., CHAN, W. K., AND YE, C. 2008. Heuristics-based strategies for resolving context

inconsistencies in pervasive computing applications. In Proceedings of the 28th International Confer-
ence on Distributed Computing Systems (ICDCS'08). IEEE, 713-721.

XU, C., CHEUNG, S. C., CHAN, W. K., AND YE, C. 2010. Partial constraint checking for context con-

sistency in pervasive computing. ACM Trans. Softw. Engr. Methodol. 19, 3.

XU, C., CHEUNG, S. C., LO, C., LEUNG, K. C., AND WEI, J. 2004. Cabot: on the ontology for the middle-

ware support of context-aware pervasive applications. In Proceedings of the IFIP Workshop on Build-
ing Intelligent Sensor Networks (BISON’04). Wuhan, China, 568-575.

YAU, S. S., KARIM, F., WANG, Y., WANG, B., AND GUPTA, S. K. S. 2002. Reconfigurable context-

sensitive middleware for pervasive computing. IEEE Pervasive Computing 1, 3, 33-40.

ZHANG, J., AND CHENG, B. H. C. 2006a. Model-based development of dynamically adaptive software. In

Proceedings of the 28th International Conference on Software Engineering (ICSE’06). ACM, Shanghai,

China, 371-380.

ZHANG, J., AND CHENG, B. H. C. 2006b. Using temporal logic to specify adaptive program semantics. J.
Syst. Softw. 79, 10, 1361-1369.

