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ABSTRACT automated and requires only the CUT and its dependencies as in-

In unit testing, mocking is popularly used to ease test effort, reduce
test flakiness, and increase test coverage by replacing the actual
dependencies with simple implementations. However, there are no
clear criteria to determine which dependencies in a unit test should
be mocked. Inappropriate mocking can have undesirable conse-
quences: under-mocking could result in the inability to isolate the
class under test (CUT) from its dependencies while over-mocking
increases the developers’ burden on maintaining the mocked ob-
jects and may lead to spurious test failures. According to existing
work, various factors can determine whether a dependency should
be mocked. As a result, mocking decisions are often difficult to
make in practice. Studies on the evolution of mocked objects also
showed that developers tend to change their mocking decisions:
17% of the studied mocked objects were introduced sometime af-
ter the test scripts were created and another 13% of the originally
mocked objects eventually became unmocked. In this work, we
are motivated to develop an automated technique to make mock-
ing recommendations to facilitate unit testing. We studied 10,846
test scripts in four actively maintained open-source projects that
use mocked objects, aiming to characterize the dependencies that
are mocked in unit testing. Based on our observations on mock-
ing practices, we designed and implemented a tool, MockSniffer,
to identify and recommend mocks for unit tests. The tool is fully
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put. It leverages machine learning techniques to make mocking
recommendations by holistically considering multiple factors that
can affect developers’ mocking decisions. Our evaluation of Mock-
Sniffer on ten open-source projects showed that it outperformed
three baseline approaches, and achieved good performance in two
potential application scenarios.
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1 INTRODUCTION

Unit testing has been widely adopted to assure the quality of pro-
gram units, namely classes, by testing them in isolation. In practice,
a class under test (CUT) is commonly coupled with other classes in
a program or its referenced libraries. These classes are the depen-
dencies of the CUT and often participate in its unit tests. Mocking
is a defacto mechanism to isolate the CUT from its dependencies
in a test by simulating the behaviors of the dependencies using
mocked objects [28]. It was reported that 23% of the Java projects
with test scripts use mocking [32].
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To conduct effective unit testing using mocking, developers first
need to make mocking decisions, i.e., deciding which dependencies
should be mocked. However, it is non-trivial to make proper mock-
ing decisions. A study showed that developers may change their
initial mocking decisions during development [36]. 17% of their
studied mocked objects were introduced sometime after the test
scripts were created. Another 13% of the originally mocked objects
eventually became unmocked. This suggests that the original mock-
ing decisions were later considered improper by the developers.
Making proper mocking decisions is challenging because: (1) Mock-
ing decisions are unlikely to be made by considering only a single
factor. In practice, developers may need to consider multiple fac-
tors holistically to make a mocking decision. (2) Mocking decisions
are usually context-aware. Developers can make different mocking
decisions for the same dependency when testing different CUTs
according to the different usage scenarios of the dependency.

Inappropriate mocking decisions can lead to undesirable conse-
quences. On the one hand, dependencies that should be mocked
can be left unmocked in test scripts. Such under-mocking could
result in the inability to isolate the CUT from its dependencies,
which can seriously affect the efficiency of unit testing. The de-
velopers fixed this issue by mocking the real object [1]. On the
other hand, dependencies that do not need mocking can be mocked
by developers. Such over-mocking increases developers’ burden
on maintaining the mocked objects since they need to keep the
behaviors of the mocked objects consistent with the real implemen-
tations. Inconsistencies between the mocked objects and the real
implementations can cause spurious failures in testing. For example,
in issue 16300 [5] of project Flink, the method getID() in mocked
ExecutionVertex returns a null value and thus caused null pointer
exceptions (NPEs) in test executions. However, in the real imple-
mentation of ExecutionVertex, the method getID() will never
return null. In this case, the failure caused by NPEs does not reveal
areal bug. Developers replaced the mocked ExecutionVertex with
a real one to fix this issue. The evolution of the project code can
further exacerbate the problem since developers need to update the
mocked objects to catch up with the code evolution. If too many
dependencies are mocked, it would be difficult for the developers
to update the mocked objects in time.

Given the challenges in making proper mocking decisions, stud-
ies were conducted to find out the factors that affect mocking deci-
sions. For example, Mostafa et al. [32] pointed out that production
classes are more frequently mocked than library classes. Spadini et
al. [36] categorized mocked objects and found that classes dealing
with external resources are often mocked by developers. Marri et
al. [31] revealed that file system APIs can be mocked to facilitate
unit testing. These studies investigated the mocking practices and
identified high-level and intuitive factors that can affect mocking
decisions. In addition, these factors are all generic to CUTs without
considering their interactions with the dependencies. With such
advice, it is still difficult for developers to make proper mocking
decisions when writing test scripts. Researchers have pointed out
the need for automated mock recommendation techniques [31, 32].
Yet, none of the existing work has proposed such a technique. In
fact, the high-level and project-generic characteristics of mocked
dependencies identified by these studies cannot effectively guide
the design of automated mock recommendation techniques.
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This motivates us to conduct an empirical study to characterize
mocked dependencies at the code level by analyzing API usages,
data flows, control flows, etc. We aimed to identify those character-
istics that can be automatically extracted via code analysis so that
we can leverage them to build automated mock recommendation
techniques. In our empirical study, we analyzed 10,846 test scripts
of four large-scale open-source projects (such as Hadoop). When
conducting the empirical study, we not only studied the character-
istics of the dependencies themselves but also investigated their
interactions with the CUTs in different test cases. We made several
important observations that were not captured by existing studies.
Specifically, we identified ten characteristics of mocked objects at
the code level. We found that all of the ten characteristics can affect
mocking decisions yet none of them is the sole determining fac-
tor. This provides evidence for the fact that mocking decisions are
made by considering multiple factors, and thus we shall holistically
consider different factors to recommend mocking decisions. We
also observed that context-aware factors, which capture the inter-
actions between dependencies and CUTs, are the most relevant to
the mocking decisions. This indicates that an automated mocking
decision recommendation technique should be context-aware, i.e.,
considering the interactions between the dependencies and the CUTs.

Based on our empirical findings, we further proposed a technique,
MockSniffer, to recommend mocking decisions in unit testing. Mock-
Sniffer makes context-aware recommendations for dependencies
of CUTs in unit testing. It takes a CUT and its dependencies as
input and outputs a recommended mocking decision for each of the
input dependencies. It also holistically combines various factors to
suggest mocking decisions by leveraging machine learning tech-
niques with features formulated from our empirical study findings.
MockSniffer learns the knowledge of making mocking decisions
from existing mocking practices and leverages the knowledge to
recommend future mocking decisions.

In our evaluation, we trained and tested MockSniffer with 546k
data entries of mocked and unmocked dependencies extracted from
ten open-source projects. We compared the performance of Mock-
Sniffer with the generic mocking decision strategies adopted in
existing studies. Our results show that MockSniffer, which performs
context-aware mocking recommendations, can significantly out-
perform the baseline methods as shown by the Mann-Whitney
U-Test[30]. We also evaluated MockSniffer under two potential ap-
plication scenarios: (1) for mature projects, train MockSniffer with
data extracted from historical releases of the same project to conduct
cross-version mocking recommendation, and (2) for new projects,
train MockSniffer with data extracted from other projects to con-
duct cross-project mocking recommendation. Our evaluation re-
sults showed that MockSniffer achieved good performance in both
of these two application scenarios: it achieves an average F1-score
of 69.40% and 70.77% for the two application scenarios respectively.

To summarize, this paper makes three major contributions:

e We conducted an empirical study based on 10,846 test scripts of
four large-scale open-source projects and disclosed ten code-level
characteristics of the mocking practices of real-world developers.
We also validated our findings in a large-scale dataset consisting
of 354k mocked and unmocked dependencies. In our study, we
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1 public int countFiles() { // Production code
try{
return fileManager.scan().length;
} catch(IOException e) {
return 0;
}
}

R N RS NN

public void testl() { // Test script

10 FileManager mgr = mock(FileManager.class);

11 when(mgr.scan()).thenReturn(new File[500]{});
12 UnderTest cut = new UnderTest(mgr);

13 assertEquals (500, cut.countFiles());

14 }

16 public void test2() { // Test script

17 FileManager mgr = mock(FileManager.class);

18 when(mgr.scan()).thenThrow(new IOException());
19 UnderTest cut = new UnderTest(mgr);

20 assertEquals(0, cut.countFiles());

Listing 1: Example Usage of Mocked Objects

observed mocking decisions are affected holistically by various
factors, among which contextual features play an important role.

e We designed and implemented MockSniffer, the first automated
technique to recommend mocking decisions for unit testing. Our
evaluation of MockSniffer on open-source projects showed that
MockSniffer significantly outperformed the mocking strategies
adopted by existing studies and achieved good performance in
two potential application scenarios.

o In our study, we have generated a large labeled dataset consisting
of 546k data entries of test cases, dependencies, and CUTs. We
released this dataset for public access to facilitate future research
(https://doi.org/10.5281/zenodo.3783869).

2 BACKGROUND

In unit tests, mocked objects help decouple a CUT from its de-
pendencies. Mocked objects are usually created by leveraging a
mocking framework. Take test1() in Listing 1 as an example. The
production code at line 3 involves disk I/O. To save effort in set-
ting up the environment for testing, at line 11, developers create a
mocked FileManager object using Mockito [8], a popular mocking
framework. Then, the mocked object mgr directly returns a File
array without accessing the disk (at line 11). This also speeds up test
executions as disk I/O can be slow. Similarly, the production code
at line 5 is not executed unless exceptions occur at line 3. To em-
ulate the exceptional scenarios, in test2(), developers construct
a mocked FileManager object and make it throw an exception
directly when the method scan() is invoked.

Apart from mocked objects created with mocking frameworks,
we also observed that developers can construct mocked objects by
creating dummy classes that extend the concerned dependencies.
For example, in the test script of project HBase, developers created
a class KeyProviderForTesting, which is a subclass of the pro-
duction class KeyProvider. They mentioned in the document that
the class is to return a fixed secret key for testing. Instances of such
classes created in the test scripts serve the same purpose as those
mocked objects created with mocking frameworks.

Mocking has been widely used in unit test generation techniques.
For example, Arcuri et al. [13] enhanced EvoSurTk [22] by lever-
aging mocking to increase code coverage and reduce flaky tests.
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Alshahwan et al. proposed AUTOMOCK [12] to improve the per-
formance of test case generation by mocking the environment. Till-
mann et al. [38] proposed a symbolic-execution-based technique to
generate mocked objects for unit testing. Although these studies
found that mocking can facilitate test generation, they also reported
that generated test cases with mocked objects can introduce spuri-
ous test failures (i.e., false alarms). The underlying reason is that
there is no reliable mechanism to help decide which dependencies
to mock during test generation. When making mocking decisions,
these existing techniques have to resort to simple rules (e.g., all
database and file system related dependencies should be mocked).
Such mocking decisions contradict with the practices of real-world
developers, who often mock only a small portion of dependencies
(e.g., file system related dependencies are not always mocked) [32],
and may result in substantial false alarms [15, 34]. To reduce such
false alarms, existing studies proposed several strategies [12, 15],
such as confining the values that can be returned by method calls
on mocked objects. Although these strategies can help reduce false
alarms, it would be better to mock only when necessary. In the fol-
lowing sections, we will study the mocking practices of developers
and figure out the factors that can affect mocking decisions.

3 DATA COLLECTION

In order to understand the mocking practices adopted by develop-
ers, we constructed a dataset by extracting CUTs, their dependen-
cies, and developers’ mocking decisions from open-source projects.
This dataset will enable us to study whether developers share simi-
lar practices when making mocking decisions. In this section, we
present its construction process in detail.

3.1 Data Representation

Each entry in our dataset is a tuple: < T,CUT,D,L > where T
represents the test case, CUT represents the class under test, D
represents the dependency (a class used in T, but not CUT), and L €
{mocked, unmocked} is a label that represents whether D is mocked
in the test case T. For example, <TestCachingKeyProvider. test-
KeyVersion, CachingKeyProvider, KeyProvider, mocked> is
a data entry extracted from Hadoop [2]. It means that developers
mocked the dependency KeyProvider in the test case TestCachi-
ngKeyProvider. testKeyVersion for CUT CachingKeyProvider.
Such a data entry not only captures the developers’ mocking de-
cision on a dependency but also links dependencies to CUTs. We
include the links in our dataset because the mocking decisions for
the same dependency can vary across CUTs [36].

3.2 Subjects and Data Extraction

For constructing the dataset, we selected four actively-maintained
open-source projects. Table 1 shows the information about these
projects. These projects all use Mockito [8] or define dummy classes
to construct mocked objects. As we can see from the table, the
projects are large-scale. In the following, we explain our data ex-
traction procedure.

Existing studies leveraged static analysis to identify mocked ob-
jects in test cases. However, such identification may be imprecise.
For example, developers of Hadoop created a factory method [6] to
create mocked objects of EventWriter. Depending on the value of
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Table 1: Selected Projects

Project Version Files LOC DataEntries Mocked
Hadoop 3.2.1 10,034 1.6M 325,335 14,771
Camel 3.1.0 18,245 1.3M 12,962 1,864
HBase 2.23 3,976 738k 11,990 1,093
Storm 2.1.0 2,354 282k 3,648 377
Total 34,609 3.9M 353,935 18,105

the field mockHistoryProcessing in the test class, the test cases
may or may not create a mocked object of EventWriter. It is dif-
ficult for static analysis to precisely infer whether such objects in
each test case are mocked or not. In our work, to obtain a more
precise dataset, we leveraged dynamic analysis to identify mocked
objects and extract data entries. We explain the main ideas below.

For each test case T, we first infer its class under test (i.e., the
CUT), using naming heuristics. According to commonly adopted
naming conventions, the name of a test class typically contains the
name of the CUT (e.g., TestMyClass is a test class for MyClass).
Hence, we can analyze the class name of T to infer CUT. Next, to
analyze whether a dependency D is mocked in T. In this paper,
we regard the non-CUT objects created during test case execution
and passed to the CUT directly or indirectly as test dependencies.
Such objects are usually passed via method calls on the CUT and
its dependencies. Therefore, we instrumented all method call sites
in T to log the exact type of each reference-type argument and
the type of the corresponding formal parameter. We observed that
mocked objects created with popular mocking frameworks (e.g.,
Mockito [8], EasyMock [3]) have special type names. For example,
when using Mockito [8], the type names of the mocked objects
are in the form Foo$MockitoMock$xxx, where xxx is a hash code.!
Therefore, after executing T, we can analyze the logged information
to infer whether an argument is a mocked object (i.e., determine
the label L) via checking its type name and obtain the dependency
D, which is the type of the corresponding formal parameter.

As mentioned in Section 2, developers may construct mocked
objects by themselves rather than using a mocking framework. To
include such mocked objects in our dataset, we also considered
objects as mocked ones if they are instances of classes that (1) are
defined in test scripts, and (2) extend a class in the production code.
In this case, dependency D is identified as the production class
being extended (i.e., KeyProvider in the example in Section 2).

While the above approach may miss some test dependencies
(e.g., those specified via configuration files or assigned directly to
a public field), it helped us collect 354k data entries from the four
open-source projects after running 50k test cases. Such collected
data entries are already sufficient for our empirical study.

4 EMPIRICAL STUDY

To identify the factors that can affect the mocking decisions, we
conducted an empirical study on the projects based on the dataset
extracted (Section 3). We aimed to derive a set of rules to capture
the characteristics of the mocked objects via analyzing their code

!We also checked the pattern in other mocking frameworks in our implementation.
We skip the details due to page limit.
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patterns. Such rules can further guide us to design automated tech-
niques to help developers make mocking decisions.

4.1 Setup

We adopted a two-stage scheme when conducting the empirical
study. In the first stage, we manually inspected a small subset of the
dataset to devise code-level characteristics of the mocked objects. In
the second stage, we formulated the code-level characteristics into
rules and conducted an automated validation of these rules with a
large-scale dataset, aiming to validate the derived characteristics.

Stage 1: Characteristics identification. In the first stage, we
manually inspected 100 data entries in the dataset to identify charac-
teristics of the dependencies that are mocked by developers. Specifi-
cally, we randomly sampled 25 data entries labeled as mocked from
each of the four projects. For each sampled entry, we analyzed the
source code of the dependency, the CUT, and the test script from
which the data entry is extracted. We inspected the data entries
using the open coding method [20] to identify common code-level
characteristics (e.g., data flow, control flow, and API usage) of the
mocked dependencies and their interactions with the CUTs. Al-
though the sampling size is small, our identified characteristics can
cover 94.82% (on average) of the mocking cases as shown in our
evaluation (see the recall of Baseline #3 in Table 5).

Stage 2: Large-scale validation. In the second stage of the em-
pirical study, we further validated the code-level characteristics of
mocked dependencies identified in stage 1 using the entire dataset.
Specifically, based on the manually-identified characteristics, we
formulated several rules to automatically identify the data entries
that exhibit the characteristics. For each of the rules, we applied
it to all 354k data entries in our dataset to obtain a subset of data
entries that match this rule. For each of the subsets, we computed
its mock ratio, i.e., the proportion of entries labeled as mocked. We
compared the mock ratio of each subset with the mock ratio of the
entire dataset, which is 5.1%. The larger the difference in the mock
ratio, the more likely the corresponding code-level characteristic
can affect mocking decisions.

4.2 Results

Following the process described above, we made five observations
and formulated ten rules (i.e., code-level characteristics) in stage 1.
In the following, we will discuss our observations and the formu-
lated rules. We will also present the mock ratio obtained in stage 2
for each data entry subset that matches each rule. The mock ratio
is presented in the brackets after each rule.

Observation 1: Classes related to environment or concur-
rency are often mocked. In 51 of the 100 manually-inspected
entries, the dependencies invoke APIs related to concurrency, net-
working, disk I/O, or APIs provided by online services (e.g., Amazon
AWS, Microsoft Azure). These APIs can be slow to execute or exhibit
inconsistent behaviors across different test runs. We formulated
the following rules based on this observation.
¢ Rule 1.1: Referencing environment-dependent or concur-

rent classes (11.8%). Classes matching this rule call APIs related

to the environment or concurrency. We manually built a list of
such APIs (at class level) in JDK, including those related to net-
working, disk I/O, concurrency, database, etc. We found that these
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APIs are frequently used in mocked classes but infrequently used
in unmocked ones. This rule matches the data entries where the
dependency references such APIs more frequently than aver-
age of all dependencies in our entire dataset. (For succinctness,
we use “more than average” to describe where a certain metric
computed with a subset is higher than the average value of that
metric in our entire dataset.) Here, we consider both direct and
transitive references to include the cases where these APIs are
not called directly (i.e., called in the callees of the dependencies).

Rule 1.2: Encapsulating external resources (7.4%). We also
considered classes that encapsulate external resources, which
usually implement certain interfaces. For example, classes encap-
sulating network connections usually implement the interface
Closable. We manually built a list of such interfaces from the
classes encapsulating external resources in our inspected dataset.
This rule matches the data entries, in which the dependency
implements interfaces in the list.

e Rule 1.3: Calling synchronized methods (13.8%). Classes per-
forming concurrent operations would usually call synchronized
methods. This rule matches the data entries where the depen-
dency calls more synchronized methods than average.

As the numbers in the brackets show, these rules produced subsets
of data entries with higher mocking ratios than that of the entire
dataset (5.1%), indicating that dependencies matching these rules
are more likely to be mocked. This is natural because such depen-
dencies often complicate unit testing [36]. For example, to prepare
the test environment for a class that makes network requests, de-
velopers need to set up a running server first. Besides, a class that
performs concurrent operations may produce inconsistent results
across different test runs due to inherent non-determinism of sched-
uling. Such inconsistency would make the test flaky [27]. Therefore,
developers would like to mock such classes to avoid these problems.

Observation 2: Complicated classes are often mocked. We
found that in 23 of the 100 entries, the dependencies are complicated
in terms of the number of fields or referenced classes. Take the class
Configuration in Hadoop as an example. It has 113 methods and
23 fields. Also, it imports 78 classes from other packages. To create
a real instance of such a class in a test, developers need to initialize
all its dependencies, many of which may not be relevant to the test.
As a result, developers mocked this class in test cases. We designed
the following rules to find such complicated classes.

e Rule 2.1: Excessive fields (8.8%). Classes with lots of fields can
represent complex data structures. Such classes are not easy to set
up in testing and thus are likely to be mocked. This rule matches
the data entries where the dependency has a larger number of
fields than the average of the whole dataset.

e Rule 2.2: A large number of dependencies (7.9%). Classes
with a large number of dependencies are also difficult to set up in
testing and are likely mocked by developers. This rule matches
the data entries where the dependency references (directly and
transitively) more classes than average.

The two rules also produced subsets with higher mock ratios, which

shows that developers usually mock complicated classes.
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1 // === Production code ===

2 1df(endpointConfig.isOverWrite()){

3 oStream.info.getFileSystemn().delete(...);
4 } else {

5 throw new RuntimeCamelException(...);

6 }

7

8 // === Mock setup ===

9 when(endpointConfig.isOverWrite()).thenReturn(false);

Listing 2: Example of Observation 4 in Project Camel

Observation 3: Non-concrete types are usually mocked. We
observed that the dependencies in 43 of the 100 entries are non-
concrete types, which motivated us to design the following rule.

e Rule 3.1: Non-concrete types (8.3%). The rule matches data
entries where the dependency is an abstract class or an interface.

The rule increased the mocking ratio by 60.8% (from 5.1% to 8.2%),
indicating that developers often mock such non-concrete types
since they cannot be instantiated directly. Instead, developers have
to choose an implementation or create a mocked version.
Observation 4: Dependencies affecting the runtime con-
trol flows of methods in CUTs are often mocked. We found
that developers often mock a class and set different return val-
ues for its methods to cover different branches in CUT. Listing 2
shows an example in the project Camel when testing the class
HDFSOutputStream. Here, endpointConfig is the dependency, and
the return value of its method isOverWrite() is used for a branch
condition in the CUT. Developers mocked the dependency, stubbed
the return value with false, and asserted that a RuntimeCamelExc-
eption would be thrown in the test script, to cover the branch at
line 5. In stage 1, we found that 33 of the 100 entries have this
characteristic, which motivated us to design the following rules.

e Rule 4.1: Affecting CUT’s runtime control flows via return
values (10.9%). Just like the example above, if the return value is
used for a branch condition, developers can mock the dependency,
provide different return values to cover different branches. This
rule matches a data entry if the return value of a method call on
the dependency is used in branch conditions in the CUT.

Rule 4.2: Affecting CUT’s runtime control flows via excep-
tions (12.6%). Similar to the case in Rule 4.1, developers can
mock a dependency to throw an exception to test the exception
handler. This rule matches a data entry if the CUT catches an
exception thrown by the dependency.

These rules produced subsets with much higher mock ratios, indi-
cating that classes affecting the runtime control flows of methods
in CUTs are frequently mocked.

Observation 5: Dependencies capturing the internal be-
haviors of the CUTs are often mocked. The verification feature
of mocking frameworks is widely used by developers. Developers
often test whether the CUT is implemented correctly by enforcing
assertions on the method invocations on the dependencies. List-
ing 3 shows an example in the project Storm when testing the class
RocketMgBolt. In the CUT, the method invocation to send() on the
dependency producer is dominated by two if conditions. Develop-
ers mocked the dependency and asserted that the method is called,
to test whether the branch conditions in the method execute()
(line 1 and 4) were designed correctly. We found that 13 of the 100
entries have this characteristic and we designed the following rules:
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if(batch) { // Production code in method execute()
//

} else {
if(async)
producer.send(prepareMessage(input), ...);

// Test script
rocketMgBolt.execute(tuple);

1
2
3
4
5
6 }
7
8
9
0 verify(producer).send(any(Message.class), ...);

Listing 3: Example of Observation 5 in Project Storm

e Rule 5.1: Conditional invocation (12.5%). Similar to the ex-
ample, dependencies whose methods are called conditionally are
often mocked. Therefore, this rule matches a data entry if any
method invocation to the dependency is dominated by a branch
condition or an exception handler in the CFG of the CUT.

e Rule 5.2: Capturing intermediate results (11.4%). Arguments
used to call a method of the dependency are usually the inter-
mediate results produced by the CUT, which can be different
based on different inputs for the CUT. In practice, developers
may mock a dependency and capture the arguments passed to
its methods. By checking the captured argument values, devel-
opers can test whether the intermediate results are correct, and
thus validate the implementation of the CUT. This rule matches
a data entry if an argument at a call site to the dependency is
data-dependent [11] on the parameters of a CUT method.

These two rules also produced subsets with much higher mock ra-

tios, indicating that dependencies capturing the internal behaviors

of the CUTs are often mocked.

Table 2 aggregates the mock ratios in the subsets produced by
applying each of the ten rules. As we can see from the table, all
the mock ratios of the subsets are higher than that of the whole
dataset. This indicates that all the observations we made in our
manual inspection are generalizable and our identified code-level
rules can characterize mocked dependencies. In particular, there
are five subsets whose mock ratios are more than 100% higher than
that of the whole dataset. We found that the rules that were used
to extract them can be divided into two groups:

(1) API usages. Rule 1.1 and Rule 1.3 model the API usages of the

dependencies, which reflect the behaviors of the dependencies.

(2) Interactions. Rule 4.1, Rule 4.2, Rule 5.1, and Rule 5.2 model the

interactions between the CUT and the dependencies showing
how CUTs can affect mocking decisions.

The high mock ratios indicate that these two types of factors are
more likely to affect mocking decisions.

5 MOCKSNIFFER

Our empirical study yielded five observations with ten code pat-
terns of the mocked dependencies. These findings also showed
that mocking practices adopted by developers share some common
characteristics, which can be leveraged to guide future mocking
decisions. Therefore, based on the empirical findings, we propose
MockSniffer, a fully automated technique that recommends mocking
decisions for developers by learning from existing practices. Specif-
ically, MockSniffer takes the CUT and its dependencies as input
and suggests a binary mocking decision for each of the dependen-
cies. We built MockSniffer based on binary classification machine
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Table 2: Mock Ratios by Applying the Rules

Rule Matches Mocked Ratio Comparison
Rule 1.1 49,789 5,874 11.8% +131.4%
Rule 1.2 5,669 419 7.4% +45.1%
Rule 1.3 33,356 4,611 13.8% +170.6%
Rule 2.1 86,469 7,620 8.8% +72.5%
Rule 2.2 104,416 8,204 7.9% +54.9%
Rule 3.1 122,471 10,197 8.3% +62.7%
Rule 4.1 74,510 8,119 10.9% +113.7%
Rule 4.2 60,193 7,565 12.6% +147.1%
Rule 5.1 64,488 8,089 12.5% +145.1%
Rule 5.2 56,080 6,380 11.4% +123.5%
Dataset 353,935 18,105 5.1%

learning techniques. The mechanism of binary classification is in
line with the nature of our targeted problem: providing the char-
acteristics of the dependency and the CUT, to predict whether the
dependency should be mocked. We implemented MockSniffer on
various machine learning models and trained them with the mock-
ing practices extracted from existing test cases. MockSniffer can thus
recommend mocking decisions by learning from existing practices.

5.1 Feature Engineering

Table 3 shows the 16 features used in the machine learning model
of MockSniffer. These features are either designed based on our
observations in Section 4.2 or adopted from the empirical findings
in existing studies [32, 36] that can be directly applied to the code.
They fall into four categories.

Contextual information. This includes RBFA, EXPCAT, COND-
CALL, AFPR, and CALLSITES. The first four are derived directly
from Observation 4 and 5 in Section 4.2. These features capture the
interactions between the CUT and the dependency by matching
certain patterns. However, there would be some scattered patterns
that lead to mock but not observed by us since each single of them
doesn’t appear frequently. As a complement, we designed the fea-
ture CALLSITES, which counts the call sites to the dependency
in the CUT, with the heuristic that such scattered patterns would
appear when there are abundant call sites.

API usage. UAPI, TUAPI, UINT, and SYNC model the API usage
of the dependency and thereby reflect its behaviors (i.e., whether
it is related to the environment or concurrency). They are derived
from Rule 1.1 to 1.3. We split Rule 1.1 into UAPI and TUAPI, which
counts the direct and transitive references to the APIs in Rule 1.1.
Our heuristic is that dependencies referring to such APIs directly
and transitively may have different chances to be mocked.

Complexity. DEP, TDEP, and FIELD measure the complexity
of the dependency and thus fall into this category. These features
count the direct and indirect references to other classes, as well as
the fields of the dependency. While FIELD is derived directly from
Rule 2.1, we split Rule 2.2 into DEP and TDEP with the heuristic
that direct and indirect dependencies can affect mocking decisions
to a different extent.

Class meta-properties. ABS, INT, ICB, and JDK are related to
the meta-properties of the dependency itself. They are adapted from
Rule 3.1 and existing studies [32, 36].

For features derived from the rules under each observation, we
removed the thresholds and use numerical values since we want
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the classifier to learn the thresholds. By using these features, Mock-
Sniffer can holistically consider multiple factors and make wise
mocking decisions.

5.2 Classification Model

Feature extraction. To extract features from training or testing
datasets, we built static analyzers for each feature on top of Soot [40].
Each static analyzer takes a specified CUT, dependency, and the byte
code of the whole project as input and output the corresponding
value of the feature. Table 3 shows the descriptions of our features.
For indicator features like ABS, INT, and JDK, the analyzers can be
implemented by loading the dependency and check the correspond-
ing properties. For example, the analyzer of ABS simply loads the
dependency and checks whether it is an abstract class. The analyz-
ers of EXPCAT, CONDCALL, and those numerical features can be
implemented by searching in the call graph by starting from the test
method (i.e., the test case T) and counts the occurrences of certain
patterns in the code. Take EXPPCAT as an example, the analyzer
traverses the call graph from the test method and counts the call
sites to the dependencies that are wrapped by a try . . . catch
clause in the methods of the CUT.

Standardization. Training with a standardized dataset can achieve
better performance on many classifiers. Data standardization is ap-
plied independently on each numerical features. Typically, data
standardization subtracts the mean value and scales the values to
unit variance. However, our dataset contains many outliers, which
may bias the mean value and variance calculation. To address this
problem, we subtracted the median from the dataset and then scale
it according to the interquartile range [39].

Under-sampling. As shown in Table 1, the datasets of mocked
and unmocked dependencies are often imbalanced. The entries la-
beled as mocked only account for a very small portion of the whole
dataset (e.g., only 5.1% in Table 1). Training classification models
directly with such imbalanced datasets can induce bias in the pre-
diction results and result in poor prediction performance [41]. To
address this issue, we adopted the random under-sampling tech-
nique to obtain a balanced dataset, which is simple but performs no
worse than other under-sampling techniques [29]. Specifically, we
randomly removed the instances labeled as unmocked, which ac-
count for the majority, until the dataset contains the same number
of mocked and unmocked data entries.

Model training. MockSniffer can be implemented on the top
of various classification models and different models may achieve
different performance. We compared the performance of different
models with the data extracted from projects in Table 1. We trained
classification models and performed 10-fold cross-validation using
Decision Tree [19], Naive Bayes [42], Ada Boosting [23], Gradi-
ent Boosting [24], Random Forest [18], and Support Vector Ma-
chine [17]. When training with Random Forest and Decision Tree,
we set the maximum tree depth to sqrt to prevent overfitting.
For other models, we used the default settings provided by scikit-
learn [33]. As shown in Figure 1, the accuracies of these models
range from 63.33% to 78.81%, where Gradient Boosting is the best.
Therefore, we used Gradient Boosting as the default classifier. Since
there is no ground truth on whether a mocking decision is correct,
we used the mocking decisions made by developers in our dataset
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as target variables when training. We expect that the number of in-
correct mocking decisions made by developers is small. The chance
that such incorrect decisions significantly bias the model is low.

6 EVALUATION

In this section, we present our evaluation of MockSniffer. We aimed

to explore the following research questions:

e RQ1 (The effectiveness of MockSniffer): Can MockSniffer ef-
fectively recommend mocking decisions and outperform exiting
mocking strategies? Does machine learning help make better mock-
ing decisions?

e RQ2 (The effectiveness of a single feature): Which features
are the most relevant to mocking decisions? Can MockSniffer effec-
tively make mocking decisions based on every single feature?

¢ RQ3 (Potential application scenarios): What are the potential
application scenarios of MockSniffer? How does MockSniffer per-
form in these scenarios?

We conducted three studies to answer each of these research
questions. We compared the performance of MockSniffer with three
baselines, investigated the effectiveness of each feature, and eval-
uated MockSniffer in two potential application scenarios. In our
experiments, we used the mocking decisions made by developers as
the ground truth. Since MockSniffer performs binary classification
to recommend mocking decisions, we adopted the metrics widely
used for evaluating binary classifiers: accuracy, precision, recall,
and F1-score to evaluate and compare the results of MockSniffer.

6.1 Evaluation Subjects

Our evaluation of MockSniffer is based on the four projects listed
in Table 1. To further evaluate whether our findings on these four
projects can be generalized to other projects, we selected six more
large-scale, actively maintained projects, where mocking is often
used in their test cases. Table 4 lists these projects. The methodology
to collect the six projects is the same as that adopted in Section 3.
Finally, we combined the six projects with the projects in Table 1 and
formed a set of ten projects for evaluation. We further extracted
data entries for the additional subjects by adopting the process
described in Section 3 and then extracted features for each data
entry leveraging the methodology described in Section 5.1. After
these steps, we got an evaluation dataset containing 546k entries,
where 31k of them are labeled as mocked.

6.2 Baselines

Since there are no existing automated mocking decision techniques,
we compared MockSniffer with three baselines derived from existing
studies, mocking strategies adopted by existing test generation
techniques, and our empirical findings.
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Table 3: Features Used by MockSniffer

Feature Source Description
UAPI # Direct references to the APIs in the list mentioned in Rule 1.1
TUAPI Ob tion 1 # Transitive references to the APIs in the list mentioned in Rule 1.1
UINT servation Indicates whether the dependency implements any interfaces in the list mentioned in Rule 1.2
SYNC # Call sites to synchronized methods by the dependency
DEP # Classes referenced by the dependency directly
TDEP Observation 2 # Classes referenced by the dependency transitively
FIELD # Fields in the dependency
ABS Observation 3 Indicates whether the dependency is an abstract class
INT servatio Indicates whether the dependency is an interface
RBFA Observation 4 # Call sites to the dependency whose return value is used for branch conditions in CUT
EXPCAT # Call sites to the dependency that are surrounded by a try. . . catch structure in the CUT
CONDCALL Observation 5 # Call sites to the dependency in the CUT that are dominated by a branch condition or an exception handler
AFPR servatio # Call sites in the CUT whose arguments have data dependencies on parameters
CALLSITES  Observation 4 and 5  # Call sites to the dependency in the CUT
ICB Existing study [32] Indicated whether the dependency is defined in the production code
JDK Existing study [36] Indicates whether the dependency is a type provided by the JDK
Table 4: Extra Projects for Evaluation Mocked [ Fold 1 ‘ ‘ Fold 2 ‘ ‘ Fold 3 ‘ ‘ ‘
-
Project Version Files LOC DataEntries Mocked
Flink 1.10.0 8,828 899k 86,141 6,719 Evaluation -
Hive 3.1.2 5,990 1.3M 23,368 1,490 o Training set Test set
CXF 3.35 7,293 672k 22,550 1,489 s . .
. ampling Sampling
Druid 0.17.0 4,556 596k 45,332 1,869
Dubbo 2.7.6 2,210 166k 8,623 758 Unmocked Unmocked Entries
Qozie 5.2.0 1,388 191k 5,539 278
Total 30,125 3.8M 191,553 12,603

Baseline #1: Existing heuristics. Existing studies yielded em-
pirical findings on the usage of mocking. We constructed a rule-
based approach from the empirical findings that can be directly
applied to the code. Specifically, it consists of three rules:

(1) It does not mock JDK classes since they are often not mocked [36].

(2) It mocks all the interfaces since developers prefer mocking
interfaces over using their implementations [36].

(3) It mocks all the classes in the codebase since developers mock
more classes in the codebase than in the libraries [32].

Specifically, Baseline #1 applies the rules as ordered above, and

recommends to mock a dependency if it matches any of these rules.

If none of the rules matches, it suggests not to mock the dependency.

Baseline #2: EvoSUITE mock list. EVOSUITE [22] contains a
list [4] of dependencies to mock. As such, we built a simple rule-
based strategy by mocking all the dependencies in the list. This is a
conservative baseline since it only considers a limited number of
JDK classes as dependencies to mock.

Baseline #3: Empirical rules. Our empirical study distilled
five observations with ten rules to guide the mocking decisions.
These code-level rules can be detected automatically. We designed
an aggressive baseline, which would decide to mock if any of the
rules in Section 4.2 match.

6.3 ROQ1: The Effectiveness of MockSniffer

Experiment setup. To evaluate the effectiveness of MockSniffer,
we performed intra-project prediction on the ten projects. We split
the entries labeled as mocked into ten folds, chose one fold for

Figure 2: Cross Validation with Sampling

testing, and the others for training. Figure 2 illustrates the data
preparation process. By this mechanism, each of the entries labeled
as mocked appeared once in the test set, which makes the perfor-
mance score more objective. As mentioned before, we performed
under-sampling for the unmocked entries in the dataset. To min-
imize the influence on the credibility of the performance scores,
we repeated the sampling process for 100 times and reported the
average performance scores of 1,000 (10 folds X 100 samplings)
runs. After that, we applied the three baselines on the evaluation
dataset and compared their performance with MockSniffer.
Results. As shown in Table 5, on average, MockSniffer correctly
distinguished 85.42% of the mocking decisions. For the instances
it predicted as mocked, 83.95% of them are true positives, which
covers 87.89% of the instance labeled as mocked. MockSniffer out-
performed the three baselines by large margins on the ten projects
in terms of accuracy, precision, and F1-score. We also performed
the Mann-Whitney U-Test [30] to evaluate the result differences.
The p-values ranged from 0.00009 to 0.0086, which showed that
MockSniffer outperformed the baselines significantly (p < 0.01).
MockSniffer performed better than the first two baselines due
to the following reasons. First, MockSniffer takes into account the
contextual information, namely the interactions between the CUT
and the dependency while neither of the baselines captures such in-
formation. Therefore, it can distinguish between different mocking
decisions on the same dependency with different CUTs. Besides,
MockSniffer can cover the scenarios where the dependency does
not match the rules in the first two baselines but are mocked for
other reasons (e.g., mock to increase the branch coverage just like
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Table 5: Performance of MockSniffer and the Baselines

Metric (%) Accuracy Precision Recall F1-Score

Approach* MS B#1 B#2 B#3 MS B#1 B#2 B#3 MS B#1 B#2 B#3 MS B#1 B#2 B#3
Hadoop 8290 6446 48.71 63.30 80.36  60.01 13.93 57.86 87.09 86.71 0.50 97.92 83.59 70.93 0.96 72.74
Flink 82.92 6858 4890 54.64 8132 6254 889 5246 8551  92.68 0.24 98.88 8335 74.68 0.46  68.55
Hive 8436 5852 4990 6394 8446 5852 47.06 58.82 8432  58.52 1.61 9295 8433 5852 3.11 72.05
Camel 79.52 64.91 48.52 53.40 76.19  62.28 6.35 51.80 86.12 75.58 0.22 97.74  80.80 68.29 042 67.71
CXF 83.05 5937 48.82 5473  84.67 59.48 15.69 52,60 80.83  58.83 054 9584 8265 59.15 1.04 6792
Druid 83.41 64.50  49.06 52.70 83.53 66.75 2.70  51.50 83.38 57.78 0.05 92.78 83.39 61.94 0.10  66.23
HBase 86.58  75.28 4930 54.61 8439 6887 20.00 52.47 89.89  92.26 0.47  98.03 87.00 78.87 091  68.35
Dubbo 88.55 6545 49.14 5455 85.75 69.07 2396 5249 9271 55.94 0.79 9578 89.03 61.81 1.53 6782
Oozie 91.14 64.24  46.58 5234 9112 61.35 0.00 51.40 91.57 76.98 0.00 85.61 91.17 68.28 0.00 64.24
Storm 91.77 52.74 4932 52.83 87.75 53.12 0.00 5158 9748  46.61 0.00 92.68 9227  49.65 0.00  66.27
Average 8542 63.81 4882 5570 8395 6220 13.86 5330 87.89  70.19 0.44 9482 8576 65.21 085 68.19

* MS, B#1, B#2, and B#3 stands for MockSniffer and the three baselines respectively.

the example in Listing 2). Second, MockSniffer considers the be-
havior of the dependencies by analyzing their invoked methods.
Baseline #2 mocked all the classes in the EvoSuITE mock list, which
contains the classes that are related to the environment or con-
currency. However, the list contains only classes in JDK. Non-JDK
classes invoking APIs related to environment or concurrency are
not included. As a result, Baseline #2 suffered from a low recall. In
comparison, MockSniffer can identify such cases by also analyzing
the methods invoked by the dependencies and identifying transitive
references to APIs related to the environment or concurrency.

Baseline #3 outperformed MockSniffer in terms of recall. This
is because baseline #3 decided to mock the dependency when any
of the rules in Section 4.2 match. Although such an aggressive
approach can identify most of the mocked instances (94.82% recall
on average), it would mispredict the dependencies that should not
be mocked as mocked, and thus suffered from low precision (53.30%
on average). The comparison between MockSniffer and Baseline #3
shows that it is not enough to simply apply the rules in Section 4.2 to
recommend mocking decisions. To make better mocking decisions,
we need to combine these rules holistically.

Answer to RQ1: MockSniffer outperformed existing mocking
strategies. Machine learning can help make better mocking
decisions.

6.4 ROQ2: The Effectiveness of a Single Feature

MockSniffer uses multiple features together to make mocking deci-
sions. As such, we want to investigate how relevant is each feature
to mocking decisions, as well as the effectiveness of MockSniffer by
using only that feature.

Experiment setup. The experiment consisted of two steps. First,
we studied the relevance of each feature to the mocking decisions
by performing the Chi-squared test [25]. Then, we ran modified
versions of MockSniffer trained with each single feature to investi-
gate how each feature contributes to the performance of MockSnif-
fer with a process similar to that in Section 6.3.

Results. Table 6 shows the results of the Chi-squared test. For
most of the features, the Chi-squared statistic values are larger
than 100, indicating that these features are relevant to the mocking
decisions. Also, features describing the interactions between the
CUT and the dependency (e.g., EXPCAT, CONDCALL) and features

Table 6: Chi? Statistics and Performance of Intra-project Pre-
diction Using Single Feature

Metric (%) Chi?  Accuracy Precision Recall F1-

Score
ABS 2394.05 60.56 59.71 68.82 62.80
AFPR 4835.57 56.76 63.99 39.54 43.31
CALLSITES 18996.25 57.72 63.94 49.31 49.11
CONDCALL  20728.24 58.53 64.55 45.56 49.15
DEP 1490.05 71.31 70.90 73.43 71.57
EXPCAT 30968.33 58.42 70.40 34.27 41.84
FIELD 8.46 67.77 64.56 80.74 71.19
ICB 1281.75 60.14 62.34 55.70 56.57
INT 2506.90 59.05 61.41 55.13 56.14
JDK 3103.92 59.68 55.72 96.30 70.52
RBFA 3455.96 58.80 65.39 47.27 50.47
SYNC 18120.28 54.17 72.80 40.33 36.62
TDEP 2349.46 68.91 70.69 65.67 67.37
TUAPI 117270.05 65.73 71.53 66.33 63.41
UAPI 1035.86 62.92 73.84 52.66 55.36
UINT 60.01 51.15 59.41 61.71 43.68
Average 60.73 65.70 58.30 55.57

reflecting the API usages of the dependency (e.g., TUAPIL, SYNC)
achieved the highest Chi-squared statistic values, indicating that
these two factors are more relevant to mocking decisions.

In addition, Table 6 presents the average performance of Mock-
Sniffer on the ten projects by using each of the features. By using
each of the features, MockSniffer achieved an average accuracy,
precision, recall, and F1-score of 60.73%, 65.70%, 59.30%, and 55.57%,
respectively. The performance is much lower than that using all the
features, which shows that, by taking multiple factors into account,
MockSniffer can suggest better mocking decision than considering
a single one. This is because there is more than one factor that
drives developers to mock, but each of these features took just one
of the factors into account. Instead, MockSniffer combines these
scattered factors together and considers them holistically, and thus,
can suggest better mocking decisions.

Answer to RQ2: Context-aware and API usage related features
are the most relevant to mocking decisions, but only considering
each single of them is not enough.
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Table 7: Performance of MockSniffer in Potential Applica-
tion Scenarios

Metric (%)  Accuracy Precision Recall F1-Score

Settings* CvP CPP CVP CPP CVP CPP CVP CPP
Hadoop 75.20 75.84 75.08 73.06 73.74 79.46 74.68 76.13
Flink 79.79 7412 7539 69.76 7895 89.64 79.37 78.46
Hive 69.57 70.41 6590 7460 6096 48.21 65.50 58.57
Camel 7233 66.72 67.11 6651 7331 6894 7249 67.70
CXF 61.59 71.84 71.56 73.46 40.00 67.55 51.01 70.37
Druid 68.75 6639 66.50 68.37 56.90 6143 64.33 64.71
HBase 83.82 77.11 76.42 75.00 87.02 79.26 84.25 77.07
Dubbo 68.33 71.24 66.68 7222 4476 5432 56.93 61.99
Oozie 64.11 69.74 73.92 80.72 30.67 62.93 44.61 70.68
Storm 73.29 70.27 71.16 7286 60.02 67.48 66.99 70.06

Average 71.68 70.97 7882 72.65 60.63 67.92 66.02 69.57

* CVP and CPP stands for cross-version and cross-project prediction, respectively.

6.5 RQ3: Potential Application Scenarios

The ultimate goal of MockSniffer is to recommend mocking de-
cisions in real-world projects during software development. As
such, we designed experiments to investigate the effectiveness of
MockSniffer in potential application scenarios.

Experiment setup. When using MockSniffer to recommend
mocking decisions on a project, there are two potential scenarios.

(1) Cross-version prediction (CVP). For mature projects, devel-
opers can train MockSniffer with the data extracted from the
historical releases of the project, and recommend mocking deci-
sions for the new test cases in subsequent releases. To evaluate
MockSniffer in this scenario, we collected five consecutive re-
leases of the ten subject projects. For each release, we extracted
data entries and their corresponding feature leveraging the
same process as that described in Section 3 and 5. After that, we
performed incremental predictions on each of the projects. For
each release, we trained MockSniffer with the dataset extracted
from its prior releases, and predict on those newly added in-
stances in the current release (i.e., data entries that are not in
the dataset extracted from prior releases). Since the number of
newly added instances between each pair of releases varies, we
reported the weighted average of the performance scores:

Score = Z Score; X #new instances;/ E #new instances;

in which ; refers to the it release of t}lle project used in the
experiment.

(2) Cross-project prediction (CPP). For new projects, their his-
torical mocking practices are insufficient to train MockSniffer.
As such, developers can train MockSniffer with the data ex-
tracted from other projects (e.g., the vast open-source code
repositories). To evaluate MockSniffer in this scenario, with the
evaluation dataset, we picked the data entries from one project
for testing and used the remaining for training. We repeated
this procedure on each of the ten projects.

As mentioned in Section 5, we performed under-sampling when
preparing the dataset, to maintain the reliability of the performance
scores. We repeated the sampling process for 100 times and reported
the average scores of the 100 runs.

Results. Table 7 shows the performance scores of MockSniffer in
the two scenarios. The accuracy achieved by MockSniffer ranged
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from 61.59% to 83.82%, and on average, it made 71.68% and 70.97%
correct decisions under the two settings, respectively. The precision
in cross-version prediction (78.82% on average) is higher than that
in cross-project prediction (72.65%). This is because the mocking
decisions within the same project share more similarities. Existing
mocking practices in the historical releases of a project are likely
to be adopted by the test cases in its subsequent releases.

However, the recall of cross-version prediction (60.63%) is lower
than that in cross-project prediction (67.92%). This is because de-
velopers may adopt new mocking practices that do not exist in the
current project, but such practices may be adopted by other projects.
In this case, cross-project prediction can transfer the knowledge
from one project to another, and thus help developers make proper
mocking decisions. For example, MockSniffer suffered from ex-
tremely low recall when performing cross-version prediction on
the project Oozie (30.67%). We manually inspected the prediction
process and found that low recall happened when predicting on
Oozie 5.0 by learning from Oozie 4.2 and 4.3. The reason is that sig-
nificant changes took place from Oozie 4.x to 5.x, for example, the
workflow graph generator was completely rewritten and the Oozie
launcher was moved from MapReduceMapper to YARN application
master [21]. Developers also adopted new mocking practices in the
newer versions. Due to such great changes, the knowledge learned
from Oozie 4.x could not capture mocked object usages in Oozie
5.x In this case, cross-project can help increase the recall by lever-
aging the knowledge learned from other projects. Specifically, by
performing cross-project prediction, MockSniffer achieved a recall
of 62.93% on project Oozie, which is 105.18% higher than that in
cross-version prediction.

Answer to RQ3: MockSniffer can be applied in two application
scenarios (cross-version prediction and cross-project prediction).
In these application scenarios, MockSniffer can effectively rec-
ommend proper mocking decisions by learning from historical
mocking practices or mocking practices of other projects.

7 DISCUSSION
7.1 Threats to Validity

In the data collection process, we inferred the name of CUTs from
the class name of the test cases according to a widely adopted
naming convention. We may fail to identify CUTs for those test
cases that do not follow such a naming convention. In addition,
we focused on method arguments when extracting dependencies.
This may miss some dependencies that are not method arguments
(e.g., those specified via test configuration files and those assigned
directly to a public field). Although our dataset does not include all
the dependencies used in unit tests, it is large enough for our study.

The selected subject projects use only two mocking frameworks
Mockito [8] and EasyMock [3]. There are also other mocking frame-
works such as jMock [7]. Since there are differences in the function-
alities provided by these frameworks, developers may have slightly
different practices when using them. Such differences could not
be covered by our study. However, according to a prior study [32],
Mockito and EasyMock are the two most popular mocking frame-
works. They are used by 70% and 20% of 5,000 randomly sampled
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projects, respectively. As such, our study results can be applied to
most of the Java projects.

When learning from existing mocking practices, MockSniffer as-
sumes that the mocking decisions made by the developers are cor-
rect. However, developers can also make improper mocking deci-
sions and change their decisions. To address this threat, we trained
MockSniffer with 546k data entries extracted from ten different
projects. The large number of training data entries can mitigate
the problem induced by the small portion of improper mocking
decisions in the dataset.

7.2 Future Work

Unit tests generation with mock recommendation. Some ex-
isting studies can generate unit tests with synthesized mocked
objects [12, 13, 26]. However, these studies cannot select which
dependencies to mock. Directly using such techniques can induce
problems of over-mocking since they choose to mock all the depen-
dencies of classes under test. In the future, we plan to combine our
technique with these existing studies to generate unit tests with
properly-selected mocked dependencies.

Generalizing MockSniffer to other languages. In this paper,
we studied the mocking practices in Java and proposed MockSnif-
fer to recommend mocking decisions. Besides Java, mocking is also
widely used in projects written in other programming languages.
In the future, we plan to further extend MockSniffer to recommend
mocking decisions for projects in other languages such as C# and
Javascript. Mocking frameworks like Moq [9] and Sinon.js [10]
are frequently used in C# and JavaScript projects. Recommending
mocking decisions for C# can be similar to Java since C# and Java
share similar programming paradigms. In comparison, the language
features of Javascript are different from that of Java. Such different
language features can induce different mocking practices. In the
future, we plan to also study the mocking practices of projects
in different languages and generalize MockSniffer to recommend
mocking decisions for them.

8 RELATED WORK

Empirical studies on mocking. Studies were conducted to ana-
lyze the usage of mocking as well as understanding the intentions
behind the mocking decisions. Marri et al. [31] were among the
first to analyze the use of mocked objects in testing file-system-
dependent software and highlighted the need for automated identi-
fication of APIs that need to be mocked (i.e., automated techniques
to recommend mocking decisions). Mostafa et al. [32] analyzed
the use of four popular mocking frameworks in 5,000 open-source
projects. They found that mocking frameworks are used in 23% of
the projects that have test code, and developers usually mock a small
portion of the dependencies. Spadini et al. [35] studied the usage
of mocked objects in three open-source projects and one industrial
system and distilled that developers usually mock dependencies
that make testing difficult. More recently, Spadini et al. studied the
evolution of mocked objects [36]. Even though the need for auto-
mated techniques to recommend mocking decisions was proposed
early by Marri et al. [31], none of these existing studies produce
such an automated technique. The existing studies either provided
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statistical evidence to show the popularity of mocking or identi-
fied general characteristics of mocking practices. In comparison,
our study identified specific code-level characteristics of mocked
objects. Based on such code-level characteristics, we were able to
propose the first automated technique MockSniffer to recommend
mocking decisions by leveraging machine learning techniques.

Automatic test generation with mocking. Another line of
related work aimed to improve test generation techniques with the
help of mocking [12, 13, 15, 26]. For example, Arcuri et al. [13] ex-
tended EvOSUITE [22], a Java test generation tool by adding mocked
objects to its generated test cases. By mocking the environmental
interactions in the test cases, their technique improved the code
coverage and reduced the number of unstable tests by more than
50%. Other studies used mocking to simulate the environment oper-
ations to control the environment-related dependencies. Taneja et
al. proposed MODA [37] to generate tests for database applications
by mocking database operations. This approach is also adopted to
handle interactions with networking [14] and web services [16, 43].
While these work leveraged mocking to improve test generation
techniques, they selected the dependencies to mock merely based
on single factors without considering the interactions between the
dependency and different CUTs. As a result, these approaches can
select the same dependencies to mock even for different projects.
However, as shown in our empirical study(Section 4.2), contextual
information is a key factor that affects mocking decisions. Without
taking such contextual information into account, these techniques
can generate test cases with the problem of over-mocking or under-
mocking. In comparison, our technique combines several different
code-level features of the dependencies and the classes under test
to recommend context-aware mocking decisions. As shown in our
evaluation, our technique can outperform the baselines that adopt
single factors to make mocking decisions.

9 CONCLUSION

In this work, we conducted an empirical study on four large-scale,
actively-maintained open-source projects and identified ten code-
level characteristics of the mocked dependencies. Our identified
characteristics captured both the feature of the dependencies them-
selves and the interactions between the dependencies and the CUTs.
Based on our identified characteristics, we further proposed Mock-
Sniffer, an automated technique that recommends mocking deci-
sions. MockSniffer leverages machine learning techniques and rec-
ommends context-aware mocking decisions by learning from exist-
ing mocking practices. Our evaluation shows that MockSniffer can
effectively recommend mocking decisions and can outperform the
generic mocking strategies adopted by existing studies.
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