
Can Cooperative Multi-Agent Reinforcement Learning Boost
Automatic Web Testing? An Exploratory Study

Yujia Fan
1,2
, Sinan Wang

1
, Zebang Fei

2
, Yao Qin

2
, Huaxuan Li

2
, Yepang Liu

1,2,∗

1
Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technology

2
Department of Computer Science and Engineering, Southern University of Science and Technology

Shenzhen, China

{12431253,wangsn,12110608,12112016,12112045}@mail.sustech.edu.cn

liuyp1@sustech.edu

Abstract

Reinforcement learning (RL)-based web GUI testing techniques

have attracted significant attention in both academia and industry

due to their ability to facilitate automatic and intelligent exploration

of websites under test. Yet, the existing approaches that leverage

a single RL agent often struggle to comprehensively explore the

vast state space of large-scale websites with complex structures

and dynamic content. Observing this phenomenon and recognizing

the benefit of multiple agents, we explore the use of Multi-Agent

RL (MARL) algorithms for automatic web GUI testing, aiming to

improve test efficiency and coverage. However, how to share in-

formation among different agents to avoid redundant actions and

achieve effective cooperation is a non-trivial problem. To address

the challenge, we propose the first MARL-based web GUI test-

ing system,MARG, which coordinates multiple testing agents to

efficiently explore a website under test. To share testing experi-

ence among different agents, we have designed two data sharing

schemes: one centralized scheme with a shared Q-table to facilitate

efficient communication, and another distributed scheme with data

exchange to decrease the overhead of maintaining Q-tables. We

have evaluated MARG on nine popular real-world websites. When

configuring with five agents,MARG achieves an average increase

of 4.34 and 3.89 times in the number of explored states, as well as a

corresponding increase of 4.03 and 3.76 times in the number of de-

tected failures, respectively, when compared to two state-of-the-art

approaches. Additionally, compared to independently running the

same number of agents, MARG can explore 36.42% more unique

web states. These results demonstrate the usefulness of MARL in

enhancing the efficiency and performance of web GUI testing tasks.

Keywords

Web Testing, Multi-Agent Reinforcement Learning, Automatic GUI

Testing, Information Sharing

∗
Yepang Liu is the corresponding author of the paper.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-1248-7/24/10

https://doi.org/10.1145/3691620.3694983

ACM Reference Format:

Yujia Fan
1,2
, Sinan Wang

1
, Zebang Fei

2
, Yao Qin

2
, Huaxuan Li

2
, Yepang

Liu
1,2,

. 2024. Can Cooperative Multi-Agent Reinforcement Learning Boost

Automatic Web Testing? An Exploratory Study. In 39th IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE ’24), October
27-November 1, 2024, Sacramento, CA, USA. ACM, New York, NY, USA,

13 pages. https://doi.org/10.1145/3691620.3694983

1 Introduction

Web applications offer users convenient browser-based access to

software services across different platforms [49] and are widely-

used for various purposes. It is essential to ensure the software

quality of web applications. Automatic web GUI testing aims at

exploring a given website under test (WUT) without human inter-

vention to achieve a comprehensive functional coverage and detect

potential misbehaviours of the website [11]. By employing various

meta-heuristic strategies, a testing agent can autonomously explore

the website to meet the pre-defined testing objectives.

Reinforcement learning (RL) is a popular technique for driving

the GUI testing of web applications [11]. For example,WebExplor
[52] formulates web testing as a Markov decision process (MDP)

and solves it with a value-based RL algorithm, Q-learning. By em-

ploying a curiosity-based reward function, the Q-learning algorithm

guides WebExplor to efficiently explore diverse behaviors of the

WUT. QExplore [38] is another Q-learning-based web GUI testing

technique, which adopts a different state representation method

than WebExplor. The effectiveness of RL-based web GUI testing ap-

proaches mostly relies on the exploration abilities of the RL agents

in the dynamic web GUI contexts with the goal of achieving higher

coverage and detecting more faults. Besides the outstanding re-

sults achieved on web GUI testing, RL algorithms also outperform

traditional testing approaches for many other types of software

applications, such as mobile apps [19, 20, 35, 44, 45] and desktop

applications [7, 10, 25, 26].

Recently, Fan et al. conducted a large-scale empirical study to

analyze the performance of Q-learning-based web GUI testing ap-

proaches [11]. They investigated the combinations of various RL

components and Q-learning parameters, with a total of 216 differ-

ent configurations. Their empirical findings reveal that none of

the explored RL configurations can fit all the websites used in the

study. Moreover, they showed that Q-learning can quickly reach a

saturation status when exploring small-sized websites, whereas ex-

ploring large-scale websites inevitably requires much more testing

resources. Their research calls for the enhancement on the current

single-agent RL-based GUI testing techniques.

14

2024 39th IEEE/ACM International Conference on Automated Software Engineering (ASE)

https://doi.org/10.1145/3691620.3694983
https://doi.org/10.1145/3691620.3694983
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3691620.3694983&domain=pdf&date_stamp=2024-10-27

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Yujia Fan1,2 , Sinan Wang1 , Zebang Fei2 , Yao Qin2 , Huaxuan Li2 , Yepang Liu1,2,

Observing the potential performance upper bound of a single-

agent approach, we in this paper explore the use of multiple agents

for efficient and effective web GUI testing. However, designing a

practically useful multi-agent system to achieve a comprehensive

testing of web applications is a non-trivial task. A straightforward

solution is to run multiple single-agent processes in parallel, as pro-

posed in 𝐺𝑇𝑃𝑄𝐿
[32]. Given the inherent randomness brought by

an 𝜀-greedy strategy [42], it is possible for multiple agents to cover

different functional points in the same website. However, as we will

show in a motivational study (Section 3), under this simple setting,

only a small amount of web states can be exclusively visited by each

single agent (i.e., the agents visit a large number of identical states),

leading to insignificant performance improvement and waste of

testing resources. To address the problem,𝐺𝑇𝑃𝑄𝐿
synchronizes the

Q-models of parallel Q-learning agents at the end of each epoch to

facilitate information communication. Nevertheless, the complexi-

ties of epoch division, the lack of communications among agents

within each epoch, and the overhead of model synchronization may

diminish the practical utility of the tool. A more effective agent

cooperation mechanism is needed to mitigate the redundancies in

the webpage exploration of multiple agents and improve the overall

performance of web GUI testing.

Motivated by the intrinsic limitations of existing single-agent

RL-based testing approaches, and the weaknesses of the naive par-

allelism approach, we strongly advocate the necessity of an efficient

multi-agent reinforcement learning (MARL) based approach for im-

proving the efficiency and effectiveness of web GUI testing. To this

end, we made the first attempt of utilizing MARL algorithms for co-

ordinatingmultiple Q-learning testing agents to collectively explore

the same WUT. Our prototype tool, named MARG, is an MARL-

based webGUI testing system that allows a configurable number of

Q-learning agents to simultaneously test the same website without

human intervention. Specifically,MARG adopts a client-server ar-

chitecture, in which the agents interact with different webpages and

the controller coordinates the testing process. To facilitate the ex-

change of experiences among various Q-learning agents within the

MARL system, we have developed two data sharing schemes. These

schemes operate under both centralized and decentralized settings,

allowing agents to share Q-values derived from their policies.

We have implemented MARG and evaluated it on nine commer-

cial websites (such as YouTube and GitHub). By comparing MARG

against two state-of-the-art RL-based techniques,WebExplor [52]
and QExplore [38], we show that an MARL-based approach that

leverages plain Q-learning algorithms can already significantly

outperform existing single-agent techniques that leverage extra

methods (such as using a DFA to provide high-level guidance [52]

and a contextual data input method to generate textual inputs [38])

beyond RL. When running five agents,MARG can explore 4.34 and

3.89 times more states, and detect 4.03 and 3.76 times more fail-

ures, respectively, thanWebExplor and QExplore. It can also explore

36.42% more states than a non-cooperative approach that simply

runs five parallel Q-learning agents. Additionally, by increasing

the number of agents, which can be constrained by computational

resources, the performance of MARG can be further increased.

These promising results demonstrate the great potential of apply-

ing MARL to boost the performance of web GUI testing.

Agent /
Testing Tool

Environment /
Website

State/Observation Action
GUI info

perception
UI event
execution

Action selection

Reward

Figure 1: A web testing loop under the MDP formulation

The contributions of this paper are summarized as follows:

• We propose a new web GUI testing approach that employs asyn-

chronous MARL to drive multiple Q-learning agents to collabo-

ratively test web applications. To the best of our knowledge, we

make the first attempt in devising efficient agent communication

mechanisms to enable effective multi-agent web GUI testing.

• Wehave implemented our approach in a prototype systemMARG

with two types of data sharing schemes to support both central-

ized and decentralized settings, which can provide references for

future research endeavors.

• We have evaluatedMARG using real-world commercial websites.

Our experiments show that MARG can significantly outperform

two state-of-the-art RL-based methods, WebExplor and QExplore,
as well as a non-cooperative multi-agent testing approach that

runs Q-learning agents in parallel.

The remainder of this paper is organized as follows. Section 2

introduces background knowledge about RL for GUI testing and

MARL algorithm. In Section 3, we demonstrate the limitation of

single-agent RL-based approaches to motivate the necessity of

MARL-based web GUI testing. Section 4 depicts the detailed design

of our proposed multi-agent approach. Section 5 presents the ex-

perimental setup for evaluating our approach and the results are

discussed in Section 6. We review the related work in Section 7 and

finally conclude the paper in Section 8.

2 Preliminaries

2.1 Reinforcement Learning for GUI Testing

Formally, anMDP instance is defined by a 5-tuple ⟨S,A,P,R, 𝛾⟩ [5].
In the context of web GUI testing, we call the software under test,

i.e., the website, as an environment while the testing process is

carried out by an agent. The interaction between the environment

and the agent is depicted in Figure 1. In the 5-tuple, a state 𝑠 ∈ S
represents how the testing agent observes information from the

current webpage. At each state, the action space A encompasses

human-like interactions with the web GUI elements, such as click-

ing buttons or links, filling input boxes, and so on. After an action
𝑎 ∈ A is performed, there will be a transformation of webpages that

follows the transition function P : S × A → S, which depends on

the functionalities and business logic of the website. After an action

is applied at time 𝑡 , the agent will be provided with an immediate

reward 𝑟𝑡 based on a predefined reward function R to guide better

GUI exploration. Such reward is typically designed based on state

changes [25, 26] or the execution frequencies of actions [35, 52].

Additionally, it also needs to define a discount factor 𝛾 ∈ [0, 1].

15

Can Cooperative Multi-Agent Reinforcement Learning Boost Automatic Web Testing? An Exploratory Study ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

Lower values of 𝛾 prioritize immediate rewards, while higher val-

ues consider long-term rewards. With such a formulation, the goal

of an RL agent is to learn to maximize the accumulated rewards

during its exploration in the environment: 𝑟1 + 𝛾1𝑟2 + 𝛾2𝑟3 + · · · .

2.2 Multi-Agent Reinforcement Learning

An MARL system can be competitive or cooperative [50]. In com-

petitive MARL, the agents have conflicting objectives, in which

the gross reward among agents is usually zero-summed [23]. Most

research work on competitive MARL focuses on two-player games,

such as AlphaGo [39, 40], a representative breakthrough in the

game of Go. In cooperative MARL, agents collaborate and coordi-

nate their actions to achieve a common goal, thus maximizing the

overall team reward. This is applicable in team-based robotics [9],

traffic management [4], etc. During web GUI testing, the testing

agents should be coordinated to maximize test efficiency and col-

laboratively explore as many diversified webpages as possible. As

such, it is a typical application scenario of cooperative MARL.

A key challenge of implementing an efficient MARL-based sys-

tem is to properly design the system’s information structure and the

communication mechanism between agents. Generally, an MARL

system can be classified into three types according to their commu-

nication styles as shown in Figure 2, namely, fully decentralized,

decentralized with networked agents, and centralized settings [50]:

(a) In a fully decentralized setting (Figure 2a), agents autonomously

make decisions and interact with the environment based on

their individual observations and their own policies. This decen-

tralized architecture simplifies system design and reduces the

complexity of coordination. However, the lack of information

exchange prevents agents from utilizing each other’s knowledge

and experience, which limits the overall performance [43].

(b) When the agents are connected through a time-varying com-

munication network, it becomes possible to disseminate local

information of an agent over the entire network [24, 46, 51]. It

is called a decentralized setting with networked agents (Figure
2b). However, within this information structure, not every pair

of agents is required to exchange information at every instant.

(c) In situations where it is necessary for all agents to consistently

share information, a central controller can be employed, re-

sulting in the centralized setting (Figure 2c). This controller

aggregates information from the agents and makes decisions

for all agents on behalf of the entire MARL system [13–16].

For the RL agents in an MARL system, they shall update their

own policies based on their observed state transitions. This can

be done in a synchronous manner, where the agents temporarily

halt their explorations, sequentially update their policies, and then

resume the next exploration step. In comparison, in an asynchro-
nous MARL system, agents update their policies independently

and asynchronously without waiting for other agents to update

theirs [30]. In web GUI testing, the RL agents explore different

paths and interact with the web application using their dedicated

browser instances. In such a scenario, asynchronous exploration

allows the agents to cover a wider range of the web application’s

functionalities and achieve a better overall coverage.

3 Motivational Study

Recently, an empirical study conducted by Fan et al. analyzed the

effectiveness of Q-learning-based web GUI testing approaches [11].

The study pointed out a performance limit for single-agent Q-

learning approaches: it is difficult for a single agent to achieve

high functional coverage for the WUT, especially when the testing

resources are constrained. To tackle this problem, i.e., improving

efficiency and achieving higher coverage, a possible solution is to

run multiple testing agents simultaneously. To investigate the feasi-

bility of the idea and understand the challenges during the process,

we performed a pilot study to see whether the parallelism of agents

can effectively improve the test coverage of web applications.

• Implementation: According to the Q-learning-based web GUI

testing framework proposed in Fan et al.’s work [11], we imple-

mented our own web testing agents on top of Selenium [2]. Specif-

ically, following Fan et al.’s approach, we abstracted a web state

as the set of all GUI elements on the corresponding webpage and

selected actions according to an 𝜀-greedy scheme. The Q-learning

agents will obtain a numerical reward based on curiosity, which has

been shown to be an effective choice for defining reward functions

in existing studies [7, 10, 38, 44, 52].

• Setup: For the pilot study, we ran our implemented Q-learning

agents on a complex commercial website
1
. This commercial website

is a web portal that contains more than one hundred hyperlinks,

each leading to a new subpage providing different web services.

Moreover, most of these subpages do not require user login before

visiting, making the background status identical for all parallel

agents. Besides, this website has a sufficient number of different

web states, which allows the measurement and comparison of the

testing adequacy achieved by each agent, as well as assessing their

collective performance. For the experiment, we ran three testing

agents in parallel for two hours and compared their visited states

at the end.

• Result: Figure 3 presents the number of visited states achieved

by each of the three Q-learning agents. It shows that within a

two-hour testing period, the three agents discovered 564 different

web states, while each contributed to 59%, 76%, and 71% of the

total states, respectively. Besides, from the Venn diagram, we can

make two more observations. First, among the 564 web states, 36%

(=(93+72+39)/564) of themwere discovered exclusively by a single

agent. Second, 42% (=236/564) of the states were visited by all three
agents. From the above observations, we can see that it is indeed

feasible to leverage a multi-agent approach to improve the coverage

of web GUI testing, so as to increase the possibility of detecting

potential faults. However, without effective agent communications,

there would a considerable amount of redundant exploration among

the parallel agents, resulting in the waste of testing resources.

• Conclusion: Based on the above analysis, it is evident that reduc-

ing the redundancies in the states visited by the testing agents has

a great potential of improving the overall performance of web GUI

testing. Motivated by this, in our work, we will focus on harnessing

multi-agent approaches for web GUI testing and devising practical

strategies to facilitate the cooperation among the testing agents,

enabling them to efficiently share information and collaboratively

explore diversified webpages to quickly achieve high test coverage.

1
For commercial reasons, the website is anonymized.

16

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Yujia Fan1,2 , Sinan Wang1 , Zebang Fei2 , Yao Qin2 , Huaxuan Li2 , Yepang Liu1,2,

Environment

Agent 1

Agent 2

Agent N
…

Observation Observation

(a) Fully decentralized setting

Environment

Agent 1

Agent 2 Agent N

…

Observation Observation

Agent 3

(b) Decentralized settingwith networked agents

Environment

Agent 1 Agent 2 Agent N…

Observation

Central Controller

Observation

(c) Centralized setting

Figure 2: Three representative information structures in MARL [50]

236

25

72

69

93

30

39RL Agent 1
(330 states)

RL Agent 2
(428 states)

RL Agent 3
(402 states)

Figure 3: The Venn diagram of the sets of web states visited

by the three Q-learning-based testing agents

4 Approach

4.1 Problem Formulation

MARL can be formulated as a multi-agent extension of the MDP de-

scribed in Section 2.1, as denoted by ⟨𝑁,S, {O𝑖 }, {A𝑖 },P,R, 𝛾⟩ [48],
where 𝑖 ∈ {1, . . . , 𝑁 } corresponds to the 𝑖-th agent in the system of

𝑁 agents. The O stands for observation, which refers to the infor-

mation that an agent perceives about the environment. Typically,

the state space S is defined by the Cartesian product of observation

space of each agent, i.e., S = O1 × O2 × · · · × O𝑁 . However, this

formulation presents the challenge of state explosion, particularly

in the context of web GUI testing, as webpage states exhibit high

variability.

In an asynchronous MARL system, it is essential to consider

which information the agents need to communicate in order to

achieve better cooperation and coordination. Instead of coordinat-

ing the joint exploration status among all agents, the emphasis

should be placed on exchanging their historical experiences to

avoid redundant exploration. Therefore, we define the state space
in our problem as: S = O1 ∪ O2 ∪ · · · ∪ O𝑁 . Such a setting allows

the MARL algorithm to prioritize the decisions that agents should

make when observing specific webpages, without considering the

states of the other agents at the same time. In other words, the state

space in our problem consists of all states observed by all the agents

in the system. To simplify presentation, we will use the symbol 𝑠

to represent both the concepts of state and observation.
We extract valid UI events set as a representation of the state

𝑠 = (URL, 𝐸1, 𝐸2, ..., 𝐸𝑛), which also represents the action space
A𝑠 = {𝐸1, 𝐸2, ..., 𝐸𝑛} within this observed state. Here, 𝐸𝑘 is a UI

event and 𝑛 is the number of unique UI events that can be triggered

on a given webpage. This abstraction method borrows the idea

of combined state representation employed by WebExplor [52],

while we replace its tag sequence as the set of actions, which has

been shown to be more effective [11]. It provides the benefit of

simplifying the state space while retaining essential information.

Moreover, it aligns with the state-action pairs in the tabular Q-

learning framework.

During testing, the state transition function P is implicit as

the agent lacks direct access to navigation information. Instead,

the agent learns an approximate P by observing state transitions

through interactions with the website. When an agent in the multi-

agent system executes an action 𝑎 ∈ A𝑠 based on the state 𝑠 ∈ S,
the webpage undergoes changes, resulting in a new state 𝑠′ ∈ S
and an immediate reward 𝑟 based on the reward function R:

𝑟 = R(𝑎) = 1

Count(𝑎) (1)

This curiosity reward function has been demonstrated to be effec-

tive [11, 38, 52], where Count(𝑎) represents the number of times

the action 𝑎 has been applied within the multi-agent system during

the testing session.

4.2 An Overview of MARG

Figure 4 shows the overview of MARG. In this system, each agent

can perform automatic GUI testing of the WUT on its own browser

instance. Each testing step of an individual agent is divided into

four phases: ❶ GUI information perception, ❷ policy optimization,

❸ action selection, and ❹ UI event execution. The phases of GUI

information perception and UI event execution are performed by

the Interaction component, which is handled independently by each

agent. On the other hand, the phases of policy optimization and

action selection are grouped as a Decision-making component man-

aged by a controller that facilitates experience sharing. To achieve

reliable and asynchronous information transmission between the

agents and the controller, our system employs a client-server archi-

tecture [21] and utilizes the HTTP protocol [12] for data transfer.

During a testing session, each agent independently detects in-

teractable elements on its observed webpage. Such elements can be

clickable buttons or links, text boxes or multiple-selection boxes.

These elements form the action space, which, combined with the

webpage’s URL, serves as the agent’s state, as defined in Section 4.1.

Additionally, the agent discerns the categories of the current test-

ing step, generates corresponding request messages, and sends the

messages to the controller (i.e., the server). Different categories

of steps correspond to different processing logics, which will be

elaborated in Section 4.3. With the requests from the agent, the

controller obtains transition information for updating global data

and optimizing strategy based on extended Q-learning algorithms.

17

Can Cooperative Multi-Agent Reinforcement Learning Boost Automatic Web Testing? An Exploratory Study ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

Testing Stage
Classifier

Request Message
Generator

Response Message
Parser

Local Data
Memory

Global Data
Memory

Request Message
Parser

Response Message
Generator

Interaction
Decision-making

Centralized Q-learning
with shared Q-table

❶ GUI info perception

❹
UI
event

execution

Send message

Send message

Record local data Update global data

Update global data

Action

State

Reward

Historical data

Client / Agent Server / Controller

Distributed Q-learning
with data exchange

❷ Policy optimization

❸ Action selection

Figure 4: An overview of MARG

Meanwhile, the current GUI information, including state and action

space, will be used to select an appropriate action. The detailed

algorithms will be introduced in Section 4.4. Subsequently, the con-

troller will send a response message to the corresponding agent,

which contains the selected action along with other necessary in-

formation. Upon receiving the response, the agent executes the

selected action, which is a UI event, updates its local data memory,

and proceeds to the next step.

4.3 Testing Stages and Messages

During the continuous interaction with the WUT, a testing agent

often faces different stages that should be handled with different

methods. For example, at the beginning of a testing session, as the

agent does not possess any knowledge about the website, it cannot

properly update its action policy. As another example, when some

exceptional situations occur (e.g., crashes), the agent should have

means to recover from the erroneous status. InMARG, at each step

in the testing loop, the agent will recognize its current stage. There
are four stages defined in MARG: initial, normal, failure, and stag-

nation stages. Based on the stage, the agent sends a corresponding

message to the controller to obtain optimal action in the current

step. The classification of stages, request message formats, and

expected response message content are shown in Table 1.

• Initial Stage refers to the beginning of the testing process. With

no prior visited states or applied actions, the agent simply needs

to provide the controller with the state and action space of the

current webpage. After receiving the initial request message, the

controller checks the global state list to determine if the state has

appeared in the testing history of the entire system. If the state

exists, its corresponding index is retrieved. Otherwise, the state is

added to the global state list along with its action space information.

Then, the system retrieves the corresponding index and feeds it

into the policy function to obtain an action. Finally, the controller

encapsulates the state index and the selected action into a response

message, and returns it to the agent.

• Normal Stage refers to a normal interaction during testing, which

involves a complete state transition. As shown in Table 1, agent

sends the index of previous state and action that navigate to the

current state, along with GUI information of current webpage, to

the controller. After the controller acquires the state index based

on the GUI information and calculates the action execution count

to compute reward 𝑟 using Equation (1), the tuple (𝑠, 𝑎, 𝑠′, 𝑟) can
update the policy function. The process of action selection and

response message generation is the same as that in the initial stage.

• Failure Stage encompasses situations where the agent encounters

obstacles preventing smooth testing progress. It may occur when

the webpage 1) lacks interactive elements, 2) is inaccessible due to

broken links, server errors, or access restrictions, 3) is from external

websites that are not within the defined testing domain. In these

situations, the agent shares with the controller the previous state

and action that resulted in current webpage, without providing

detailed information about the webpage itself. Thus, the controller

can penalize the Q-values to indicate that executing the action in

that state is unfavorable. Different from the action selection process

in normal stage, in such cases, the controller returns a URL with

lowest visit count for the agent to restart from. This helps the agent

recover from abnormal status and facilitates further exploration.

• Stagnation Stage occurs when the agent becomes trapped in a

local loop, meaning that it has executed actions more than threshold
times without triggering a new state. Similar to the failure stage, the

agent will restart the testing process from the least visited webpage.

Additionally, this stage involves a complete state transition, thus

the information shown in Table 1 should also be synchronized to

the controller for policy optimization.

The advantage of this classification method is that the controller

only needs to determine the decision category of the agent based on

the type of request message, without having to retain excessively

detailed local information of the agent. This simplifies the task of

the controller, enabling it to handle and respond to the request

messages from agents more efficiently.

4.4 Multi-Agent Q-Learning

As mentioned above, the controller is responsible for two key

phases: policy optimization and action selection. For single-agent

GUI testing, previous studies [10, 19, 25, 35, 38, 44, 52] have demon-

strated the effectiveness of the Q-learning [47] algorithm in updat-

ing the action policy:

𝑄 (𝑠, 𝑎) ← 𝑄 (𝑠, 𝑎) + 𝛼 [𝑟𝑡 + 𝛾 max

𝑎′∈A𝑠′
𝑄 (𝑠′, 𝑎′) − 𝑄 (𝑠, 𝑎)] (2)

When it comes to action selection, 𝜀-greedy is widely employed

to strike a balance between exploration and exploitation [25, 35, 44].

18

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Yujia Fan1,2 , Sinan Wang1 , Zebang Fei2 , Yao Qin2 , Huaxuan Li2 , Yepang Liu1,2,

Table 1: Attributes in the HTTP messages at different stages and the corresponding responses

Stage Message

Agent

ID

Previous

State Index

Executed

Action

Current

Observation

Current

Action Space

Current

State Index

Selected

Action

Initial ✓ ✓ ✓
Request

Normal ✓ ✓ ✓ ✓ ✓
Response - ✓ ✓ UI event

Failure ✓ ✓ ✓
Request

Stagnation ✓ ✓ ✓ ✓ ✓
Response - ✓ restart URL

Action Space …

State Space
…

Request
Message List

…

Agent 1

Agent 2

Agent 3

Agent 1

Agent 3

(𝑠!, 𝑎", 𝑠") (𝑠!, 𝑎#, 𝑠$)

(𝑠", 𝑎%, 𝑠!) (𝑠", 𝑎&, 𝑠#)
(𝑠', 𝑎$, 𝑠%)

Figure 5: An illustration of the shared Q-table scheme

This strategy randomly selects an action from the action space with

a probability of 𝜀, while exploiting prior experience by choosing

the highest-scored action with a probability of 1−𝜀:

𝑎∗ =

{
argmax

𝑎′∈A𝑠

𝑄 (𝑠, 𝑎′) with probability 1−𝜀,

random ∈A𝑠′ with probability 𝜀.
(3)

4.4.1 Centralized Q-learning with a shared Q-table. When there are

multiple RL agents relying on a centralized controller for decision-

making, it becomes intuitive to record all state-action pairs and the

corresponding Q-values into a shared Q-table. Figure 5 provides an

illustration of how the controller optimizes the RL policy using a

shared Q-table. Upon parsing the response message and accessing

the global data memory, the controller obtains a 4-tuple (𝑠, 𝑎, 𝑠′, 𝑟),
enabling it to update the value of 𝑄 (𝑠, 𝑎) according to Equation (2).

Referring to Figure 5, assuming there are three agents in the system.

The first request message from Agent 1 requires the controller to

update 𝑄 (𝑠1, 𝑎3). Suppose that the updated Q-value 𝑄 (𝑠1, 𝑎3) is
lower than its previous value, leading to 𝑄 (𝑠1, 𝑎5) becoming the

highest Q-value. Consequently, whenAgent 3 visits the state 𝑠1 after

taking action 𝑎4 in state 𝑠3, the probability of selecting 𝑄 (𝑠1, 𝑎5)
becomes highest. If the controller chooses action 𝑎5 for Agent 3,

it will receive a request message from Agent 3, as depicted by the

fifth message in Figure 5, which leads to an update of 𝑄 (𝑠1, 𝑎5).
In this way, all agents within the system can share testing experi-

ences through the shared Q-table. When an agent receives a reward

for a state-action pair, the corresponding value in Q-table is updated

accordingly. As a result, when other agents visit the same state,

they will be influenced by the experiences and prioritize actions

with higher Q-values. In other words, they exhibit a preference for

actions that have previously demonstrated higher rewards across

Algorithm 1: Distributed Q-learning for the 𝑘-th agent

Input: Agent 𝑘 : previous state 𝑠 , executed action 𝑎, current state 𝑠′ ,
action space of current state A𝑠′ , reward 𝑟

Global: number of agents 𝑁 , Q-tables𝑄1,𝑄2, ...𝑄𝑁 , and

hyperparameters 𝛼,𝛾, 𝜀

Output:𝑄𝑘 , chosen action 𝑎′

1 if 𝑠′ not in𝑄𝑘 then

2 initialize𝑄𝑘 (𝑠′,A𝑠′)
3 for 𝑗 = 1, ..., 𝑁 ; 𝑗 ≠ 𝑘 do

4 if 𝑠′ in𝑄 𝑗 then

5 tempQ.append(𝑄 𝑗 (𝑠′,A𝑠′))

6 if tempQ is empty then

7 update𝑄𝑘 (𝑠, 𝑎) using Equation (2)

8 Choose 𝑎′ from A𝑠′ using Equation (3) on𝑄𝑘 (𝑠′, ·)
9 else

10 update𝑄𝑘 (𝑠, 𝑎) using Equation (4)

11 for 𝑎𝑖 in A𝑠′ do

12 𝑄∗
𝑠′ (𝑎𝑖) = Σ𝑄 𝑗 ∈tempQ𝑄 𝑗 (𝑠′, 𝑎𝑖)

13 Choose 𝑎′ from A𝑠′ using Equation (3) on𝑄∗
𝑠′ (·)

all agents’ experiences. This mechanism of experience sharing fa-

cilitates mutual learning and leverage among all agents, thereby

improving the overall system performance and effectiveness.

4.4.2 Distributed Q-learning with data exchange. The shared Q-

table scheme is simple and easy to implement. More importantly,

it allows timely updates of testing experiences among all agents.

However, it may become inefficient as the scale of the Q-table grows.

Therefore, we consider an alternative approach, where each agent

maintains its own Q-table and updates it on demand. This approach,

which we called distributed Q-learning, is shown in Algorithm 1.

When the controller receives a message from the 𝑘-th agent, it

parses the message to obtain the tuple (𝑠, 𝑎, 𝑠′, 𝑟). Then, it searches
the Q-table for agent 𝑘 to check if there are Q-values for the current

state 𝑠′. If there are no Q-values for 𝑠′, the controller initializes

𝑄𝑘 (𝑠′,A𝑠′) with an initial Q-value (lines 1-2).

Next, the controller optimizes the policy for agent 𝑘 by updating

𝑄𝑘 (𝑠, 𝑎). Before calculating the new value of𝑄𝑘 (𝑠, 𝑎), the controller
gathers information about the current state 𝑠′ from the Q-tables

of other agents. Specifically, if 𝑠′ is present in the Q-table of the

agent 𝑗 such that 𝑗 ≠ 𝑘 , the value 𝑄 𝑗 (𝑠′,A𝑠′) is saved into a tem-

porary table tempQ (lines 3-5). In case no such state 𝑠′ exists (line
6), meaning that the state 𝑠′ which agent 𝑘 is currently visiting

19

Can Cooperative Multi-Agent Reinforcement Learning Boost Automatic Web Testing? An Exploratory Study ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

has not been visited before in the testing process of the entire sys-

tem, there is no experience data available. Therefore, agent 𝑘 relies

solely on its own Q-table to estimate the optimal action-value func-

tion, updating 𝑄𝑘 (𝑠, 𝑎) by following the Q-learning algorithm in

Equation (2) (line 7). Additionally, the controller chooses an action

from its action space A𝑠′ , by employing the 𝜀-greedy (Equation 3)

strategy on the Q-values for state 𝑠′ , denoted as 𝑄𝑘 (𝑠′, ·) (line 8).
When there were past experiences on state 𝑠′ learned by other

agents, the agent 𝑘 should update its own policy. Inspired by double

Q-learning [17], we update the Q-values as follows:

𝑄𝑘 (𝑠, 𝑎) ←𝛼 [𝑟 + 𝛾
𝑙

∑︁
𝑄 𝑗 ∈tempQ

𝑄 𝑗 (𝑠′, argmax

𝑎′∈A𝑠′
(𝑄𝑘 (𝑠′, 𝑎′))) − 𝑄𝑘 (𝑠, 𝑎)]

+𝑄𝑘 (𝑠, 𝑎)
(4)

where 𝑙 is the length of the tempQ table. It updates the 𝑄𝑘 (𝑠, 𝑎) for
agent 𝑘 based on reward 𝑟 , the discounted future rewards obtained

from the other agents’ experiences, and the current Q-value itself.

It calculates the average of the Q-values for the actions with the

highest value in 𝑄𝑘 (𝑠′, ·) among the other agents’ Q-tables. After

updating the policy for agent 𝑘 , the controller will choose an action

to be executed. In order tomake an informed decision, it recalculates

the Q-values for each action in A𝑠′ based on the experiences of

other agents on state 𝑠′ (line 12). Then, it utilizes 𝜀-greedy strategy

to choose an action on 𝑄∗
𝑠′ (·) (line 13).

5 Experimental Setup

5.1 Implementation and Environment

MARG contains two main components (Figure 4): The client-side

agents are implemented on top of Selenium-Java [2] for webpage

interactions; as for the server side, the controller consists of two

Q-learning algorithms implemented in pure Python, while the data

is stored in a MySQL database. The HTTP communication is imple-

mented using the Flask framework [1] as a RESTful server.

Regarding the two multi-agent Q-learning algorithms, we de-

veloped two versions of our proposed tool, namely MARG
𝑁
𝐶

(i.e.,

Centralized Q-learning with a shared Q-table) and MARG
𝑁
𝐷

(i.e.,

Distributed Q-learning with data exchange), which correspond to

the centralized Q-learning and the distributed Q-learning schemes,

respectively. Here 𝑁 represents the number of agents.

We conducted all the experiments on multiple desktop devices

with identical configurations, each of which has an Intel i7-13700

CPU and 32GB RAM. The devices are connected with 1Gbps Ether-

net to ensure stable network conditions. During the experiments,

we ran all agents in the same MARL system on the same device for

better communication efficiency.

5.2 Baseline Approaches

To evaluate MARG, we first selected WebExplor [52] and QExplore
[38], two state-of-the-art web GUI testing tools, as the baseline

approaches. WebExplor [52] converts an HTML document to a

sequence of tags and adopts the gestalt pattern matching algorithm

for state abstraction. It uses a deterministic finite automaton (DFA)

to provide high-level guidance. QExplore [38] defines the state of
a web application as the set of actions (e.g., button clicks) on a

webpage, which is similar toMARG, and involves a contextual data

input method to generate textual inputs.

Besides, to evaluate the performance improvement brought by

the data sharing mechanism, we also included a baseline method

that runs multiple Q-learning agents without any information ex-

changing.We call this baseline IQL
𝑁
(Independent Q-Learning [27]),

where 𝑁 represents the number of agents.

It is worth explaining that we did not run multiple instances

of WebExplor or QExplore in parallel for comparison due to two

primary reasons. First, the main focus of our work is to devise agent

cooperation strategies to improve the efficiency and performance

of web GUI testing. Hence, our essential task in the evaluation is

to compareMARG with a multi-agent approach without effective

agent cooperation (i.e., the IQL
𝑁

approach mentioned above). Sec-

ond, both WebExplor and QExplore leverage extra methods (e.g.,

DFA or contextual data input method) beyond RL, it would be un-

fair toMARG, in which each agent only leverages plain Q-learning

algorithms to guide webpage exploration, if we compare it with

parallelly running multiple instances ofWebExplor or QExplore.

5.3 Research Questions

To evaluateMARG, we conducted experiments to investigate the

following three research questions:

• RQ1 (Tool Performance): How does MARG compare with the

state-of-the-art web GUI testing methods? Additionally, can co-

operative MARL techniques (i.e.,MARG
𝑁
𝐶

andMARG
𝑁
𝐷
) achieve

a better performance than independently executing multiple

agents (i.e., IQL
𝑁
)?

• RQ2 (Comparison of Data Sharing Schemes): Is there a per-

formance difference betweenMARG
𝑁
𝐶

andMARG
𝑁
𝐷
? If so, what

are the contributing factors of this difference?

• RQ3 (Effect of Agent Numbers): How does the number of

agents affect the performance of MARG?

5.4 Configurations

Table 2 summarizes all compared approaches. During the experi-

ments, we followed the settings from existing work [38, 52], giving

the same time budget of two hours to all these approaches. To

mitigate randomness, we repeated each experiment 3 times and

calculated the average results.

The parameters for WebExplor and QExplore were set according
to the respective papers. As for IQL

𝑁
,MARG

𝑁
𝐶
, and MARG

𝑁
𝐷
, we

set the parameters 𝛼 = 1, 𝛾 = 0.5, 𝜀 = 0.5. These parameter values

have been evaluated and demonstrated good performance and sta-

bility in a recent empirical study [11]. In Algorithm 1, the initial

Q-value is set to 10.0 based on a pilot experiment.

For RQ1 and RQ2, the number of agents in MARG’s system was

set to five. As for RQ3, we conducted experiments using different

numbers of agents, with𝑁 being set to 3, 5, 8, 12 and 15, respectively.

5.5 Subject Websites

Multi-agent approaches are more suitable for testing large-scale

websites (i.e., they would be an overkill for small-sized websites).

For this reason, we selected eight popular real-world websites with

world-wide influence from Semrush rankings [3] for our experi-

ments. In order to comprehensively evaluate the performance of

MARG on different types of websites, we randomly selected web-

sites from different categories, with details of the eight websites

20

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Yujia Fan1,2 , Sinan Wang1 , Zebang Fei2 , Yao Qin2 , Huaxuan Li2 , Yepang Liu1,2,

Table 2: Details of the compared approaches

Approach Unique Feature State Reward 𝜸 𝜺 𝜶

WebExplor DFA guidance

(URL, tag sequence

of html_doc)
1√

Count(𝑠,𝑎,𝑠′)
0.95 -

1
QExplore Contextual data input method (𝐸1, 𝐸2, ..., 𝐸𝑛)

𝑅max if Count(𝑎) = 0

1√
Count(𝑎)

if Count(𝑎) > 0

𝑅negative if 𝑠 is not valid

0.9 × 𝑒− |𝐴𝑠′ |−1
10

0

IQL
𝑁

Independently run multiple Q-learning agents

(URL, 𝐸1, 𝐸2, ..., 𝐸𝑛)
1√

Count(𝑎) 0.5 0.5MARG
𝑁
C Centralized multi-agent Q-learning with a shared Q-table

MARG
𝑁
D Distributed multi-agent Q-learning with data exchange

Table 3: Details of subject websites

Name Category URL

WUT𝐴 Anonymous. Anonymous.
toppr Distance Learning https://www.toppr.com/

Smadex Advertising and Marketing https://smadex.com/

Vuestic Education https://ui.vuestic.dev/

YouTube Newspapers https://youtube.com/

GitHub Software and Development https://github.com/

GameSpot Computer and Video Games https://www.gamespot.com/

EatingWell Food and Beverages https://www.eatingwell.com/

IKEA Online Services https://www.ikea.com/

listed in Table 3. We also included the website used in the pilot

study (Section 3), which is anonymized and denoted asWUT𝐴 .

5.6 Metrics

Considering that these RL-based approaches are driven by curios-

ity, wherein the fundamental principle revolves around exploring

more webpages to increase the possibility of finding failures, we

evaluated web GUI testing approaches from two perspectives: ex-

ploration capability and testing effectiveness. In terms of the explo-

ration capability, we used metrics inspired by the evaluation of web

crawling methods [29]. Specifically, we recorded the number of ex-
plored states, detected actions (including executed ones), and executed
unique actions. Due to the different state abstractions among these

compared approaches, we unified their states as (URL, 𝐸1, 𝐸2, ..., 𝐸𝑛)
to statistically analyze the number of explored states. For evaluating

testing effectiveness, we collected detected failures, which involves

capturing and analyzing the triggered crashes and console errors

during the testing process.

6 Results and Discussion

6.1 RQ1: Tool Performance

The averaged results among three repeated runs are summarized

in Table 4, where bold numbers indicate the best results. It can be

observed that running multiple agents significantly improves the

coverage and efficiency of the tests. Specifically, based on average

results, equipped with five agents, MARG
5

D demonstrates excellent

performance across most of the metrics. In terms of the number

of explored states, it surpasses WebExplor and QExplore by factors

of 4.34 (=661.5/152.4) and 3.89 (=661.5/170.1), respectively. As for

executed unique actions, the factors are 3.03 (=626.1/206.3) and 2.46

(=626.1/254.4). The increase in the explored states and executed ac-

tions contributes to the improved testing outcomes: MARG detects

4.03 and 3.76 times more failures than the two baseline methods.

When comparing MARG
5

C and MARG
5

D with the baseline ap-

proach IQL
5
, it shows that the performance of MARG surpasses

that of the baseline on most websites. For instance, there is a 36.42%

(=(661.5-484.9)/484.9) improvement in the capability of state explo-

ration from the average results. The improvement is particularly

significant on the Vuestic and Toppr websites, exhibiting an impres-

sive growth of 331% and 550% in the explored states, respectively.

We did a deeper investigation to understand the underlying rea-

son for such significant differences and found that both of the two

websites have numerous external links, which, due to network

conditions, can delay agent exploration significantly. In our exper-

iment, such “risky actions” can waste time and lead to a failure
stage. However, cooperative MARL algorithms can decrease

the probability of selecting risky actions. When an agent selects

an action that may result in clicking on an external link, it prop-

agates this information through Q-value updates to other agents,

greatly reducing the chance of re-clicking such links and thereby

enhancing the overall performance of MARG.

WhileMARG
5

C andMARG
5

D demonstrated superior performance

than IQL
5
in terms of state exploration, IQL

5
executed more unique

actions on a few websites, such as GitHub. However, the actual

testing effectiveness of IQL
5
still falls short ofMARG

5

C andMARG
5

D,

as shown by the number of detected failures.

Answer to RQ1: Compared to the two state-of-the-art tools,

WebExplor and QExplore,MARG
5

D surpasses them by 4.34 and

3.89 times, respectively, in the number of explored states, lead-

ing to the detection of approximately three times more failures.

Moreover, cooperativeMARL helps avoid unnecessary repetitive

behaviors of web testing agents, resulting in a 36.42% increase

in the number of explored unique web states, compared to inde-

pendently running multiple agents.

6.2 RQ2: Comparison of Data Sharing Schemes

Based on the data presented in the Table 4, distinct performance

advantages can be observed forMARG
5

C andMARG
5

D across differ-

ent subject websites. To further investigate the impact of the two

data sharing schemes on the performance of MARG, we compare

them from the perspectives of communication overhead and data
propagation capabilities.

21

https://www.toppr.com/
https://smadex.com/
https://ui.vuestic.dev/
https://youtube.com/
https://github.com/
https://www.gamespot.com/
https://www.eatingwell.com/
https://www.ikea.com/

Can Cooperative Multi-Agent Reinforcement Learning Boost Automatic Web Testing? An Exploratory Study ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

Table 4: Comparison ofWebExplor, QExplore, IQL5,MARG
5

C, and MARG
5

D

WebExplor QExplore IQL
5

MARG
5

C MARG
5

D WebExplor QExplore IQL
5

MARG
5

C MARG
5

D

Explored States (#) Detected Actions (#)

WUT𝐴 380.0 153.0 836.0 701.0 912.0 1334.0 1538.0 3442.7 3126.0 3169.0

toppr 13.0 7.0 12.3 53.0 46.0 239.0 207.0 292.0 852.0 692.0

Smadex 53.0 101.0 322.3 703.3 590.7 407.0 555.0 539.3 556.7 562.3

Vuestic 83.3 26.7 42.7 273.0 283.3 347.3 194.7 264.0 1122.0 1169.3

YouTube 348.7 288.3 442.3 425.7 587.3 1946.0 1573.0 2261.0 2235.0 2382.3

GitHub 37.7 387.3 631.0 851.3 823.3 199.0 3718.3 10949.7 14611.6 14487.8

GameSpot 43.7 58.0 197.3 281.7 227.3 260.3 373.7 1132.5 1129.3 1062.7

EatingWell 381.0 427.7 1082.0 1296.7 1155.0 1319.3 1330.7 2133.3 2166.3 1909.5

IKEA 31.0 82.0 798.3 1318.7 1329 65.0 223.0 3008 2648.0 2786.3

Average 152.4 170.1 484.9 656.0 661.5 679.7 1079.3 2669.2 3160.8 3135.7

Executed Unique Actions (#) Detected Failures (#)

WUT𝐴 343.5 341.0 1112.3 782.0 1168.0 13.0 8.3 28.0 30.3 42.0

toppr 80.5 63.0 72.7 291.0 290.7 1.0 0.7 6.0 7.3 6.7

Smadex 120.0 332.0 391.3 376.3 405.3 1.0 2.0 3.0 4.0 1.7

Vuestic 201.7 89.0 145.3 616.0 695.0 6.7 4.7 25.3 29.3 39.7

YouTube 550.0 239.3 850.3 800.3 1085.7 35.3 33.0 71.0 59.3 72.7

GitHub 84.3 444.7 856.7 369.3 430.7 3.0 7.3 34.3 40.7 44.3

GameSpot 108.0 127.7 393.0 477.3 400.0 12.0 18.7 73.0 77.3 76.0

EatingWell 311.0 494.0 682.3 471.0 511.5 13.3 17.0 27.0 28.0 32.5

IKEA 58.0 160.0 874.7 596.7 648.0 3.0 3.0 31.0 32.0 39.7

Average 206.3 254.5 597.6 531.1 626.1 9.8 10.5 33.2 34.2 39.5

To compare the communication overhead, we collected the num-

ber of actions executed by MARG during each experiment. The

results are shown in Figure 6. For instance, in three repeated exper-

iments, the average total number of actions executed by the entire

system of five agents in MARG
5

C is 5,999, while that of MARG
5

D
is 8,219. It can be observed that MARG

5

D generally has a higher

number of action execution compared to the MARG
5

C. This is be-

cause there is only a single global Q-table in MARG
5

C, where the

controller performs action selection for each agent and updates

the policy through read and write operations on this Q-table. In

contrast, when using distributed Q-learning with data exchange

(i.e., Algorithm 1), the controller maintains corresponding Q-tables

for each individual agent, which provides several advantages: first,

regarding write operations, the controller only needs to update

the Q-table associated with the agent without modifying other Q-

tables; second, for read operations, it solely accesses the Q-tables of

other agents that involve relevant states, rather than accessing all

Q-tables. By reducing the need for global communication,MARG
5

D
can perform policy optimization and action selection more

efficiently, resulting in a higher number of executed actions.

To compare the data propagation capabilities, we calculated the

ratio of the number of explored states to the number of executed

actions, and presented the results in Figure 7. The higher the ratio,

the greater the number of states explored under the same number

of actions (i.e., better data propagation capabilities and exploration

efficiency). Figure 7 shows that these ratios ofMARG
5

C are higher

compared toMARG
5

D. This is becauseMARG
5

C utilizes a centralized

global Q-table, which stores the collective historical experiences

of the group of agents. Therefore, for any agent, the transition

WUTA
top

pr
Sma

dex

Vue
sti

c

You
Tub

e
Git

Hub

Gam
eSp

ot

Eat
ing

Wel
l

IKE
A

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

E
x
e
c
u
t
e
d

A
c
t
i
o
n
s

(
#
) MARG5

C

MARG5
D

Figure 6: Comparison of total executed actions of MARG
5

C
andMARG

5

D

WUTA
top

pr
Sma

dex

Vue
sti

c

You
Tub

e
Git

Hub

Gam
eSp

ot

Eat
ing

Wel
l

IKE
A

0

5

10

15

20

25

30

S
t
a
t
e
-
A
c
t
i
o
n

R
a
t
i
o

(
%
) MARG5

C

MARG5
D

Figure 7: State-to-action ratios ofMARG
5

C andMARG
5

D

data from other agents can be treated as if it has been acquired by

itself, as agents can directly access the experiences of other agents

through the shared Q-table. On the contrary, MARG
5

D exhibits a

22

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Yujia Fan1,2 , Sinan Wang1 , Zebang Fei2 , Yao Qin2 , Huaxuan Li2 , Yepang Liu1,2,

gradual decrease in the efficacy of information propagation during

the information dissemination process.

A practical implication of the above finding is that practitioners

and researchers should consider the trade-off between information

propagation capabilities and communication overhead when choos-

ing between the centralized and distributed data sharing schemes.

While the former possesses better information propagation capabil-

ities, it also incurs higher communication overhead. On the other

hand, within the same time budget, the latter demonstrates superior

overall performance, as indicated by the average results.

Answer to RQ2:MARG
𝑁
C , with its centralized nature, exhibits

superior information propagation capabilities. However, it in-

curs a higher communication overhead during the testing pro-

cess. In contrast, theMARG
𝑁
D algorithm exhibits relatively lower

overhead while upholding a good overall performance.

6.3 RQ3: Effect of Agent Numbers

Utilizing a multi-agent system for web GUI testing tasks introduces

a new configuration item: the number of agents 𝑁 . We configured

varying 𝑁 to testWUT𝐴 in order to investigate the impact of the

number of agents on MARG’s performance. The selection of the

subject websiteWUT𝐴 was based on its complexity, as shown in

Table 4 with relatively large numbers of detected states and actions.

As depicted in the Figure 8, in most cases, the testing perfor-

mance of MARG exhibits an upward trend as the number of

agents increases. However, the improvement ratios are not directly

proportional to the number of agents. For example, as the number

of agents 𝑁 increases from 3 to 5 (↑67%), 8 (↑167%), 12 (↑300%), and
15 (↑400%), the quantity of explored states of MARG

𝑁
C increases

by 20%, 138%, 140%, and 146%, respectively. Similarly, the explored

states of MARG
𝑁
D exhibited increments of 63%, 138%, 276%, and

211% correspondingly. Regarding the results of detected failures, as

𝑁 increases from 5 to 8, the number of detected failures byMARG
𝑁
D

slightly decreases. This is understandable asMARG may explore

different states with different numbers of agents and faults are

typically not evenly distributed within web applications. When 𝑁

further increases from 8, the number of detected failures also in-

creases. These results indicate that increasing the number of agents

generally brings performance improvement. However, due to the

huge search space and the inherent randomness in the behaviors

of the RL agents, a greater number of agents does not always lead

to significant improvements in testing performance and the extent

of improvement may vary across different metrics.

Additionally, in the Figure 8, we can observe that as the value

of 𝑁 varies from 3 to 8, the exploration capability of MARG
𝑁
C in-

creases significantly. However, as 𝑁 further increases to 12 and 15,

the rate of improvement in exploration capability gradually slows

down. On the other hand, the exploration capability of MARG
𝑁
D is

relatively stable when 𝑁 changes. This indicates that as the number

of agents reaches a certain threshold, along with a large number of

explored states and the significantly expanded Q-table, the infor-

mation sharing effectiveness ofMARG
𝑁
C may decline. As discussed

in Section 6.2, maintaining a large Q-table inMARG
𝑁
C results in in-

creased overhead associated with utilizing and updating the Q-table.

We further investigated the total number of executed actions of

MARG
15

C andMARG
15

D within the two-hour timeframe. We found

that the total number of actions executed byMARG
15

C is 72% of that

by MARG
15

D . This observation suggests that MARG
𝑁
D is better

suited for scenarios involving a larger number of agents, es-

pecially when testing dynamic and complex websites where

efficient agent collaboration is required.

Lastly, we also attempted to configure a larger number of agents.

However, the number of agents will be constrained by the

available computational resources. We encountered an out-of-

memory error when running 20 agents within a 2-hour time budget.

Answer to RQ3: As the system is configured with more agents,

its testing performance generally improves. Due to the low

overhead of maintaining Q-tables, MARG
𝑁
D showcases supe-

rior results than MARG
𝑁
C . Nevertheless, the expansion of agent

numbers is limited by the available computational resources.

6.4 Threats to Validity

The experimental results are subject to uncertainties arising from

network issues and inherent randomness in the algorithm (e.g.,

randomization in 𝜀-greedy). To address this issue, each experiment

for every subject website was conducted on the same machine, and

we attempted to ensure consistency in network conditions during

testing. Moreover, each experiment was conducted three times.

The evaluation of MARG was conducted on only nine commer-

cial websites, which may not be representative of all possible web

applications. There is a potential threat that our findings may not

generalize across all real-world web applications. To mitigate this

threat, we selected different types of websites, many of which are

large-scale and complex (e.g., YouTube, GitHub, and IKEA). Our ex-

ploratory study demonstrates the potential of MARL in enhancing

the efficiency and performance of web GUI testing. Moving for-

ward, we plan to run our system on more diversified and complex

websites to further assess and enhance its performance.

Furthermore, we followed an existing empirical study [11] and

employed a single configuration to set the parameters of the Q-

learning algorithm across all tools. While this ensured consistency,

it could restrict the thorough evaluation of tool performances be-

cause of the potential impacts of varying parameter settings.

7 Related Work

7.1 Reinforcement Learning for GUI Testing

RL-based techniques are capable of learning and optimizing the ex-

ploration strategies through continuous interactions with the envi-

ronment [33], which makes them promising to facilitate intelligent

GUI testing. AutoBlackTest [25] is an RL-based testing technique for

desktop applications. It treats the collection of GUI elements as its

abstracted state and calculates reward by GUI changes. Bauersfeld

et al. [7] adopted a similar approach, but with a minor difference,

they used the inverse of action frequencies as a reward. This calcu-

lation method has been used in recent works (e.g., WebExplor [52]
and QExplore [38]), which they referred to as “curiosity”. Fan et

al. summarized GUI testing techniques driven by Q-learning [11].

They highlighted the effectiveness of configurations such as using

element collections as states and curiosity as rewards. They also

23

Can Cooperative Multi-Agent Reinforcement Learning Boost Automatic Web Testing? An Exploratory Study ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

3 5 8 12 15
Number of Agents (#)

600

800

1000

1200

1400

1600

1800

E
x
p
l
o
r
e
d

S
t
a
t
e

(
#
)

MARGc

MARGD

(a) Explored States

3 5 8 12 15
Number of Agents (#)

2500

3000

3500

4000

4500

5000

5500

D
e
t
e
c
t
e
d

A
c
t
i
o
n
s

(
#
)

MARGc

MARGD

(b) Detected Actions

3 5 8 12 15
Number of Agents (#)

800

1000

1200

1400

1600

1800

E
x
e
c
u
t
e
d

U
n
i
q
u
e

A
c
t
i
o
n
s

(
#
) MARGc

MARGD

(c) Executed Unique Actions

3 5 8 12 15
Number of Agents (#)

0

10

20

30

40

D
e
t
e
c
t
e
d

F
a
i
l
u
r
e
s

(
#
)

MARGc

MARGD

(d) Detected Failures

Figure 8: Performance of MARG with different numbers of testing agents

pointed out the limitation of a single Q-learning agent in testing a

large-scale website. To address the slow exploration challenge, Mo-

bilio et al. proposed 𝐺𝑇𝑃𝑄𝐿
[32], where parallel Q-learning agents

run independently and synchronize their Q-models periodically.

With the continuous development of deep learning technology,

tools that utilize deep reinforcement learning (DRL) [22, 30, 31] for

GUI testing have emerged. A challenge addressed by DRL-based

techniques is abstracting complex GUI states, a.k.a., GUI embed-

ding. QDroid [45] creates a vector of length 4 where the elements

hold the number of components: Input, Navigation, List and Button,

which is an input of the Deep Q-Network. DQT [20] preserves wid-

gets’ structural and semantic information with graph embedding

techniques, building a foundation for identifying similar states or

actions and distinguishing different ones.

7.2 Multi-Agent Systems

Recently, cooperative MARL algorithms have gained wide applica-

tions in various fields, while most of them focus on the collaboration

of multiple Q-learning agents. Melo et al. [28] leveraged the charac-

teristics of sparse interactions to minimize the coupling between dif-

ferent Q-learning agents. Specifically, each agent employs a “global”

Q-learning approach in its own responsible exploration domain,

and uses a “local” Q-learning approach when coordinating with

other agents. To facilitate such coordination, they introduced an ad-

ditional “coordination” action in the agent’s action space. Pham et

al. [36] proposed a distributedMARL algorithm for unmanned aerial

vehicle (UAV) teams. This algorithm enables cooperative learning

among UAVs to achieve comprehensive coverage of unknown in-

terest areas while minimizing the overlap between their fields of

view. For this purpose, the reward for an individual agent will be

penalized by the number of overlapping cells with the other agents.

To address the issue of state explosion, they employed effective

function approximation techniques to handle the representation of

high-dimensional state spaces.

Besides the above studies, researchers have also explored testing

software with multi-agent systems. Cai et al. proposed Fastbot [8],

in which multiple agents are responsible for constructing a DAG

model of an Android app to support model-based testing. Huo et

al. [18] proposed a multi-agent testing environment for web appli-

cations. They divided the task of web testing into several subtasks,

such as web page retrieval, information extraction, etc. In their sys-

tem, the coordination and scheduling among agents were conducted

by separate agents, namely, brokers. Similar task decomposition

ideas have also been applied to testing tasks involving dynamic

and collaborative web services. For example, Bai et al. [6] proposed

a multi-agent framework, MAST, aiming to facilitate web service

testing in a coordinated and distributed environment. Different

from these existing studies, our work explores the use of multi-

agent reinforcement learning methods to improve the efficiency

and effectiveness of web GUI testing. Our main focus is to devise

practical agent cooperation mechanisms to enable data sharing

among multiple asynchronous RL agents.

8 Conclusion and Future Work

The primary goal of web GUI testing is to explore different page

states and achieve a high coverage so as to increase the chance

of detecting bugs. As single-agent testing techniques struggle to

achieve comprehensive coverage, while merely parallelizing mul-

tiple agents can lead to redundancy in visited states, it highlights

the demand for efficient communication and coordination mech-

anisms among the testing agents. To this end, we have designed

MARG, the first automatic web GUI testing system driven by multi-

agent Q-learning algorithms. Our experiments demonstrate that

MARG can outperform two state-of-the-art RL-based web testing

techniques, WebExplor and QExplore, showing promising results of

MARL-based GUI testing.

In the future, we plan to enhance MARG from three aspects.

First, considering the complex and huge state space of dynamic

webpages, we plan to replace Q-learning algorithms inMARG with

DRL algorithms [34] to improve state abstraction and value esti-

mation. Second, besides our current collaborative strategies, the

agents inMARG can be coordinated with other advanced MARL

algorithms, such as VDN [41] or QMIX [37], to enhance overall

performance. Third, the users of complex websites may have differ-

ent roles (e.g., administrators, store managers, and customers of an

E-commerce website). Testing such websites with multiple agents

of the same role may not be able to trigger certain intricate business

logic. We also plan to investigate how to coordinate multiple agents

with diversified roles to further improveMARG’s performance of

testing web applications in complex real-world scenarios.

Acknowledgments

We would like to thank the ASE 2024 reviewers for their construc-

tive comments on this paper. This work is supported by the Na-

tional Natural Science Foundation of China (Grant Nos. 61932021,

62372219) and the National Key Research and Development Pro-

gram of China (Grant No. 2019YFE0198100).

24

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Yujia Fan1,2 , Sinan Wang1 , Zebang Fei2 , Yao Qin2 , Huaxuan Li2 , Yepang Liu1,2,

References

[1] [n. d.]. Flask Documentation — flask.palletsprojects.com. https://flask.

palletsprojects.com/. [Accessed 27-03-2024].

[2] [n. d.]. SeleniumHQ/selenium: A browser automation framework and ecosystem.

— github.com. https://github.com/SeleniumHQ/selenium/. [Accessed 27-03-2024].

[3] [n. d.]. Top Websites in the World - Most Visited & Popular Rankings - Semrush

— semrush.com. https://semrush.com/website/top/. [Accessed 01-04-2024].

[4] Jeffrey L Adler and Victor J Blue. 2002. A cooperative multi-agent transporta-

tion management and route guidance system. Transportation Research Part C:
Emerging Technologies 10, 5-6 (2002), 433–454.

[5] Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil Anthony

Bharath. 2017. A brief survey of deep reinforcement learning. arXiv preprint
arXiv:1708.05866 (2017).

[6] Xiaoying Bai, Guilan Dai, Dezheng Xu, and Wei-Tek Tsai. 2006. A multi-agent

based framework for collaborative testing on web services. In The Fourth IEEE
Workshop on Software Technologies for Future Embedded and Ubiquitous Systems,
and the Second International Workshop on Collaborative Computing, Integration,
and Assurance (SEUS-WCCIA’06). IEEE, 6–pp.

[7] Sebastian Bauersfeld and Tanja Vos. 2012. A reinforcement learning approach

to automated gui robustness testing. In Fast abstracts of the 4th symposium on
search-based software engineering (SSBSE 2012). 7–12.

[8] Tianqin Cai, Zhao Zhang, and Ping Yang. 2020. Fastbot: A Multi-Agent Model-

Based Test Generation System Beijing Bytedance Network Technology Co., Ltd..

In Proceedings of the IEEE/ACM 1st International Conference on Automation of
Software Test. 93–96.

[9] Peter Corke, Ron Peterson, and Daniela Rus. 2005. Networked robots: Flying robot

navigation using a sensor net. In Robotics Research. The Eleventh International
Symposium: With 303 Figures. Springer, 234–243.

[10] Anna I Esparcia-Alcázar, Francisco Almenar, Mirella Martínez, Urko Rueda, and

T Vos. 2016. Q-learning strategies for action selection in the TESTAR automated

testing tool. 6th International Conferenrence on Metaheuristics and nature inspired
computing (META 2016) (2016), 130–137.

[11] Yujia Fan, SiyiWang, SinanWang, Yepang Liu, GuoyaoWen, and Qi Rong. 2023. A

Comprehensive Evaluation of Q-Learning Based Automatic Web GUI Testing. In

2023 10th International Conference on Dependable Systems and Their Applications
(DSA). IEEE, 12–23.

[12] Roy Fielding, Jim Gettys, Jeffrey Mogul, Henrik Frystyk, Larry Masinter, Paul

Leach, and Tim Berners-Lee. 1999. Hypertext transfer protocol–HTTP/1.1. Techni-
cal Report.

[13] Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shi-

mon Whiteson. 2018. Counterfactual multi-agent policy gradients. In Proceedings
of the AAAI conference on artificial intelligence, Vol. 32.

[14] Jakob Foerster, Nantas Nardelli, Gregory Farquhar, Triantafyllos Afouras,

Philip HS Torr, Pushmeet Kohli, and Shimon Whiteson. 2017. Stabilising ex-

perience replay for deep multi-agent reinforcement learning. In International
conference on machine learning. PMLR, 1146–1155.

[15] Jayesh K Gupta, Maxim Egorov, and Mykel Kochenderfer. 2017. Cooperative

multi-agent control using deep reinforcement learning. In Autonomous Agents
and Multiagent Systems: AAMAS 2017 Workshops, Best Papers, São Paulo, Brazil,
May 8-12, 2017, Revised Selected Papers 16. Springer, 66–83.

[16] Eric A Hansen, Daniel S Bernstein, and Shlomo Zilberstein. 2004. Dynamic

programming for partially observable stochastic games. In AAAI, Vol. 4. 709–
715.

[17] Hado Hasselt. 2010. Double Q-learning. Advances in neural information processing
systems 23 (2010).

[18] Qingning Huo, Hong Zhu, and Sue Greenwood. 2003. A multi-agent software

engineering environment for testing Web-based applications. In Proceedings 27th
Annual International Computer Software and Applications Conference. COMPAC
2003. IEEE, 210–215.

[19] Yavuz Koroglu, Alper Sen, Ozlem Muslu, Yunus Mete, Ceyda Ulker, Tolga Tan-

riverdi, and Yunus Donmez. 2018. QBE: QLearning-based exploration of android

applications. In 2018 IEEE 11th International Conference on Software Testing, Veri-
fication and Validation (ICST). IEEE, 105–115.

[20] Yuanhong Lan, Yifei Lu, Zhong Li, Minxue Pan, Wenhua Yang, Tian Zhang, and

Xuandong Li. 2024. Deeply Reinforcing Android GUI Testing with Deep Rein-

forcement Learning. In Proceedings of the 46th IEEE/ACM International Conference
on Software Engineering. 1–13.

[21] Scott M Lewandowski. 1998. Frameworks for component-based client/server

computing. ACM Computing Surveys (CSUR) 30, 1 (1998), 3–27.
[22] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,

Yuval Tassa, David Silver, and Daan Wierstra. 2015. Continuous control with

deep reinforcement learning. arXiv preprint arXiv:1509.02971 (2015).
[23] Michael L Littman. 1994. Markov games as a framework for multi-agent rein-

forcement learning. In Machine learning proceedings 1994. Elsevier, 157–163.
[24] Sergio Valcarcel Macua, Jianshu Chen, Santiago Zazo, and Ali H Sayed. 2014.

Distributed policy evaluation under multiple behavior strategies. IEEE Trans.
Automat. Control 60, 5 (2014), 1260–1274.

[25] Leonardo Mariani, Mauro Pezzè, Oliviero Riganelli, and Mauro Santoro. 2011.

AutoBlackTest: a tool for automatic black-box testing. In Proceedings of the 33rd
international conference on software engineering. 1013–1015.

[26] Leonardo Mariani, Mauro Pezzè, Oliviero Riganelli, and Mauro Santoro. 2014.

Automatic testing of GUI-based applications. Software Testing, Verification and
Reliability 24, 5 (2014), 341–366.

[27] Laetitia Matignon, Guillaume J Laurent, and Nadine Le Fort-Piat. 2012. Indepen-

dent reinforcement learners in cooperative markov games: a survey regarding

coordination problems. The Knowledge Engineering Review 27, 1 (2012), 1–31.

[28] Francisco S Melo and Manuela Veloso. 2009. Learning of coordination: Exploiting

sparse interactions in multiagent systems. In Proceedings of The 8th International
Conference on Autonomous Agents and Multiagent Systems-Volume 2. Citeseer,
773–780.

[29] Ali Mesbah, Engin Bozdag, and Arie Van Deursen. 2008. Crawling Ajax by

inferring user interface state changes. In 2008 eighth international conference on
web engineering. IEEE, 122–134.

[30] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Tim-

othy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. 2016. Asyn-

chronous methods for deep reinforcement learning. In International conference
on machine learning. PMLR, 1928–1937.

[31] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,

Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg

Ostrovski, et al. 2015. Human-level control through deep reinforcement learning.

nature 518, 7540 (2015), 529–533.
[32] MarcoMobilio, Diego Clerissi, Giovanni Denaro, and LeonardoMariani. 2023. GUI

Testing to the Power of Parallel Q-Learning. In 2023 IEEE/ACM 45th International
Conference on Software Engineering: Companion Proceedings (ICSE-Companion).
IEEE, 55–59.

[33] Miguel Morales. 2020. Grokking deep reinforcement learning. Manning Publica-

tions.

[34] Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. 2016.

Deep exploration via bootstrapped DQN. Advances in neural information process-
ing systems 29 (2016).

[35] Minxue Pan, An Huang, Guoxin Wang, Tian Zhang, and Xuandong Li. 2020.

Reinforcement learning based curiosity-driven testing of Android applications.

In Proceedings of the 29th ACM SIGSOFT International Symposium on Software
Testing and Analysis. 153–164.

[36] Huy Xuan Pham, Hung Manh La, David Feil-Seifer, and Aria Nefian. 2018. Co-

operative and distributed reinforcement learning of drones for field coverage.

arXiv preprint arXiv:1803.07250 (2018).
[37] Tabish Rashid, Mikayel Samvelyan, Christian Schroeder De Witt, Gregory Far-

quhar, Jakob Foerster, and Shimon Whiteson. 2020. Monotonic value function

factorisation for deep multi-agent reinforcement learning. Journal of Machine
Learning Research 21, 178 (2020), 1–51.

[38] Salman Sherin, Asmar Muqeet, Muhammad Uzair Khan, and Muhammad Zohaib

Iqbal. 2023. QExplore: An exploration strategy for dynamic web applications

using guided search. Journal of Systems and Software 195 (2023), 111512.
[39] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George

Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-

vam, Marc Lanctot, et al. 2016. Mastering the game of Go with deep neural

networks and tree search. nature 529, 7587 (2016), 484–489.
[40] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja

Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton,

et al. 2017. Mastering the game of go without human knowledge. nature 550,
7676 (2017), 354–359.

[41] Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vini-

cius Zambaldi, Max Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl

Tuyls, et al. 2017. Value-decomposition networks for cooperative multi-agent

learning. arXiv preprint arXiv:1706.05296 (2017).
[42] Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An intro-

duction. MIT press.

[43] Ming Tan. 1993. Multi-agent reinforcement learning: Independent vs. cooperative

agents. In Proceedings of the tenth international conference on machine learning.
330–337.

[44] Thi Anh Tuyet Vuong and Shingo Takada. 2018. A reinforcement learning based

approach to automated testing of android applications. In Proceedings of the 9th
ACM SIGSOFT International Workshop on Automating TEST Case Design, Selection,
and Evaluation. 31–37.

[45] Thi Anh Tuyet Vuong and Shingo Takada. 2019. Semantic Analysis for Deep

Q-Network in Android GUI Testing.. In SEKE. 123–170.
[46] Hoi-To Wai, Zhuoran Yang, Zhaoran Wang, and Mingyi Hong. 2018. Multi-agent

reinforcement learning via double averaging primal-dual optimization. Advances
in Neural Information Processing Systems 31 (2018).

[47] Christopher JCH Watkins and Peter Dayan. 1992. Q-learning. Machine learning
8 (1992), 279–292.

[48] Yaodong Yang and Jun Wang. 2020. An overview of multi-agent reinforcement

learning from game theoretical perspective. arXiv preprint arXiv:2011.00583
(2020).

25

https://flask.palletsprojects.com/
https://flask.palletsprojects.com/
https://github.com/SeleniumHQ/selenium/
https://semrush.com/website/top/

Can Cooperative Multi-Agent Reinforcement Learning Boost Automatic Web Testing? An Exploratory Study ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

[49] Shengcheng Yu, Chunrong Fang, Yexiao Yun, and Yang Feng. 2021. Layout

and Image Recognition Driving Cross-Platform Automated Mobile Testing. In

2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE).
1561–1571. https://doi.org/10.1109/ICSE43902.2021.00139

[50] Kaiqing Zhang, Zhuoran Yang, and Tamer Başar. 2021. Multi-agent reinforce-

ment learning: A selective overview of theories and algorithms. Handbook of
reinforcement learning and control (2021), 321–384.

[51] Kaiqing Zhang, Zhuoran Yang, Han Liu, Tong Zhang, and Tamer Basar. 2018.

Fully decentralized multi-agent reinforcement learning with networked agents.

In International Conference on Machine Learning. PMLR, 5872–5881.

[52] Yan Zheng, Yi Liu, Xiaofei Xie, Yepang Liu, Lei Ma, Jianye Hao, and Yang Liu.

2021. Automatic web testing using curiosity-driven reinforcement learning. In

2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE).
IEEE, 423–435.

,

26

https://doi.org/10.1109/ICSE43902.2021.00139

