L)

Check for
updates

2024 39th IEEE/ACM International Conference on Automated Software Engineering (ASE)

Model-Based GUI Testing for HarmonyOS Apps

Yige Chen
Southern University of Science and Technology
Shenzhen, China
12011625@mail.sustech.edu.cn

Yida Tao
Southern University of Science and Technology
Shenzhen, China
taoyd@sustech.edu.cn

ABSTRACT

HarmonyOS is a new all-scenario operating system. As its software
ecosystem rapidly expands, how to conduct automated testing of
HarmonyOS apps to ensure app quality has become a crucial task.
Model-based testing has been shown to be an effective method for
automatic Android app GUI testing. Inspired by previous work,
we in this work explore how to perform model-based testing for
HarmonyOS apps. To characterize app behaviors, we first propose
the page transition graph model, which is a directed graph describing
transitions between various UI pages in a HarmonyOS app. We then
devise a static analysis method to build page transition graphs from
the source code of HarmonyOS apps. Leveraging the model, we
implement a testing tool which can effectively perform systematic
GUI exploration in HarmonyOS apps. We have evaluated our tool
using 10 popular open-source HarmonyOS apps from GitHub and
Gitee. Experimental results show that the extracted models are
highly precise. Moreover, within the same time budget, model-based
testing significantly improves the test coverage of HarmonyOS
apps over a random baseline method. Our tool is open-sourced at
https://github.com/sqlab-sustech/HarmonyOS-App-Test and
a video demo is at https://youtu.be/dgZWkHiBYDbA.

KEYWORDS
HarmonyOS, Model-Based Testing, Page Transition Graph

ACM Reference Format:

Yige Chen, Sinan Wang, Yida Tao, and Yepang Liu. 2024. Model-Based GUI
Testing for HarmonyOS Apps. In 39th IEEE/ACM International Conference
on Automated Software Engineering (ASE "24), October 27-November 1, 2024,
Sacramento, CA, USA. ACM, New York, NY, USA, 4 pages. https://doi.org/
10.1145/3691620.3695364

1 INTRODUCTION

With the widespread use of smart devices, the quality assurance of
mobile apps have become crucial issues in software development.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ASE °24, October 27-November 1, 2024, Sacramento, CA, USA

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1248-7/24/10

https://doi.org/10.1145/3691620.3695364

2411

Sinan Wang
Southern University of Science and Technology
Shenzhen, China
wangsn@mail.sustech.edu.cn

Yepang Liu
Southern University of Science and Technology
Shenzhen, China
liuyp1@sustech.edu.cn

HarmonyOS, a newly-launched full-scenario distributed operat-
ing system, has quickly captured market share due to its powerful
cross-platform capabilities. Over 4,000 apps and 800 million devices
are now part of the HarmonyOS ecosystem. However, with the
rapid expansion of the HarmonyOS app ecosystem, effectively en-
suring app quality, especially in the field of automated testing for
HarmonyOS apps, has become a key issue.

Currently, as HarmonyOS becomes more widespread, develop-
ers need effective tools and methods to ensure the quality of apps.
However, due to the lack of relevant work on HarmonyOS app
testing in both academia and industry, research in this area needs
to draw on the experiences from Android app testing. In the field
of Android automated testing, model-based testing is a widely used
technique that leverages models to assist the execution and man-
agement of testing activities, which improves test coverage and
promotes testing automation. In Android, these models are often re-
ferred to as window/activity transition graphs [11], which describe
the transition relationships between different activities through
certain Ul events.

Inspired by previous research, in this paper, we explore how to
perform model-based GUI testing for HarmonyOS apps. Due to the
differences in app design principles, development languages and
other aspects between Android and HarmonyOS, existing model-
based testing methods for Android apps cannot be directly applied
for HarmonyOS apps. To address this gap, we propose a page transi-
tion graph (PTG) model for capturing the behaviors of HarmonyOS
apps. A PTG is a directed graph describing transitions between
various HarmonyOS Ul pages, which can be constructed through
static analysis. Since HarmonyOS is primarily written in ArkTS, a
JavaScript-compatible language, we build a PTG by traversing the
abstract syntax tree (AST) and the call graph (CG) with existing
JavaScript language toolchain. Then, we locate specific APIs to
capture Ul events related to page transitions. Based on the PTG, we
further devise a general GUI testing tool for HarmonyOS apps by
applying the automated testing framework arkxtest [4]. This tool
can be easily extended to support various exploration strategies.
As a proof of concept, we have implemented a depth-first search
(DFS) strategy for demonstration and preliminary evaluation.

To show the effectiveness of our tool, we run it on a HarmonyOS
phone emulator to test 10 popular open-source HarmonyOS apps.
We first analyze the quality of constructed PTG models. It shows
that the models do not contain any wrong nodes or edges (i.e.,
no false positives) but can be incomplete in some cases (i.e., there
are false negatives in terms of node/edge identification) due to the

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3691620.3695364&domain=pdf&date_stamp=2024-10-27

ASE 24, October 27-November 1, 2024, Sacramento, CA, USA

App
Module Module
UlAbility UlAbility UlAbility |
| Page | Page ‘ | Page | | Page | ‘

Figure 1: Stage model of HarmonyOS apps

dynamic language features of JavaScript. We then assess the testing
performance of our tool. The results show that, within the same
time budget, model-based testing can significantly improve the test
coverage of HarmonyOS apps compared to random testing, which
is essentially unguided.

To summarize, our work makes a first attempt on effective model-
based testing for HarmonyOS apps. We hope that by open-sourcing
our tool, more researchers and practitioners can join and contribute
to the exciting realm of HarmonyOS app testing.

2 BACKGROUND
2.1 HarmonyOS App Model

HarmonyOS employs a stage model for app development, whose
general package structure is displayed in Figure 1. This model
specifies that a HarmonyOS app can be developed in multiple mod-
ules, with each module containing multiple UTAbility components.
UIAbility is a built-in class in the HarmonyOS app development
framework, which is designed for creating Ul pages. According to
the system design of HarmonyOS, a UIAbility component cor-
responds to a unique task in the task list on the system. Each
UIAbility component can contain multiple ArkUI pages, which
can transit to each other using the built-in router APIs.

2.2 ArkUI

ArkUTI is the UI development framework for building HarmonyOS
apps. ArkUI comes with two development paradigms: ArkTS-based
declarative development and JavaScript-compatible web-like devel-
opment. The official documentation recommends using the declar-
ative development paradigm for the latest HarmonyOS apps. The
declarative developement paradigm uses ArkTS, a superset of the
TypeScript language with declarative UI syntax, to develop Har-
monyOS apps. ArkTS is compiled by the ArkCompiler to generate
bytecode files, which can be executed on the Ark runtime.

3 APPROACH

3.1 Overview

Figure 2 shows the workflow of our proposed model-based testing
tool. It consists of two major steps, static-analysis-based PTG con-
struction and model-based testing automation. Since there is no
static analysis tool for ArkTS now, we first obtain JavaScript code
from ArkTS code using ArkCompiler. Then we apply static analysis
to build PTGs. Specifically, we use JavaScript parser babel.js [2]
to generate AST and use js-callgraph [1] to generate JavaScript
CG. Based on the AST and the CG, we further analyze and obtain
the transition relationships between ArkUI pages, which form the

Yige Chen, Sinan Wang, Yida Tao, and Yepang Liu

bap,

2Oelyq

AST Taverg,
Page Transition Graph

JavaScript Code j&c‘w
g
w‘ Call Graph /
ArkCompilerI larkxtest

ArkTS Code Testing Result

Figure 2: Overview of model-based GUI testing for Har-
monyOS apps

Button(*“HarmonyOS”), click
pages/Index | pages/Main

Figure 3: Page transition graph example

PTG model. Finally, we conduct model-based testing using the Har-
monyOS testing framework arkxtest, based on the constructed PTG
model.

3.2 Building Page Transition Graphs

PTG is a type of GUI model that represents page transitions. It is a
directed graph G = (V, E), where the nodes V represent different
ArkUI pages, and the edges E represent possible page transitions
between these nodes. Listing 1 shows a snippet of UIAbility pro-
gram written in ArkTS, and Figure 3 is its corresponding PTG
graph model. Specifically, the source code from Line 7 to 9 defines
that clicking the button named “HarmonyOS” will navigate from
the current page pages/Index to another page pages/Main. Such a
page transition in the model corresponds to an edge from node
pages/Index to the node pages/Main in Figure 3.

@Entry

2 @Component
3 struct Index {

2412

build() {
Row() {
Column () {
Button('Harmony0S').onClick (() => {
router.pushUrl ({ url: 'pages/Main'
i9N
}.width('100%"')
}.height('100%"')
}
}

Listing 1: An ArkTS code snippet from a HarmonyOS app

)5

To build a PTG for a HarmonyOS app by static analysis, we first
parse the JavaScript program compiled from ArkTS source code
and get the AST representation of the program. Then, we identify
some APIs related to page transitions such as router.pushUrl. We
traverse the ASTs to locate such APIs and extract information of
the ArkUI pages (e.g., page name) that the current page will transit
to. Based on the specific location, we continuously inspect the outer
functions to find out whether there are corresponding components
and events. To handle possible nested function calls, we traverse
the CG to retrieve function call chains. After getting all components

Model-Based GUI Testing for HarmonyOS Apps

Algorithm 1 Model-based testing workflow

Input: page transition graph PTG
1: repeat
2. curPage « router.getPage()
componentInfo, event «— chooseEdge(PTG, curPage)
components « findComponentsBy(componentInfo)
for each component of components do
component.action(event)
newPage « router.getPage()
if newPage != curPage then
break
10: end if
11: end for
12: until time budget is exhausted

and Ul events related to page transitions, we will obtain a PTG as
illustrated in Figure 3.

3.3 Model-Based Testing

Based on the constructed PTG model, we leverage the Har-
monyOS automated testing framework arkxtest to realize model-
based testing. Algorithm 1 illustrates the workflow of our model-
based testing approach, which uses the PTG generated in the previ-
ous step as the input. The algorithm starts from the initial ArkUI
page loaded by current UTAbility component. First, we get the cur-
rent page name (line 2). Next, we choose which edge on the PTG to
execute, including the information of component and UI event, by
using a specific strategy implemented by the chooseEdge method
(line 3). Since the current page may contain many components
with the same information, including type, text content and so on,
we find all these components by calling the findComponentsBy
method to filter components based on specific conditions and iter-
ate through them (line 4). For each specific component, we execute
the corresponding action (line 6). If the page transitions to a new
page, we exit the current loop and proceed to the next edge selec-
tion (line 9). The steps above will repeat until the time budget is
exhausted (line 12).

It is worth mentioning that our algorithm is generic and can
support different testing strategies by overwriting the chooseEdge
method. As a proof of concept, we have implemented a depth-first
search strategy for demonstration.

4 EXPERIMENT

4.1 Subject HarmonyOS Apps

We selected 10 popular open-source HarmonyOS apps from GitHub!
and Gitee? for our experiment. Table 1 shows the basic information
of these apps. The apps’ repository links are listed on our tool pub-
licity repository. We selected these apps because they have multiple
ArkUI pages with transitions between them, which is suitable for
evaluating the performance of a model-based technique.

https://github.com/
Zhttps://gitee.com/

2413

ASE 24, October 27-November 1, 2024, Sacramento, CA, USA

Random Testing AN r70
1401 --e-- Model-based Testing AN
~ 120 60
=2
< -
_ 100 X
] _ F50~
2 &
g 801 g
= ol ; 40
o /1/ Random Testing SC o
9] - —<— Model-based Testing SC
< 40/ -7 Random Testing PC 30
'/,/' —4— Model-based Testing PC
20 e /
0 = r20
100 200 300 400 500 600
Time (sec.)

Figure 4: Comparison between random testing and model-
based testing

4.2 Evaluation on Model Quality

To evaluate the quality of the constructed PTG models, we used the
following two metrics:

e Precision (Prec.): The number of correct edges detected (TP) /
Total number of detected edges (TP + FP). Prec. measures the
ratio of edges that exist in the app among all the detected edges.

e False Negative Rate (FNR): The number of missing edges (FN)
/ Total number of actual edges (TP + FN). FNR measures the
proportion of edges that are missing from the constructed model
but actually exist in the app.

Table 1 shows the model qualities for the subject apps. As can be
seen, the models obtained using our analysis process do not have
false positives but do have a certain number of false negatives. For
example, the model of HarmoneyOpenEye app has a false negative
rate 43.75%. The primary reason for the false negatives is related
to language issues. Currently, there is no static program analysis
tool for ArkTS, and we can perform static analysis only on the
JavaScript code generated from ArkTS. JavaScript, being a dynamic
language, poses challenges in analyzing certain type information
of variables. For instance, using anonymous functions as function
parameters can reduce the accuracy of the function call graph
generation, which in turn affects model construction.

4.3 Model-Based Testing Versus Random
Testing

To evaluate the effectiveness of model-based testing, we compared
model-based testing with random testing by adopting several addi-
tional metrics. First, we counted the number of actions executed
within the same time, denoted as Action Number (AN). Then, we
measured a series of coverage metrics, including statement cover-
age (SC), which can be obtained via the testing reports produced by
the instrumentation tool nyc[3]. Since we build the PTG based on
ArkUI pages, we added another metric called page coverage (PC),
which is calculated as the number of ArkUI pages accessed during
testing divided by the total number of ArkUI pages.

We compared our model-based testing tool with a random base-
line method using the app HarmoneyOpenEye, which has the most

ASE 24, October 27-November 1, 2024, Sacramento, CA, USA

Yige Chen, Sinan Wang, Yida Tao, and Yepang Liu

Table 1: The quality evaluation of models generated from HarmonyOS apps

HarmonyOS App #Files LOC Star Fork #Pages TP FP FN Prec. FNR
HarmoneyOpenEye 68 4,013 272 52 10 9 0 7 100.00% 43.75%
Harmony-arkts-movie-music-app-ui 39 4,994 24 9 9 10 0 0 100.00% 0.00%
Codelabs/MultiShopping 59 6,544 1,500 795 6 4 0 6 100.00% 60.00%
biandan-satge 61 16,877 3 3 6 8 0 0 100.00% 0.00%
Msea_HarmonyOS 17 900 32 5 6 2 0 0 100.00% 0.00%
Codelabs/MultiDeviceMusic 55 4,483 1,500 795 5 4 0 3 100.00% 42.86%
oh-bill 18 1,551 55 11 4 3 0 0 100.00% 0.00%
open_neteasy_cloud 9 896 137 35 3 2 0 0 100.00% 0.00%
homework-tasklist-v2 22 2,261 5 3 3 2 0 1 100.00% 33.33%
ArkTS-wphuil.0 20 2,158 15 7 2 2 0 0 100.00% 0.00%

number of ArkUI pages among our subject apps list. Due to the ran- 6 CONCLUSION AND FUTURE WORK

domness during the test process, we ran both random testing and
model-based testing by 10 times on the same HarmonyOS phone
emulator with the same testing time. The experimental results were
then averaged to reduce bias.

The results of random testing and model-based testing on Har-
moneyOpenEye app are shown in Figure 4. Compared to random
testing, model-based testing significantly improves all coverage
metrics within the same time even with less action numbers. For ex-
ample, when the total testing time comes to 600 seconds, compared
to random testing, model-based testing improves the statement
coverage by 18.39% (= (68.11% — 57.53%)/57.53%) and the page
coverage from 20% to 70%, while using only nearly half the action
numbers. The reason is that compared to random testing which ran-
domly executes some Ul events on some components, model-based
testing leverages the constructed PTG to perform targeted transi-
tions, allowing for faster coverage of multiple pages and thereby
improving the coverage metrics.

5 RELATED WORK

HarmonyOS is currently in the early stages of ecosystem develop-
ment. Therefore, there have been only a few existing studies on this
emerging operating system. Li et al. [8] outlined a notable research
landscape for HarmonyOS, identifying several potential research
directions and possible challenges, including GUI modeling and
testing. The authors pointed out that, unlike Android apps where
a single Activity component corresponds to an XML layout file,
the design principle of HarmonyOS apps encourages developers to
use a single Ability component to display multiple ArkUI pages.
Consequently, constructing the transition relationships between
pages in HarmonyOS apps is more complex.

Model-based testing methods were extensively studied for An-
droid apps. These methods construct a model that represents the
behavioral space of the app under test and generate test inputs
based on this model. AndroidRipper [5] and MobiGUITAR [6] build
the model dynamically over the user interface. A3E[7] constructs
activity transition graphs with taint analysis and proposes a depth-
first exploration, which is the strategy we implement based on the
static model. Yang et al. [11, 12] applies static analysis to build win-
dow transition graphs as models. PROMAL [9] constructs window
transition graphs using program analysis and maching learning.
Fastbot2 [10] incorporates reinforcement learning algorithms into
the dynamic GUI exploration process to enhance testing efficiency.

2414

In this work, we implemented a model-based GUI testing tool for
mobile apps on HarmonyOS. Our experiment results demonstrate
it can outperform a random baseline approach by a considerable
margin. There are also several potential improvements to our model-
based testing approach in the future. For example, HarmonyOS
currently does not support obtaining GUI trees at runtime. Once this
feature is provided, we will be able to build app models dynamically
and apply more advanced and intelligent algorithms for GUI testing.

ACKNOWLEDGMENTS

This work is partially supported by the National Natural Science
Foundation of China (Grants No. 62202213 and 61932021). We would
like to thank the anonymous reviewers for their constructive com-
ments, which have significantly contributed to enhancing the qual-
ity of the paper.

REFERENCES

2013. js-callgraph. https://github.com/Persper/js-callgraph.

2014. babel js. https://github.com/babel/babel.

2015. nyc. https://github.com/istanbuljs/nyc.

2022. arkxtest. https://gitee.com/openharmony/testfwk_arkxtest.

Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tramontana, Salvatore
De Carmine, and Atif M Memon. 2012. Using GUI ripping for automated test-
ing of Android applications. In Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering. 258-261.

Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tramontana, Bryan Dzung
Ta, and Atif M Memon. 2014. MobiGUITAR: Automated model-based testing of
mobile apps. IEEE software 32, 5 (2014), 53-59.

Tanzirul Azim and Iulian Neamtiu. 2013. Targeted and depth-first exploration
for systematic testing of android apps. In Proceedings of the 2013 ACM SIGPLAN
international conference on Object oriented programming systems languages &
applications. 641-660.

Li Li, Xiang Gao, Hailong Sun, Chunming Hu, Xiaoyu Sun, Haoyu Wang, Haipeng
Cali, Ting Su, Xiapu Luo, Tegawendé F Bissyandé, et al. 2023. Software Engineering
for OpenHarmony: A Research Roadmap. arXiv preprint arXiv:2311.01311 (2023).
Changlin Liu, Hanlin Wang, Tianming Liu, Diandian Gu, Yun Ma, Haoyu Wang,
and Xusheng Xiao. 2022. ProMal: precise window transition graphs for android
via synergy of program analysis and machine learning. In Proceedings of the 44th
International Conference on Software Engineering. 1755-1767.

Zhengwei Lv, Chao Peng, Zhao Zhang, Ting Su, Kai Liu, and Ping Yang. 2022.
Fastbot2: Reusable automated model-based gui testing for android enhanced
by reinforcement learning. In Proceedings of the 37th IEEE/ACM International
Conference on Automated Software Engineering. 1-5.

Shenggian Yang, Haowei Wu, Hailong Zhang, Yan Wang, Chandrasekar Swami-
nathan, Dacong Yan, and Atanas Rountev. 2018. Static window transition graphs
for Android. Automated Software Engineering 25 (2018), 833-873.

Shenggian Yang, Dacong Yan, Haowei Wu, Yan Wang, and Atanas Rountev. 2015.
Static control-flow analysis of user-driven callbacks in Android applications. In
2015 IEEE/ACM 37th IEEE International Conference on Software Engineering, Vol. 1.
89-99.

[10

(1]

[12]

