
Understanding and Detecting Callback Compatibility Issues for
Android Applications

Huaxun Huang
The Hong Kong University of Science and Technology

Hong Kong, China
hhuangas@cse.ust.hk

Lili Wei∗
The Hong Kong University of Science and Technology

Hong Kong, China
lweiae@cse.ust.hk

Yepang Liu
Southern University of Science and Technology

Shenzhen, China
liuyp1@sustc.edu.cn

Shing-Chi Cheung
The Hong Kong University of Science and Technology

Hong Kong, China
scc@cse.ust.hk

ABSTRACT

The control flows of Android apps are largely driven by the pro-
tocols that govern how callback APIs are invoked in response to
various events. When these callback APIs evolve along with the
Android framework, the changes in their invocation protocols can
induce unexpected control flows to existing Android apps, causing
various compatibility issues. We refer to these issues as callback
compatibility issues. While Android framework updates have re-
ceived due attention, little is known about their impacts on app
control flows and the callback compatibility issues thus induced.
To bridge the gap, we examined Android documentations and con-
ducted an empirical study on 100 real-world callback compatibility
issues to investigate how these issues were induced by callback API
evolutions. Based on our empirical findings, we propose a graph-
based model to capture the control flow inconsistencies caused by
API evolutions and devise a static analysis technique, Cider, to
detect callback compatibility issues. Our evaluation of Cider on 20
popular open-source Android apps shows that Cider is effective. It
detected 13 new callback compatibility issues in these apps, among
which 12 issues were confirmed and 9 issues were fixed.

CCS CONCEPTS

• Software and its engineering → Software verification and

validation; •Human-centered computing→ Smartphones; •
General and reference → Empirical studies;

KEYWORDS

Android API, empirical study, static analysis, callback compatibility

ACM Reference Format:

Huaxun Huang, Lili Wei, Yepang Liu, and Shing-Chi Cheung. 2018. Under-
standing and Detecting Callback Compatibility Issues for Android Applica-
tions. In Proceedings of the 2018 33rd ACM/IEEE International Conference on

Automated Software Engineering (ASE ’18), September 3–7, 2018, Montpellier,

∗Shing-Chi Cheung and Yepang Liu are the corresponding authors. Lili Wei is also a
visiting student at the Southern University of Science and Technology.

ASE ’18, September 3–7, 2018, Montpellier, France

© 2018 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Proceedings of the

2018 33rd ACM/IEEE International Conference on Automated Software Engineering (ASE

’18), September 3–7, 2018, Montpellier, France, https://doi.org/10.1145/3238147.3238181.

France. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3238147.
3238181

1 INTRODUCTION

Android apps are event-driven. Callback APIs, overridden and im-
plemented in Android apps, are invoked by the underlying oper-
ating system in response to various events. The control flows of
Android apps are largely driven by the callback API invocation pro-
tocols, which define how callback APIs are invoked to handle events.
However, callback APIs are fast evolving along with the Android
system [47]. Such evolutions can change callback API invocation
protocols and cause apps to exhibit inconsistent control flows when
running on different versions of Android system. These inconsis-
tencies make it difficult for app developers to correctly maintain
program dependencies among different overridden callback APIs
across different API levels. As a result, various compatibility issues
arose. In this paper, we refer to such issues induced by callback API
evolutions as callback compatibility issues.

Several techniques have been devised to help analyze the control
flows among callback APIs for Android apps. For example, Flow-
Droid [34] can construct dummy main methods to emulate the
execution orders of lifecycle callback APIs for activity components
of Android apps. Barros et al. [35] also presented a technique to
detect implicit control flows in Android programs. While these tech-
niques help recover control flows for Android apps, none of them
can identify inconsistent app control flows caused by the callback
API evolutions. Researchers have also studied the evolutions of An-
droid APIs. Linares et al. [46] analyzed how change-proneness and
error-proneness of Android APIs affect the ratings of Android apps.
McDonnell et al. [47] analyzed the historical data of a set of Android
apps to understand the relationship between API evolutions and
API adoption. Wei et al. [52] conducted the first longitudinal study
on the evolutions of permissions in the Android ecosystem. Wei
et al. [51] investigated the fragmentation-induced compatibility
issues in Android apps including those that are induced by Android
API evolutions. While these pieces of work studied the evolutions
of Android APIs, none of them considered the changes in callback
API invocation protocols introduced by these evolutions and the
control flow inconsistencies thus induced to Android apps.

In this paper, we first study the evolutions of callback APIs
to see how they can affect the invocation protocols of callback
APIs. We characterize the callback compatibility issues induced by

https://doi.org/10.1145/3238147.3238181
https://doi.org/10.1145/3238147.3238181
https://doi.org/10.1145/3238147.3238181

ASE ’18, September 3–7, 2018, Montpellier, France H. Huang, L. Wei, Y. Liu, S. C. Cheung

such the evolutions. To this end, we conducted an empirical study
based on the API reference in Android Developers [6], Android API
Differences Reports (API Reference for short) [2], Android Open
Source Project [5], and 100 callback compatibility issues from 50
open-source Android apps. Our study aims to answer the following
two research questions:

• RQ1 (Callback API Evolutions and Invocation Protocols)

How do the evolutions of callback APIs change the API invocation

protocols? Are there any frequently-evolved callback APIs?

• RQ2 (Causes of Callback Compatibility Issues) How do the

evolutions of callback APIs induce callback compatibility issues?

Are there major issue-inducing causes?

In answering RQ1, we identified two common types of callback
API evolutions: API reachability change and API behavioral modifi-

cation. The former type changes the reachability of callback APIs
while the latter type changes the invocation conditions and be-
haviors of the concerned callback APIs. Both of the two types of
changes in callback API evolutions can alter app control flows and
induce callback compatibility issues. In answering RQ2, we ob-
served that callback compatibility issues commonly arose if apps
fail to properly handle inconsistent control flows induced by the
callback API evolutions. This motivates us to propose a graph-based
model to capture such inconsistent app control flows when running
on different API levels for the analysis of callback compatibility
issues.

Based on these observations, we propose Cider, aCallback Com-
patibility Issue Detector based on static analysis. It leverages our
proposed graph-based model to generate callback control flow
graphs capturing inconsistent control flows of callback APIs in
Android apps. To evaluate the performance of Cider, we applied
it to 20 real-world open-source Android projects collected from
GitHub [15]. Cider successfully detected 13 previously-unknown
callback compatibility issues, achieving 92.9% precision. It signif-
icantly outperformed Lint [4], a widely-used static analyzer for
Android apps, by detecting more callback compatibility issues while
generating much fewer false positives. We reported our detected
issues to the original developers of the corresponding Android apps
for their feedback. Among the 13 issues, 12 were confirmed by the
developers and nine of them were fixed shortly afterwards. This
shows that Cider can precisely detect callback compatibility issues
of interest to the Android app developers. In summary, this paper
makes the following contributions:

• We conducted an empirical study to understand the callback
API evolutions in the Android official documents and framework
code, and further characterized their impact on app control flows.
We also investigated the changes in callback API invocation
protocols and identified major causes of callback compatibility
issues. Our dataset is available at [10].
• We formulated a graph-based model to capture app control flow
inconsistencies induced by callback API evolutions. Based on this
model, we proposed a static analysis technique Cider to detect
callback compatibility issues in Android apps.
• We evaluated Cider on 20 open-source Android apps. Cider out-
performed a widely-used static analyzer, Lint, and successfully

Handler
handleMessage()

Activity
onCreate()

b1

Activity
onOptionsMenuSelected()

j1Activity
onCreateOptionsMenu()

Activity
onDestroy()

Activity
onCreate()

b1

j1

Start node

End node

Edge

Callback node

Branch node

Join node

Figure 1: A CCFG with five callback APIs.

detected 13 previously-unknown callback compatibility issues,
12 of which were confirmed or fixed by the app developers.

2 BACKGROUND

Callback APIs and callback control flow graph. Android apps
are event-driven. Callback APIs (see Figure 1 for examples) encap-
sulate code that should be executed to handle various system and
user events. Due to the event-driven paradigm, control flows of an
Android app is mainly determined by flow of triggering events. In
other words, an Android app’s execution is largely driven by the
control flow across callback APIs.

In this paper, we leverage the concept of Callback Control Flow
Graph (CCFG) to capture the control flow between callback APIs
in Android apps and discuss the issues induced by the evolution
of the callback APIs. CCFG was introduced by Yang et al. [54]
to aid control flow analysis for Android apps. Figure 1 shows an
example of a simplified CCFG. A CCFG is a directed graph that
consists of two types of nodes: callback node and helper node. Call-
back nodes represent the invocations of callback APIs while helper
nodes represent branch and join points of control flows. As shown
in Figure 1, there are five callback nodes in the CCFG, each of which
is labeled with the name of the corresponding callback API and the
concerned library class. Node b1 and j1 are two helper nodes indi-
cating that the subsequent callback APIs of the branch node b1 can
be executed in any order until the join node j1 is reached. Edges
between the nodes in a CCFG represent the transfer of control
flows between the nodes (i.e., the order of execution). For example,
the edge between the callback nodes onOptionsMenuSelected and
onCreateOptionsMenu indicates that the onCreateOptionsMenu
callback will be invoked after the onOptionsMenuSelected call-
back completes its execution.

Android API evolutions and callback compatibility issues.

TheAndroid framework is fast evolving. By 2017, there were already
27 different Android API levels [3]. Each API level introduces API
updates for various purposes such as adding new features, bug
fixing, performance optimization and code restructuring. These
updates can induce compatibility issues in Android apps [51].

Understanding and Detecting Callback Compatibility Issues for Android Applications ASE ’18, September 3–7, 2018, Montpellier, France

public void onAttach(Context context) {
super.onAttach(context);
mActivity = (BrowserActivity) context;
…………….
attachActivity((BrowserActivity) context);

}
public void onAttach(Activity activity) {

super.onAttach(activity);
if (Build.VERSION.SDK_INT < Build.VERSION_CODES.M) {

attachActivity((BrowserActivity) activity);
}

}
private void attachActivity(BrowserActivity activity) {

mActivity = activity;
…………….

}
public void onActivityCreated(Bundle savedInstanceState) {

mActivity.set(this);
…………….

}

06.

17.
18.
19.
20.

01.
02.
03. -
04. -
05. +

07. +
08. +
09. +
10. +
11. +
12. +
13. +
14. +
15. +
16. +

Figure 2: The patch for WordPress issue 6906 [33].

While non-callback APIs are implemented in the Android frame-
work and can be directly invoked by Android apps, callback APIs
are invoked by the Android system in response to occurred events.
Callback APIs are often overridden and customized by developers
to implement app-specific functionalities. As the Android frame-
work evolves, the callback APIs and their invocation protocols also
evolve. Since the invocation protocols of callback APIs affect app
control flows, the evolutions of callback APIs and changes in their
invocation protocols can have significant influence on Android
apps’ runtime behavior. Various compatibility issues would arise if
such changes, which might be subtle, are not timely identified and
properly handled. This is particularly the case if an app contains cer-
tain code that has control or data dependencies on multiple callback
APIs. This motivates us to study Android callback API evolutions
and their induced compatibility issues, which are referred to as
callback compatibility issues hereafter.

3 MOTIVATING EXAMPLE

This section presents an example to illustrate how callback API
evolutions can induce callback compatibility issues and discusses
the challenges of the issue detection. The example is extracted
from issue 6906 in WordPress [33], a popular website and blog
builder with more than 5 million downloads. According to the issue
report, WordPress would crash due to a NullPointerException
(NPE for short) caused by the evolution of a lifecycle callback API in
a Fragment, which is an Android user-interface component with its
own lifecycle [14]. In Android apps, a Fragment’s lifecycle callback
APIs need to be carefully implemented to respond to the events
that would cause the Fragment to change its lifecycle stage. The
crash was induced by a new lifecycle callback onAttach(Context)
of Fragment, which was introduced at Android API level 23. The
callback can be implemented to handle the user events that cause a
Fragment to be attached to a parent component. We explain how
WordPress issue 6906 arose due to the callback API evolution below.

Figure 2 gives the relevant code snippet of the crashing issue
and the patch written by the developers. In line 3, the variable

onAttach(Context) {
mActivity = …

}

API level ≥ 23

API level < 23

(a)

(b)
Node onAttach(Context)
is absent.

onAttach(Activity) {

}

onActivityCreated() {
mActivity.set()

}

onAttach(Activity) {

}

onActivityCreated() {
mActivity.set()

}

Figure 3: The CCFG for the code snippet in Figure 2.

mActivity is initialized in the callback onAttach(Context). The
variable is later used in another callback onActivityCreated (line
18). Figure 3 shows the CCFG for the code snippet in Figure 2.
The edges in Figure 3(a) indicate the control flows between the
concerned Fragment callback APIs at API level 23 or higher. Ac-
cording to the CCFG, after the creation of a Fragment, the fol-
lowing three callback APIs will be invoked sequentially: onAt-
tach(Context), onAttach(Activity) and onActivityCreated.
However, the callback API invocation sequence differs when the API
level is lower than 23, where onAttach(Context) will be skipped
and only onAttach(Activity) and onActivityCreated will be
invoked as shown in Figure 3(b). This is because the callback API
onAttach(Context) was first introduced at API level 23 and thus
unavailable at API levels lower than 23. When WordPress runs on
a device with an API level lower than 23, onAttach(Context) will
not be invoked and the variable mActivity (its default value is
null) will not be initialized. As a result, the invocation of onAc-
tivityCreated will lead to an NPE. To fix this issue, WordPress
developers revised the code of onAttach(Activity) to properly
initialize mActivity if the runtime API level is lower than 23 (lines
9–11).

The above issue arose due to a CCFG inconsistency induced
by the evolution of the callback API onAttach(Context) at API
level 23. The inconsistency affects the def-use chain of the vari-
able mActivity. Since inter-callback data flows are common in
Android apps [38], such callback API evolutions can easily induce
compatibility issues. To detect such callback compatibility issues,
we not only need to have a deep understanding of CCFG inconsis-
tencies caused by callback API evolutions but also need to analyze
the dependencies between app callback APIs. To the best of our
knowledge, none of the existing studies on Android compatibility
issues investigated the impact of callback API evolutions on app
control/data flows and inter-callback dependencies [41, 48, 51]. To
bridge the gap, we conducted an empirical study to understand the
callback compatibility issues induced by callback API evolutions in
Android. The study results further guided us to design a technique
to automatically detect the issues.

4 EMPIRICAL STUDY METHODOLOGY

4.1 Study Setup for Answering RQ1

To answer RQ1, we conduct an empirical study to understand the
evolutions of Android callback APIs and the changes in callback API
invocation protocols. The empirical data come from the API Refer-
ence in Android Developers [6], Android Differences Reports [2],
and Android Open Source Project [5]. In order to have a compre-
hensive understanding of the callback API evolutions, we chose to

ASE ’18, September 3–7, 2018, Montpellier, France H. Huang, L. Wei, Y. Liu, S. C. Cheung

Table 1: Keywords used in RQ2.

compatibility compatible compat deprecated
deprecation honeycomb kitkat jellybean

icecreamsandwich lollipop marshmallow nougat
gingerbread oreo api Build.VERSION

analyze the Android framework from API level 1. We describe the
process in the following.

We first need to locate a list of callback APIs from API Reference
since it does not provide a list of callback APIs. To achieve this, we
study the specifications of well-known callback APIs triggered by
the lifecycle events of Activity, Fragment and Service, which
are the key components of Android apps. We identified the common
characteristics of these API specifications and formulated our search
criteria to locate callback APIs. Specifically, we collected three kinds
of APIs: (1) the APIs whose name starts with “on”, (2) the APIs
whose description includes keywords “callback” or “listener”, (3)
the APIs whose description contain sentences with at least oneword
from each of the following two sets of keywords (case insensitive):
{“called”, “invoked”, “notified”}, and {“when”, “before”, “after”}. We
treated these APIs as callback API candidates and extracted their
information from the API reference. As a result, we identified 5,589
callback API candidates out of 42,591 Android framework APIs.
Then, two of the authors cross-examined these 5,589 API candidates
to further filter out noises in the set of candidates and kept only
callback APIs for the empirical study. Eventually, we collected 2,609
callback APIs to form our callback API list (denoted as LAPI).

We further identify the evolutions of the callback APIs in LAPI .
However, simply analyzing API Reference is inadequate because
such a constantly-evolving document can be incomplete (e.g., they
do not provide information for certain removed APIs). To obtain
more complete information of Android callback APIs, we further
analyzed Android API Differences Reports, which provide the full
history of Android framework API updates. For each callback API
update, we then studied its associated code commits in Android
Open Source Project (AOSP for short) [5]. Specifically, we studied
the code changes, related comments and commit logs to understand
how each update affects the callback API invocation protocol.

4.2 Study Setup for Answering RQ2

In RQ2, we aim to understand how callback API evolutions can
affect the software quality of Android apps and characterize the
induced callback compatibility issues. To achieve this, we need to
construct a dataset of callback compatibility issues from real-world
Android apps. For data collection, we searched two popular open-
source app hosting platforms: F-Droid [12] and GitHub [15]. We
collected the Android apps that (1) have at least one commit after
October 2017 (actively-maintained), (2) have received at least 50
stars (popular), and (3) have a public issue tracking system (trace-
able). This resulted in a set of 275 apps. For these 275 candidate apps,
we further searched for patched callback compatibility issues by
mining their code repository. Specifically, we searched for commit
logs, issue reports, and code diffs that contain the keywords listed in
Table 1. These keywords include the names of major API levels, the
name of the commonly-used class to check the runtime API level

(Build.VERSION) and several general terms related to compatibility
(e.g., we observed that developers often use “api” to represent “API
level”). To ensure the usefulness of the dataset, we only collected
callback compatibility issues that can occur on devices with an API
level 10 or above (older API versions have no market share [3]). As
a result, we obtained 100 real callback compatibility issues from 50
out of the 275 apps as our empirical study dataset. For each collected
issue, we carefully identified the evolved callback APIs and studied
how the callback API evolutions affected the concerned app’s CCFG
and induced callback compatibility issues. We also analyzed the
corresponding issue reports and issue-fixing code commits, which
contain patches, to understand the practices of Android developers
to fix callback compatibility issues.

5 EMPIRICAL STUDY RESULTS

5.1 RQ1: Callback API Evolutions and

Invocation Protocols

As discussed earlier, to answer RQ1, we identified the updates for
each callback API in LAPI . In the resulting dataset, we observed
four ways of callback API evolutions: API introduction, API dep-
recation, API behavioral modification and API removal. We further
examined the code commits in AOSP that introduced the updates of
callback APIs to study the common changes in the APIs’ invocation
protocols. We present our findings in this section.

5.1.1 Callback API Invocation Protocol Change. There are two ma-
jor categories of changes to the callback APIs’ invocation protocols
due to callback API evolutions.

Reachability change. In most cases, a callback API’s reach-
ability is changed when it evolves, making it accessible only at
specific Android API levels. For example, the onAttach(Context)
callback API defined in the Fragment class was introduced at API
level 23. Therefore, the callbacks that override it cannot be invoked
at runtime when the API level is below 23. There are 1,679 such
evolved callback APIs. The evolutions alter the invocation proto-
cols of the concerned callback APIs by enabling or disabling the
APIs’ invocations depending on the runtime API levels. This can
significantly affect the control flow of Android apps. In Section 5.2,
we will show that the reachability changes of callback APIs can
commonly induce callback compatibility issues in Android apps.

API behavioralmodification.There are 24 callbackAPIswhose
behaviors were updated. The updates did not add, remove or change
the reachability of callback APIs, but led to API behavioral modi-
fication. In our dataset, we observed three common types of such
evolutions: (1) API declaration changes (e.g., the callback API onNo-
tificationPosted’s modifier abstract was removed in API level
21), (2) calling condition or order changes (e.g., since API level 11, if
the API invalidateOptionsMenu, which declares that the options
menu has changed, is called, the callback API onCreateOptions-
Menuwill also be called by the systemwhen the options menu needs
to be displayed), and (3) the values passed to method parameters
change (e.g., the second parameter of the callback API onNewPic-
ture(WebView, Picture) will always receive a null reference
since API level 18). Such behavioral modifications of callback APIs
will cause specific changes to the APIs’ invocation protocols since
the concerned API may undergo different behavioral changes. As a

Understanding and Detecting Callback Compatibility Issues for Android Applications ASE ’18, September 3–7, 2018, Montpellier, France

onCreateView(){

}

API level ≥ 17

Node onViewStateRestored() is absent.

(a)

(b)

API level < 17

onCreateView(){

}

onViewStateRestored() {
display()

}

Figure 4: CCFG node inconsistency example.

result, the callback compatibility issues induced by such callback
API evolutions are also specific to the concerned callback APIs. We
will further discuss these callback compatibility issues in Section 5.2.

5.1.2 Commonly-Evolved Callback APIs. We analyzed the callback
APIs that have been updated since their first introduction and ob-
served that most of them are defined in four classes: Activity,
Fragment, Service and WebView. These classes are commonly-
used by Android apps for UI displays (Activity and Fragment),
background tasks (Service), and web browsing (WebView). Their
callback APIs account for 25% of the callback APIs in LAPI . 60%
of all API updates in our dataset are related to the callback APIs in
these four classes. Frequent updates of such commonly-used call-
back APIs can easily cause callback compatibility issues that would
affect a large number of Android apps. This motivates the need of
automated tools to support callback compatibility issue detection.
In the next section, we will discuss how callback API evolutions can
induce callback compatibility issues by changing app control flows.
With this knowledge, we then propose a technique for callback
compatibility issue detection.

Answer to RQ1: Callback API evolutions can modify API invo-
cation protocols, changing the reachability or functionality of
the evolved APIs. Such modifications affect app control flows.
Frequent updates of callback APIs in a few widely-used classes
commonly induce callback compatibility issues.

5.2 RQ2: Causes of Callback Compatibility

Issues

In RQ2, we study how callback API observed in RQ1 can change app
CCFGs and induce callback compatibility issues. We investigated
the 100 callback compatibility issues collected from open-source
projects on GitHub (Section 4.2). We found that all these 100 issues
arose from two types of CCFG inconsistencies induced by callback
API evolutions.

5.2.1 CCFG structural inconsistency. A vast majority of the issues
(89 out of 100) arose from the CCFG structural inconsistencies
across API levels. CCFG structural inconsistencies occur when the
set of nodes or edges of an app’s CCFG changes across different API
levels. From the 89 issues, we found that the callback compatibility
issues arising from node inconsistencies and those arising from
edge inconsistencies differ in nature. In addition, the issues arising
from node inconsistencies are most common.

API level < 11

(a)

(b)

API level ≥ 11

onCreate() {
mEntry = …

}

onCreateOptionsMenu() {
mEntry.func()

}

onCreateOptionsMenu() {
mEntry.func()

}

onCreate() {
mEntry = …

}

Figure 5: CCFG edge inconsistency example.

CCFG node inconsistency. There are 82 issues induced by
CCFG nodes that exist in some API levels but disappear in other
API levels. This is commonly caused by API reachability changes
(Section 5.1.1). The introduction of a callback API at an API level
adds a new node to concerned CCFGs, while the deprecation or
removal of an API deletes a node from the CCFGs. In both cases,
the node can only be found in the CCFGs for certain API levels.
This would lead to inconsistent app behaviors across different API
levels, causing callback compatibility issues.

With further examination, we found that the absence of a CCFG
node can (1) destruct variable def-use chains or (2) eliminate the
invocations of key APIs that can cause user-perceivable app be-
haviors. Our motivating example in Section 3 gives an instance
of such inconsistencies. In the example, the onAttach(Context)
node is absent from the app’s CCFG for API levels lower than 23.
The absence of the node destructs the def-use chain of the vari-
able mActivity, causing the app to crash. The commit 2681e87
in Bitmask [7] filed another issue induced by invoking a key API
in a callback node that is absent in CCFGs for specific API levels.
Figure 4 shows the inconsistent CCFGs. As the figure shows, the
API display is invoked in the callback API onViewStateRestored
to display information on the screen. Since this callback API is not
available until API level 17, the API displaywill not be called when
Bitmask runs on devices with an API level lower than 17. As a result,
the information cannot be properly displayed. The root cause of
this issue is that some APIs that can cause perceivable changes
at runtime (e.g., display) are not invoked because of CCFG node
absence. This motivates us to maintain a list of such APIs to support
the automated detection of callback compatibility issues via static
analysis (Section 6.2).

CCFG edge inconsistency. The remaining 7 of the 89 issues
were induced by CCFG structural inconsistencies that occurred
when the set of CCFG edges varied across different API levels while
the set of CCFG nodes remained the same. Such edge inconsisten-
cies can also destruct variable def-use chains and cause callback
compatibility issues by scrambling the execution order of callback
APIs. For example, the commit 467d6e8 of KeePassDroid [16] doc-
umented an issue caused by CCFG edge inconsistency. Figure 5
shows the concerned CCFGs. Before API level 11, the Android sys-
tem will only trigger the callback API onCreateOptionsMenu each
time when the users open the options menu and before that the on-
Create callback of the menu’s enclosing UI component must have
been invoked. However, at API level 11, a new API invalidateOp-
tionsMenu was introduced for developers to force the invocation

ASE ’18, September 3–7, 2018, Montpellier, France H. Huang, L. Wei, Y. Liu, S. C. Cheung

of onCreateOptionsMenu. This makes it possible to invoke onCre-
ateOptionsMenu before onCreate. In this case, the use statement
of mEntry in onCreateOptionsMenu can be executed before the
def statement of mEntry in onCreate, causing the app to crash.

5.2.2 CCFG non-structural inconsistency. The remaining 11 of the
100 issues were caused by CCFG non-structural inconsistency. In
these cases, the sets of nodes and edges in CCFGs stayed the same
but the behaviors of the callback APIs were inconsistent across
different API levels. The non-structural inconsistencies were in-
duced by the behavioral modifications of callback APIs such as API
modifier changes (from abstract to non-abstract), API triggering
condition changes and so on. For instance, Omni-Notes encountered
an issue of this type (issue 248 [21]). The issue was induced by a
change in the modifier of the callback API onNotificationPosted.
At API level 21, the API is changed from abstract to non-abstract.
When the API is overridden, the subclass version invokes the su-
perclass version. This works well on devices with an API level 21
or above (because the superclass version of the API is a concrete
method). However, when the app runs on devices with an API level
lower than 21, it would crash since the superclass version of the
API is an abstract method that cannot be invoked.

To summarize, callback API evolutions can induce various CCFG
inconsistencies. Such inconsistencies can affect app runtime behav-
iors and cause callback compatibility issues. Among our studied
issues, a majority of them were caused by structural inconsistencies
of CCFGs. As discussed in Section 5.2.1, CCFG structural incon-
sistencies often destruct variable def-use chains or eliminate the
invocations of key APIs that can cause user-perceivable app be-
haviors. It should be noted that the occurrence of these callback
compatibility issues heavily depends on how developers override
and implement the callback APIs (we observed that definitions and
usages of variables and API invocations commonly occur in the
method body of the overridden callback APIs in Android programs).
This motivates us to combine CCFG inconsistencies and the analysis
of the callback code to automatically detect callback compatibility
issues for Android apps (Section 6).

Answer to RQ2: Callback compatibility issues are commonly
induced by two types of app CCFG inconsistencies arising from
callback API evolutions. Among them, CCFG structural incon-
sistencies, which could affect app control flows, caused the
majority of our studied issues.

6 AUTOMATED DETECTION OF CALLBACK

COMPATIBILITY ISSUES

In Section 5.2, we made a key observation that callback compatibil-

ity issues are commonly induced by CCFG structural inconsistencies

at different API levels. The structural inconsistencies can destruct
variable def-use chains or eliminate the invocations of key APIs
that can cause user-perceivable changes (e.g., UI display APIs). This
motivates us to construct an app’s CCFG at each API level to de-
tect potential callback compatibility issues. However, analyzing the
control flow inconsistencies induced by callback API evolutions is
challenging because precisely constructing an app’s CCFG at an API

level is non-trivial as an app component can implement many call-
backs and the timing of their invocations can be non-deterministic.
To address this challenge, we first propose a graph-based model,
Callback Invocation Protocol Inconsistency Graph (PI-Graph), to
capture the structural invocation protocol inconsistencies occur-
ring in an app across API levels (Section 6.1). Then we propose a
technique Cider, which leverages the PI-Graph model, to detect
callback compatibility issues caused by CCFG structural inconsis-
tencies (Section 6.2). For issues induced by CCFG non-structural
inconsistencies, which are much less common, we leave them to
our future work.

6.1 The PI-GraphModel

A PI-Graph is a directed graph that models the inconsistency in
a callback API invocation protocol across multiple API levels. A
PI-Graph is created based on different versions of the Android
software platform. There are two categories of nodes in a PI-Graph:
(1) callback node Nc denoting a callback API, and (2) two types of
helper nodesNpre andNsuc denoting the preceding and succeeding
point of PI-Graph, respectively. An edge E = ⟨ns ,ne ,APILevel⟩
indicates the execution order of two callback nodes ne and ns : ne
will be executed after ns if the runtime API level is within the
interval APILevel , where APILevel is in the form [a,b], in which a
and b specify the lowest and highest API level, respectively. A PI-
Graph only contains the nodes for those callback APIs that reside
in the same class as the evolved callback API.

Figure 6(a) shows an PI-Graph example. It captures the CCFG
structural inconsistencies induced by the evolution of the callback
API onAttach invoked by WordPress across multiple API levels
as discussed earlier in Section 3. Besides the preceding node Npre
and the succeeding node Nsuc , there are two callback nodes repre-
senting two corresponding callback APIs. Four edges in the graph
indicate the different execution orders of the callback APIs for differ-
ent API level intervals. For example, Edge 2○ in the figure indicates
that onAttach(Activity) can be executed after the execution of
onAttach(Context) when API level is within [23, 27]. Based on
the PI-Graphmodel, we can generate simplified CCFGs for Android
apps by traversing the PI-Graph along edges that are labelled with
different API level intervals. The generated CCFGs can then facili-
tate control flow analysis for Android apps with regard to different
API levels. In the next section, we will discuss how PI-Graph can
be used to generate app CCFGs and detect callback compatibility
issues.

To demonstrate the usefulness of the PI-Graph model, we man-
ually derived seven PI-Graphs by analyzing Android Official Docu-
ments and the framework source code. These seven PI-Graphs con-
cern different callback APIs in the classes Activity, Fragment, and
WebViewClient. According to our empirical study, the evolutions
of these callback APIs commonly caused callback compatibility
issues on recent Android versions.

6.2 The Cider Approach

Cider leverages PI-Graphs to detect callback compatibility issues
in Android apps by constructing simplified app CCFGs for dif-
ferent API levels. The CCFGs integrate app code into predefined

Understanding and Detecting Callback Compatibility Issues for Android Applications ASE ’18, September 3–7, 2018, Montpellier, France

Algorithm 1: Callback Compatibility Issue Detection.
Input :An Android apk file apk ;

a list of PI-Graphs Π;
a list of key APIs Λ.

Output :Detected compatibility issues
1 apk .apiLevels ← GetAPILevels(apk .conf iд)
2 foreach π in Π do

3 apk .classList ← GetClassesFromPIGraph(π .apiList)
4 foreach c in apk .classList do
5 Γ ← GenCCFGFromPIGraph(π , c , apk .apiLevels)
6 foreach ccfg in Γ do

7 if CheckUseWithoutDef(ccfg) then

8 report a callback compatibility issue.

9 if CheckMissingKeyAPIs(Γ, Λ) then
10 report a callback compatibility issue.

PI-Graphs. Cider then performs static analysis on the CCFGs to
detect callback compatibility issues.

Algorithm 1 describes the running process of Cider. It takes an
Android app (in apk format), a list of predefined PI-Graphs (de-
noted asΠ), and a list of key APIs (denoted asΛ) as input.Cider first
checks the configuration file of the app under analysis to obtain its
supported API levels (GetAPILevels in line 1). For each PI-Graph π
in Π, Cider first identifies all app classes that extend the class that
defines the callback APIs in π by invoking GetClassesFromPI-
Graph (line 3). For each class c going to be checked, Cider gen-
erates a set of simplified app CCFGs (denoted as Γ) for different
API level intervals based on π (GenCCFGFromPIGraph in line 5)
and performs static analysis to detect use-without-def (line 7) and
missing-key-APIs (line 9) issues as discussed earlier (Section 5.2.1).
If any callback compatibility issue is detected, Cider reports its
issue location and issue type (lines 8 and 10).

Generating CCFGs from PI-Graph. To approximate the app
control flows in different API levels and support callback compat-
ibility issue detection, Cider generates app CCFGs based on PI-
Graphs. Figure 6(a) shows the PI-Graph capturing the evolutions
of the callback APIs that induced the WordPress issue in Figure 2.
Given an app and a PI-Graph, Cider identifies all different API
level intervals associated with the edges (e.g., [1, 22] and [23, 27]
in Figure 6(a)). It also identifies the supported API levels of the
given app by checking the attributes android:minSdkVersion and
android:maxSdkVersion in the app’s configuration file (i.e., An-
droidManifest.xml). It then generates a CCFG for each supported
API level interval ranдe by traversing the PI-Graph along all edges
whose associated API level interval is within ranдe and adding the
callback nodes associated with the edges. If a callback API is im-
plemented in the app under analysis, the code in the method body
will be added to the callback API’s CCFG node. Figure 6(b) shows
the CCFG for API level interval [23, 27], which is generated with
the PI-Graph in Figure 6(a) and the code snippet in Figure 2. Two
callback API nodes are included in the CCFG as they can be reached
along the edges whose associated API level is within [23, 27]. Since

(b)

(c) …

Npre NsuconAttach(Context) onAttach(Activity)

[1,22]

[23,27]

onAttach(Activity) {

}

(a)
……

① ②

③

onAttach(Context) {
mActivity = …

}

onAttach(Context) {
mActivity = …

}

onActivityCreated() {
mActivity.set()

}onAttach(Activity) {

}

[23,27] [1,27]

④

Figure 6: The steps of generating appCCFGs fromPI-Graph.

(a) is an example of PI-Graph related to the WordPress

issue (Section 3). (b) is a simplified CCFG generated by

Cider forWordPress. The CCFG describes the app’s control

flows among the callback APIs modeled by the PI-Graph in

(a) at an API level in [23, 27]. (c) is an CCFG of the app after

inserting the node of a callback API that is not in the PI-

Graph in (a). The place of insertion is determined by the in-

vocation order of the callback APIs specified in the Android

Official Documents.

API onAttach(Context) is implemented, its corresponding CCFG
node contains the code in the method body.

So far, the generated CCFG only includes callback APIs that are
in PI-Graph models. Note that the control flow inconsistencies
caused by callback API evolutions may propagate to other callback
APIs that are not modeled by PI-Graphs. To analyze the depen-
dencies between the callback APIs in PI-Graph models and other
implemented callback APIs in an app, Cider further recovers the
execution orders between callback APIs in the generated CCFGs
and other callback APIs. Specifically, we maintain a set of callback
nodes for each edge in the CCFG. A node will be added to this set if
its represented callback API can be executed between the callback
APIs represented by the start and end nodes of the CCFG edge. For
simplicity, we assume that the start and end nodes are both call-
back nodes. The cases where the start or end node is a helper node
can be handled in a similar way. For the purpose of adding such
callback nodes, we studied the specifications of all callback APIs de-
fined in the classes that we extracted PI-Graphs from. For example,
we extracted a rule from the Android Official Documents that on-
ActivityCreated should be executed after onAttach(Activity).
Cider will then create a callback node for onActivityCreated
and add it into the callback node set of the edge connecting onAt-
tach(Activity) and Nsuc as shown in Figure 6(c). One should
note that the control flows between the callback APIs that are not
in the PI-Graph models would stay unchanged at different API lev-
els and thus may not induce callback compatibility issues. For this
reason, we do not maintain orders between the set of callback nodes
associated with CCFG edges. For those callback APIs of which the
execution order cannot be inferred from the API specifications,
Cider inserts them into all possible callback node sets in CCFGs.

Identifying callback compatibility issues. After generating
CCFGs for different API level intervals, Cider conducts control
flow analysis to detect callback compatibility issues. It detects two
common types of issues by analyzing each generated CCFG:

ASE ’18, September 3–7, 2018, Montpellier, France H. Huang, L. Wei, Y. Liu, S. C. Cheung

(1) Use-without-def. Cider checks each CCFG and detects any
variables that are used before being defined. Specifically,Cider iden-
tifies the set of def and use statements for all callback nodes in each
CCFG including those nodes in the callback node set of each edge.
For each statement that uses a variable, Cider checks whether the
variable has been defined in any statements that are executed be-
fore the use statement. If a variable is used without being defined,
Cider reports a warning of use-without-def.

(2)Missing-key-APIs.Cider compares the invocations of key APIs
in the list of CCFGs generated for different API levels. As discussed
in Section 5.2 (the Bitmask issue), invoking such APIs will cause
perceivable app behaviors such as popping up a notification. As a
result, missing invocations of such APIs in certain API levels can
induce inconsistent app behaviors that can be observed by users.
Cider will report a warning of missing-key-APIs if the invocations
of key APIs, which are manually identified from our empirical study
dataset, are inconsistent among CCFGs for different API levels.

According to our empirical study, the above two types of callback
compatibility issues commonly occur in real-world Android apps.
Therefore, we implemented two checkers for detecting these issues
in the current version of Cider. Our evaluation results show that the
two checkers can already help detect a large number of real callback
compatibility issues. In future, Cider can be further extended with
other checkers to detect more types of callback compatibility issues.

7 EVALUATION

We implemented Cider on top of Soot [44], a static analysis frame-
work for Android apps and Java programs. Our current implemen-
tation of Cider encodes seven different PI-Graphs concerning 24
key APIs [10], which are extracted from our empirical study dataset.
In this section, we evaluate Cider with open-source Android apps.
We aim to answer the following two research questions:

• RQ3 (Effectiveness): Can Cider effectively and precisely detect

callback compatibility issues in real-world Android apps?

• RQ4 (Usefulness): Can Cider provide useful information for An-

droid app developers to facilitate the diagnosis and fixing callback

compatibility issues?

7.1 Experimental Setup

To answer the above research questions, we collected 20 open-
source Android apps from GitHub that satisfy the following three
constraints: (1) contain at least one commit after October 2017 (i.e.,
actively-maintained), (2) do not overlap with any projects selected
for our empirical study, and (3) use at least one of the callback APIs
in the seven PI-Graphs encoded inCider.We used the latest version
of these 20 Android apps as our evaluation subjects to examine if
Cider can detect new callback compatibility issues in them. Table 2
gives the basic information of the 20 subjects, including: (1) the
project name, (2) the app’s category information provided byGoogle
Play store (if applicable), (3) the revision used in our experiment,
(4) the number of stars on GitHub, (5) the number of downloads
on Google Play store (if applicable), and (6) the number of lines of
code. As shown in the table, the subjects are diversified, covering
10 different app categories. They are also non-trivial, containing
thousands to hundreds of thousands of lines of code.

In the experiments, we configured Cider to report the location
and type (use-without-def or missing-key-APIs) of each detected
issue. To evaluate the effectiveness of Cider, we compared it with a
baseline tool, Lint[4]. Lint is a static analyzer that scans the source
files of Android apps to find common bugs, including callback
compatibility issues. Since Lint is integrated in Android Studio,
it has been widely-used by Android app developers to improve
the software quality of their products. For comparison, we ran
Lint on the same experimental subjects to detect potential callback
compatibility issues. We manually checked the issues reported by
Cider and Lint to categorize them into true positives (TP) and
false positives (FP). For fairness, we excluded those issues that are
reported by Lint but are not related to any callback APIs in our
extracted PI-Graphs. When categorizing each issue, we carefully
examined the relevant source code. We would only categorize an
issue as a true positive if it can cause the corresponding app to
behave inconsistently at different API levels. To further evaluate
the usefulness of Cider, we reported the true issues detected by
Cider to the original app developers for confirmation and feedback.
All experiments were conducted on an iMac with an Intel Core i5
CPU @3.4GHz and 16GB RAM.

7.2 Results of RQ3: Effectiveness of Cider

As shown in Table 2, Cider detected 14 issues in nine subjects,
among which 13 are true positives (i.e., the precision is 92.9%). This
shows that Cider can precisely detect callback compatibility issues
in Android apps. Cider reported one false positive in Kolab Notes.
We investigated this false positive to understand the limitation of
Cider. As discussed in Section 6, the CCFGs generated by Cider do
not capture the execution orders between callback APIs that are
not in PI-Graphs (such orders would stay unchanged at different
API levels). This can cause imprecision in control flow analysis.
For instance, when analyzing Kolab Notes [17], Cider reported
a use-without-def issue because a variable defined in an evolved
callback API was later used in a callback that handles a click event.
The evolved API cannot be executed at some API levels and thus
Cider determines that the variable can be used without a definition
and reported the issue. However, after manually reviewing this
issue, we found that the app developers have already fixed this
problem by including a definition of the variable in another callback
API (not in the PI-Graphs), which can be called after the execution
of the evolved API and before the execution of the click event
handling callback. In our 20 evaluation subjects, Cider reported
only this false positive, suggesting that such imprecision in control
flow analysis may not affect Cider’s effectiveness in practice.

Table 2 also presents the results of Lint. Lint detected two real
callback compatibility issues but reported 19 false positives. The
two true issues reported by Lint were also reported by Cider. We in-
vestigated the 19 false positives and found that Lint simply reports
the usage of deprecated callback APIs without analyzing whether
such usage would really affect an app’s runtime behavior. For exam-
ple, in the app Calendula [8], Lint generated a warning suggesting
that the use of callback API onReceivedError is not recommended
as the API has been deprecated since API level 23. However, the use
of this API does not affect the app’s control flow at API levels higher
than 23, while it is still necessary to use the API to support the app

Understanding and Detecting Callback Compatibility Issues for Android Applications ASE ’18, September 3–7, 2018, Montpellier, France

Table 2: Evaluation subjects and results.

No. Project Name Category Last Commit Stars Downloads KLOC

Cider Lint

Issue Status

TP FP TP FP

1 AFWall+ [1] Tools 71e6c66 1,100 500K+ 21.8 1 0 0 0 786 fixed
2 Calendula [8] Health c476575 76 1K+ 26.3 0 0 0 2 - -
3 cccTV [9] Education 667a83c 20 100+ 7.8 2 0 2 0 8 confirmed
4 DuckDuckGo-Kotlin [11] Tools 2d7d379 425 1M+ 10.4 1 0 0 0 79 fixed
5 FOSS Browser [13] - e08f5b6 101 - 18.0 0 0 0 3 - -
6 Kolab Notes [17] Productivity 14ba3c3 42 1K+ 73.4 0 1 0 0 - -
7 MaterialFBook [18] - 2cb3c61 90 - 68.0 0 0 0 0 - -
8 Network-monitor [19] Tools 0e17b95 54 50K+ 20.8 0 0 0 0 - -
9 NyaaPantsu [20] - 53ad9a8 22 - 14.1 0 0 0 0 - -
10 OONI Probe [22] Tools 60cbd70 41 100K+ 4.9 1 0 0 2 146 confirmed
11 OpenKeyChain [23] Communication 7135525 1,001 100K+ 848.5 0 0 0 1 - -
12 OsmAnd [24] Maps b7a539f 1,410 5M+ 662.5 1 0 0 5 4868 fixed
13 Padland [25] Productivity 38f7e66 22 100+ 58.9 1 0 0 2 47 fixed
14 PassAndroid [26] Travel 2d50ff4 362 1M+ 85.0 0 0 0 0 - -
15 Ring [27] Communication 20d4221 82 1M+ 243.5 1 0 0 1 1831 not fixed
16 sg for SteamGifts [28] Entertainment 59fe959 40 1K+ 21.5 0 0 0 0 - -
17 Simple-Solitaire [29] Card 1483ee1 49 10K+ 294.4 1 0 0 0 108 fixed
18 SuntimesWidget [30] - c9a3c00 24 - 63.1 0 0 0 2 - -
19 SurvivalManual [31] Books 13b1f43 326 1M+ 49.4 0 0 0 0 - -
20 Uber-ride [32] - 4d77c38 209 - 12.7 4 0 0 1 105 fixed

Total - - - - - 13 1 2 19 - -

to run on lower API levels. In contrast, Cider analyzes the control
flow inconsistencies induced by the callback API evolutions. It is
capable of precisely identifying the impact of an evolve callback
API on an app’s control flow.

Answer to RQ3: Cider can precisely detect callback compati-
bility issues in Android apps. With control flow analysis based
on PI-Graph, Cider can outperform Lint and effectively reduce
the number of false positives.

7.3 Results of RQ4: Usefulness of Cider

To evaluate the usefulness of Cider, we reported the 13 true issues
it detected to the app developers for their feedback. For each issue,
we reported: (1) the issue location, (2) the root cause, and (3) po-
tential patches for fixing the issue. To avoid overwhelming the app
developers, for each concerned Android app, we submitted only
one bug report including all true issues Cider detected in the app.
So far, we have received developers’ replies for nine bug reports.

Eight of the nine (88.9%) bug reports (concerning 12 detected
issues) have been confirmed by the app developers, among which
nine issuesmentioned in six bug reports have already been fixed. For
example, for the app OsmAnd [24], we reported an issue (#4868) that
a toast notification for displaying network errors will not be shown
on devices with an API level lower than 23 because the functionality
is implemented in a callback API that was not introduced until the
API level 23. With the detailed information provided by us, OsmAnd
developers quickly realized the root cause of the issue and fixed the
issue by following our suggestions. This shows that the callback
compatibility issues detected by Cider are useful for improving
the software quality of Android apps. It also indicates that the

knowledge learned from the 50 apps in our empirical study can be
generalized to other Android apps.

The only bug report that was not confirmed by the app devel-
opers is Ring issue 1831 [27]. In this bug report, we reported an
issue where a callback API cannot be invoked at API levels lower
than 23. The callback API invokes another API that would change
the title of an action bar widget. As a result, when the app runs
on devices with an API level lower than 23, the title of the action
bar widget will not be set properly. We considered this issue as a
true positive. However, the app developers of Ring said that the
issue we reported resides in some legacy code and the action bar
widget is no longer displayed. In other words, even if the key API
is not invoked in certain cases, it would not cause any perceivable
consequences. This indicates that the determination of whether the
missing invocation of a key API would really induce inconsistent
app behaviors can depend on app-specific runtime contexts. It is a
challenge for static analysis to derive such runtime contexts and
determine perceivable impacts of invoking certain APIs. In future,
we plan to explore the possibility of approximating such runtime
contexts so that Cider can better model app behavioral inconsis-
tencies induced by the callback API evolutions. This will further
improve the performance of Cider.

Answer to RQ4: Callback compatibility issues reported by
Cider are useful to Android developers. The knowledge learned
from the 50 apps in our empirical study can be generalized to
help improve the software quality of other Android apps.

ASE ’18, September 3–7, 2018, Montpellier, France H. Huang, L. Wei, Y. Liu, S. C. Cheung

8 DISCUSSIONS

Incompleteness of the key API list. Cider takes a list of key
APIs whose execution can cause user-perceivable outcomes as in-
put to detect callback compatibility issues induced by the missing
invocations of these APIs. In this paper, we manually built a list
containing 24 APIs based on our empirical study dataset. The list is
by no means complete. This may cause Cider to miss real callback
compatibility issues, leading to false negatives. In future, we plan
to explore ways to automatically learn more key APIs from various
sources such as API documentations to address this problem.

Timeliness of the empirical dataset. Since Android is evolv-
ing quickly, its framework code and official documents are updated
constantly. Due to such evolutions, our empirical study dataset may
become outdated someday. However, our main findings such as the
control flow inconsistencies induced by the callback API evolutions
may not easily get outdated.

Errors in manual inspection. Our study involved much man-
ual work. For example, we manually identified callback APIs by
analyzing Android Official Documents. Such manual processes are
subject to errors. This poses a threat to the validity of our findings.
To mitigate the threat, two of the authors independently performed
all manual inspections and cross-validated their results. We also
release our dataset for public access [10].

9 RELATEDWORK

9.1 Android Compatibility Issues

There are many existing studies on the evolution and fragmenta-
tion of the Android ecosystem as well as the resulting compatibility
issues. Mutchler et al. [48] analyzed one million free Android apps
and observed that compatibility issues induced by Android frag-
mentation are of serious concern to the entire app development
community. McDonnell et al. [47] studied Android API evolution
and its impact on API usage. Bavota et al. [36] explored how the
fault-proneness and change-proneness of Android APIs can affect
app ratings. Hora et al. [42] studied the developers’ responses to the
Android API evolutions. Fan et al. [39] investigated Android frame-
work crashes and disclosed that one major cause for the crashes
is API evolutions. Li et al. [45] studied deprecated Android APIs
and the developers’ reactions. Hu et al. [43] studied the compati-
bility issues in Android webview. However, none of the existing
studies analyzed how Android evolutions can change callback APIs’
invocation protocols and affect app control flows. In this paper,
we systematically analyzed the changes in callback API invocation
protocols and how such changes can cause compatibility issues.

Another work by Wei et al. [51] proposed a tool FicFinder to
detect fragmentation-induced compatibility issues, which include
compatibility issues induced by Android API evolutions (the fo-
cus of this paper). FicFinder can detect issues that are caused by
invocations of certain issue-inducing APIs. It leverages backward
slicing for issue detection but does not precisely analyze app control
flows. In comparison, Cider models inconsistent app control flows
at different API levels and detects callback compatibility issues in-
duced by such control flow inconsistencies. These issues cannot be
detected by FicFinder.

9.2 Android Control Flow Analysis

Our technique analyzes the control flows of Android apps. There
are several relevant techniques. For example, Blackshear et al. [37]
proposed a technique that abstracts app control flows by discard-
ing irrelevant flows while retaining the execution orders of event
handlers that are useful for control flow analysis. Yang et al. [54]
proposed the concept callback control flow graph (CCFG), which
is also used in our work. They also proposed a technique to gen-
erate CCFGs for Android activity components by analyzing the
invocation contexts of callback methods. Arzt et al. [34] designed
FlowDroid, which performs control flow analysis of Android apps
by synthesizing dummy main methods to model the executions of
callback methods. Sun et al. [50] proposed a technique to detect
code reuse by measuring the similarities of app control flow graphs.
Wu et al. [53] designed a technique to detect unauthorized opera-
tions in Android apps by leveraging control flow analysis. Gordon
et al. [40] proposed a static analysis tool DroidSafe that combines
app runtime execution models and precise control flow analysis to
detect the leakage of sensitive data in Android apps. Safi et al. [49]
proposed Deva, a static analysis technique to detect anomalies in-
duced by nondeterministic timing for triggering events. While all
these techniques leveraged app control flow analysis, none of them
considered the inconsistencies of app control flows at different API
levels. To the best of our knowledge, our work is the first that fo-
cuses on studying how to model app control flow inconsistencies at
different API levels and leverage the model to automatically detect
callback compatibility issues.

10 CONCLUSION

In this paper, we conducted an empirical study to understand An-
droid callback API evolutions. We found that the evolutions of
Android callback APIs can cause significant changes in the APIs’
invocation protocols. Such changes can affect app control flows
and induce various compatibility issues. Based on the findings, we
proposed a graph-based model, PI-Graph, to capture the changes of
Android callback API invocation protocols. We further designed a
static analysis technique Cider that leverages the PI-Graphmodels
to automatically detect two common types of callback compatibility
issues. We implemented Cider and evaluated its performance using
20 open-source Android apps. The results show that Cider can pre-
cisely detect real and previously-unknown callback compatibility
issues. In future, we plan to extend Cider to support the detection
of more types of callback compatibility issues. We also plan to en-
hance Cider’s performance by better approximating the impact of
its detected control flow inconsistencies on app runtime behaviors.

ACKNOWLEDGMENT

The authors thank the ASE 2018 reviewers and HKUST CASTLE
members for their constructive feedback. This work is supported
by the Hong Kong RGC/GRF grant 16202917, the MSRA collabora-
tive research fund, Nvidia academic program, and the Hong Kong
PhD Fellowship Scheme. The authors also would like to thank the
Southern University of Science and Technology for the generous
support on the research and travel.

Understanding and Detecting Callback Compatibility Issues for Android Applications ASE ’18, September 3–7, 2018, Montpellier, France

REFERENCES

[1] 2018. AFWall. https://github.com/ukanth/afwall.
[2] 2018. Android API Differences Report. https://developer.android.com/sdk/api_

diff/19/changes.html.
[3] 2018. Android Developer Dashboard. https://developer.android.com/about/

dashboards/index.html.
[4] 2018. Android Lint. https://developer.android.com/studio/write/lint.
[5] 2018. Android Open Source Project (AOSP). https://github.com/aosp-mirror/

platform_frameworks_base.
[6] 2018. API Reference | Android Developers. https://developer.android.com/

reference/.
[7] 2018. BitMask. https://github.com/leapcode/bitmask_android.
[8] 2018. Calendula. https://github.com/citiususc/calendula.
[9] 2018. cccTV. https://github.com/stefanmedack/cccTV.
[10] 2018. Cider homepage. https://cideranalyzer.github.io.
[11] 2018. DuckDuckGo Android App. https://github.com/duckduckgo/Android.
[12] 2018. F-Droid. https://f-droid.org/en/packages.
[13] 2018. FOSS Browser. https://github.com/scoute-dich/browser.
[14] 2018. Fragment - Android Developer. https://developer.android.com/guide/

components/fragments.html.
[15] 2018. GitHub. https://www.github.com.
[16] 2018. KeePassDroid Revision 467d6e8. https://github.com/bpellin/keepassdroid/

commit/467d6e8.
[17] 2018. Kolab Notes. https://github.com/konradrenner/kolabnotes-android.
[18] 2018. MaterialFBook. https://github.com/ZeeRooo/MaterialFBook.
[19] 2018. Network Monitor. https://github.com/caarmen/network-monitor.
[20] 2018. NyaaPantsu. https://github.com/NyaaPantsu/NyaaPantsu-android-app.
[21] 2018. Omni-notes Issue 248. https://github.com/federicoiosue/Omni-Notes/

issues/248.
[22] 2018. OONI-Probe for Android. https://github.com/TheTorProject/

ooniprobe-android.
[23] 2018. OpenKeyChain. https://github.com/open-keychain/open-keychain.
[24] 2018. OsmAnd. https://github.com/osmandapp/Osmand.
[25] 2018. Padland. https://github.com/mikifus/padland.
[26] 2018. PassAndroid. https://github.com/ligi/PassAndroid.
[27] 2018. Ring. https://tuleap.ring.cx/projects/ring.
[28] 2018. Sg for SteamGifts. https://github.com/SteamGifts/SteamGifts.
[29] 2018. Simple Solitaire game collection. https://github.com/TobiasBielefeld/

Simple-Solitaire.
[30] 2018. SuntimesWidget. https://github.com/forrestguice/SuntimesWidget.
[31] 2018. Survival Manual. https://github.com/ligi/SurvivalManual.
[32] 2018. Uber Rides Android SDK. https://github.com/uber/rides-android-sdk.
[33] 2018. WordPress Issue 6906. https://github.com/wordpress-mobile/

WordPress-Android/issues/6906.
[34] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel,

Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. 2014. Flow-
Droid: Precise Context, Flow, Field, Object-sensitive and Lifecycle-Aware Taint
Analysis for Android Apps. In PLDI. 259–269.

[35] Paulo Barros, René Just, Suzanne Millstein, Paul Vines, Werner Dietl, and Michael
D. Ernst Ernst. 2015. Static Analysis of Implicit Control Flow: Resolving Java
Reflection and Android Intents. In ASE. 669–679.

[36] Gabriele Bavota, Mario Linares-Vasquez, Carlos Eduardo Bernal-Cardenas, Mas-
similiano Di Penta, Rocco Oliveto, and Denys Poshyvanyk. 2015. The Impact of
API Change- and Fault-Proneness on the User Ratings of Android Apps. TSE 41,
4 (Apr 2015), 384–407.

[37] Sam Blackshear, Bor-Yuh Evan Chang, and Manu Sridharan. 2015. Selective
Control-Flow Abstraction via Jumping. In OOPSLA. 163–182.

[38] Yinzhi Cao, Yanick Fratantonio, Antonio Bianchi, Manuel Egele, Christopher
Kruegel, Giovanni Vigna, and Yan Chen. 2015. EdgeMiner: Automatically De-
tecting Implicit Control Flow Transitions through the Android Framework. In
NDSS.

[39] Lingling Fan, Ting Su, Sen Chen, Guozhu Meng, Yang Liu, Lihua Xu, Geguang Pu,
and Zhendong Su. 2018. Large-Scale Analysis of Framework-Specific Exceptions
in Android Apps. In ICSE. 408–419.

[40] Michael I Gordon, Deokhwan Kim, Jeff H Perkins, Limei Gilham, Nguyen Nguyen,
and Martin C Rinard. 2015. Information Flow Analysis of Android Applications
in DroidSafe. In NDSS.

[41] Hyung Kil Ham and Young Bom Park. 2011. Mobile Application Compatibility
Test System Design for Android Fragmentation. In ASEA. 314–320.

[42] André Hora, Romain Robbes, Marco Tulio Valente, Nicolas Anquetil, Anne Etien,
and Stéphane Ducasse. 2018. How do Developers React to API Evolution? A
Large-Scale Empirical Study. SOFTWARE QUAL J. 26, 1 (2018), 161–191.

[43] Jiajun Hu, Lili Wei, Yepang Liu, Shing-Chi Cheung, and Huaxun Huang. 2018.
A Tale of Two Cities: How WebView Induces Bugs to Android Applications. In
ASE.

[44] Patrick Lam, Eric Bodden, Ondrej Lhoták, and Laurie Hendren. 2011. The Soot
Framework for Java Program Analysis: a Retrospective. In CETUS.

[45] Li Li, Jun Gao, Tegawendé Bissyandé, Lei Ma, Xin Xia, and Jacques Klein. 2018.
Characterising Deprecated Android APIs. In MSR.

[46] Mario Linares-Vásquez, Gabriele Bavota, Carlos Bernal-Cárdenas, Massimiliano
Di Penta, Rocco Oliveto, and Denys Poshyvanyk. 2013. API Change and Fault
Proneness: A Threat to the Success of Android Apps. In FSE. 477–487.

[47] Tyler McDonnell, Baishakhi Ray, and Miryung Kim. 2013. An Empirical Study of
API Stability and Adoption in the Android Ecosystem. In ICSM. 70–79.

[48] Patrick Mutchler, Yeganeh Safaei, Adam Doupé, and John Mitchell. 2016. Target
Fragmentation in Android Apps. In SPW. 204–213.

[49] Gholamreza Safi, Arman Shahbazian,WilliamGJ Halfond, and NenadMedvidovic.
2015. Detecting Event Anomalies in Event-Based Systems. In FSE. 25–37.

[50] Xin Sun, Yibing Zhongyang, Zhi Xin, Bing Mao, and Li Xie. 2014. Detecting Code
Reuse in Android Applications Using Component-Based Control Flow Graph. In
IFIP. 142–155.

[51] Lili Wei, Yepang Liu, and Shing-Chi Cheung. 2016. Taming Android Fragmenta-
tion: Characterizing and Detecting Compatibility Issues for Android Apps. In
ASE. 226–237.

[52] Xuetao Wei, Lorenzo Gomez, Iulian Neamtiu, and Michalis Faloutsos. 2012. Per-
mission Evolution in the Android Ecosystem. In ACSAC. 31–40.

[53] Jianliang Wu, Tingting Cui, Tao Ban, Shanqing Guo, and Lizhen Cui. 2015. Pad-
dyFrog: Systematically Detecting Confused Deputy Vulnerability in Android
Applications. SECUR COMMUN NETW. 8, 13 (Jan 2015), 2338–2349.

[54] Shengqian Yang, Dacong Yan, Haowei Wu, Yan Wang, and Atanas Rountev. 2015.
Static Control-Flow Analysis of User-Driven Callbacks in Android Applications.
In ICSE. 89–99.

https://github.com/ukanth/afwall
 https://developer.android.com/sdk/api_diff/19/changes.html
 https://developer.android.com/sdk/api_diff/19/changes.html
https://developer.android.com/about/dashboards/index.html
https://developer.android.com/about/dashboards/index.html
https://developer.android.com/studio/write/lint
https://github.com/aosp-mirror/platform_frameworks_base
https://github.com/aosp-mirror/platform_frameworks_base
https://developer.android.com/reference/
https://developer.android.com/reference/
https://github.com/leapcode/bitmask_android
https://github.com/citiususc/calendula
https://github.com/stefanmedack/cccTV
https://cideranalyzer.github.io
https://github.com/duckduckgo/Android
https://f-droid.org/en/packages
https://github.com/scoute-dich/browser
https://developer.android.com/guide/components/fragments.html
https://developer.android.com/guide/components/fragments.html
https://www.github.com
https://github.com/bpellin/keepassdroid/commit/467d6e8
https://github.com/bpellin/keepassdroid/commit/467d6e8
https://github.com/konradrenner/kolabnotes-android
https://github.com/ZeeRooo/MaterialFBook
https://github.com/caarmen/network-monitor
https://github.com/NyaaPantsu/NyaaPantsu-android-app
https://github.com/federicoiosue/Omni-Notes/issues/248
https://github.com/federicoiosue/Omni-Notes/issues/248
https://github.com/TheTorProject/ooniprobe-android
https://github.com/TheTorProject/ooniprobe-android
https://github.com/open-keychain/open-keychain
https://github.com/osmandapp/Osmand
https://github.com/mikifus/padland
https://github.com/ligi/PassAndroid
https://tuleap.ring.cx/projects/ring
https://github.com/SteamGifts/SteamGifts
https://github.com/TobiasBielefeld/Simple-Solitaire
https://github.com/TobiasBielefeld/Simple-Solitaire
https://github.com/forrestguice/SuntimesWidget
https://github.com/ligi/SurvivalManual
https://github.com/uber/rides-android-sdk
https://github.com/wordpress-mobile/WordPress-Android/issues/6906
https://github.com/wordpress-mobile/WordPress-Android/issues/6906

	Abstract
	1 Introduction
	2 Background
	3 Motivating Example
	4 Empirical Study Methodology
	4.1 Study Setup for Answering RQ1
	4.2 Study Setup for Answering RQ2

	5 Empirical Study Results
	5.1 RQ1: Callback API Evolutions and Invocation Protocols
	5.2 RQ2: Causes of Callback Compatibility Issues

	6 Automated Detection of callback compatibility issues
	6.1 The PI-Graph Model
	6.2 The Cider Approach

	7 Evaluation
	7.1 Experimental Setup
	7.2 Results of RQ3: Effectiveness of Cider
	7.3 Results of RQ4: Usefulness of Cider

	8 Discussions
	9 Related Work
	9.1 Android Compatibility Issues
	9.2 Android Control Flow Analysis

	10 Conclusion
	References

