
Effective Anomaly Detection for Microservice
Systems with Real-Time Feature Selection

Siqi Zhou∗, Xian Zhan†, Linlin Li‡, and Yepang Liu§
Southern University of Science and Technology, Shenzhen, China

Email: ∗12032484@mail.sustech.edu.cn, †chichoxian@gmail.com, ‡lill3@mail.sustech.edu.cn, §liuyp1@sustech.edu.cn

Abstract—Microservice architecture is getting increasingly
popular in recent years for building web-based systems. Finding
runtime anomalies in such systems is crucial for improving
their reliability. For this purpose, existing AIOps research has
proposed various machine learning-based algorithms. However,
a common limitation of existing algorithms is that they are
sensitive to the settings of thresholds for anomaly identifica-
tion when dealing with the high-dimensional multivariate time
series data collected by monitoring the running instances of
microservices. As a result, the performance of anomaly detec-
tion can be easily influenced by threshold changes. To tackle
this problem, we propose a new anomaly detection framework
called COAD (Combinatorial Optimization enhanced Anomaly
Detection), which can work with various anomaly detection
algorithms and enhance their detection process by performing
real-time feature selection via metaheuristic algorithms. We have
evaluated our method on three different testbeds based on a
representative microservice system open-sourced by Google. The
results show that real-time feature selection can significantly
reduce the underlying algorithms’ sensitivity to threshold settings
(142% reduction on average). At the same time, the best anomaly
detection performance (evaluated by f1-score) is improved by
5.67% on average. These results demonstrate the effectiveness
and potential usefulness of the approach.

Index Terms—Microservice, Anomaly Detection, Time Series,
Feature Selection, AIOps

I. INTRODUCTION

Nowadays, microservice architecture is widely adopted for

web applications [1, 2]. The idea is to split a single monolithic

application into a set of smaller, interconnected services.

Deployed independently in their own environments, services

communicate with each other using remote call. The ad-

vantages are improved productivity and increased scalability.

However, the distributed nature of microservice architecture

leads to a system based on it being complicated. Hence,

each service should be correctly configured and continuously

monitored in case of fault occurrence [3].

To reduce the labor cost and enable maintenance automa-

tion, AIOps (Artificial Intelligence for IT Operations) [4]

is proposed, which adopts machine learning techniques to

enhance IT operations. Anomaly detection [5] is an important

task of AIOps and microservice systems requires automatic

anomaly detection to prevent and report runtime faults. Mul-

tivariate time series monitored from microservice systems

§Yepang Liu is affiliated with both the Department of Computer Science
and Engineering and the Research Institute of Trustworthy Autonomous
Systems. He is the corresponding author of this paper.

contain rich information. Each variable represents a feature

(or a metric) in the whole system, like CPU utilization of a

service instance. However, analyzing such multivariate time

series to detect anomalies automatically is non-trivial. Firstly,

the monitored multivariate time series easily becomes high-

dimensional. Secondly, due to the complex dependencies, the

monitored high-dimensional time series could have compli-

cated relationships among its variables.

Existing researches have proposed various anomaly detec-

tion techniques for microservice systems [6–17]. However,

according to our analysis, previous studies and methods have

a common limitation: most anomaly detection methods are

highly affected by threshold changes when dealing with high-

dimensional time series. Via an empirical study (see Sec-

tion III), we notice a phenomenon that many true faults (or

abnormal states) are given relatively low anomaly scores by

all researched detection algorithms [18–26] and are not easily

distinguishable from normal states. That means a slight thresh-

old change could lead to huge performance degradation. We

further analyze such anomalies with low scores and find out

the potential cause for this phenomenon: anomalies triggered
by different true faults might be reflected in different subsets of
metrics (i.e., not all monitored metrics are affected by each true

fault). For a true fault, if the size of the affected metrics subset

is small, but the detection algorithms consider all metrics,

which include many unrelated ones, the anomaly score tends

to be low. Then the anomaly can be hard to detect.

To deal with the abovementioned challenges, we propose

a general framework to enhance existing anomaly detection

algorithms for microservice systems. The proposed frame-

work is called COAD (Combinatorial Optimization enhanced

Anomaly Detection). Our basic idea is to combine anomaly

detection algorithms with metaheuristic algorithms for real-

time feature selection, which identifies related subsets of

metrics for potential anomalies. Our approach is inspired by

the widely studied topic of feature selection, where meta-

heuristic algorithms are often adopted for the near-optimal

selection of complex features [27]. Since the related metric

subsets are identified, the anomaly detection algorithms will

not be influenced by the unrelated metrics, thus giving a more

accurate anomaly score and showing a better detection perfor-

mance. It is worth mentioning that different from approaches

which simply choose important features before detection using

expert knowledge or transform data into principle components

101

2023 30th Asia-Pacific Software Engineering Conference (APSEC)

2640-0715/23/$31.00 ©2023 IEEE
DOI 10.1109/APSEC60848.2023.00020

For personal use only. Copyright belongs to the publisher.



using PCA (Principal Component Analysis) [26], our approach

realizes continuous and real-time feature selection during the

whole detection process and is able to select a proper metrics

subset for each potential anomaly triggered by true faults.

To evaluate COAD, we have conducted experiments on 3

different microservice system testbeds based on a represen-

tative cloud-native microservices application open-sourced by

Google [28]. We have applied 3 metaheuristic algorithms [29–

31] with 3 anomaly detection methods [18, 24, 25] to validate

the effectiveness and generalization of COAD. The experiment

results show that COAD has the ability to mitigate existing

anomaly detection methods’ unstable performance related to

threshold changes. On average, the performance instability

caused by threshold changes is decreased by 142%. Besides,

the maximum F1-score is increased by 5.67%, which shows

our approach can improve the detection performance under the

best threshold.

In summary, our work makes the following contributions:

• We empirically evaluate various anomaly detection algo-

rithms on multivariate time series data from a real-world

microservice system dataset [28]. Our study reveals that

the existing anomaly detection algorithms suffer from the

threshold sensitivity problem, i.e., their performance can

be largely affected by threshold changes when dealing

with high-dimensional time series.

• We propose a novel anomaly detection framework for

microservice systems, which adopts metaheuristic algo-

rithms for feature seletion. Our approach aims to narrow

down the gaps among anomaly scores of true faults while

keeping the true faults and normal patterns distinguish-

able, thus alleviating the threshold sensitivity problem

and improving the performance.

• We have evaluated the proposed method on 3 testbeds

and the experiment results show its expected effect.

• We release all the code, dataset, and experiment re-

sults [32] to facilitate further studies.

II. BACKGROUND AND RELATED WORK

In this section, we introduce the background of our research

and existing studies that are highly related to our work.

A. Anomaly Detection of Microservice Systems

There are many AIOps researches on detecting microservice

system anomalies. Microscope [6], for example, adopts the

three-sigma rule of thumb to detect if a service instance is

abnormal by analyzing univariate time series. MicroRCA [7]

employs an online clustering method BIRCH [33] to detect the

anomaly in the metric of response time. TraceRCA [8] uses

a threshold to detect abnormal service invocations based on

univariate time series.

Despite a large amount of AIOps researches, few studies try

to analyze multivariate time series. These methods might miss

the correlation among different metrics in the whole system

and thus fail to detect many real anomalies.

B. Multivariate Time Series Anomaly Detection

We categorize existing multivariate time series anomaly

detection methods into two main groups: 1) classical ma-

chine learning algorithms and 2) deep neural network-based

methods. The former category includes KNN (K-Nearest

Neighbors) [24], LOF (Local Outlier Factor) [25], KDE (Ker-

nel Density Estimation) [23], COPOD (Copula-Based Outlier

Detection) [21], IForest [22] and GMM (Gaussian Mixture

Model) [18]. There is also a study of anomaly detection

using PCA (Principal Component Analysis) [26]. The latter

category uses deep learning to learn normal patterns and

identify abnormal ones. For example, AutoEncoder [18], VAE

(Variational Autoencoder) [20] and DeepSVDD (Deep Support

Vector Data Description) [19] can capture more complex

data patterns with sufficient training, compared with classical

machine learning algorithms. However, these deep learning-

based methods are usually adopted in an unsupervised way

to conduct anomaly detection because the abnormal data is

too scarce for supervised learning. Besides, they often require

a huge amount of training data, which may hinder their

applicability in practice.

C. Feature Selection

Feature selection methods are widely studied to deal with

high-dimensional data [34]. They filter out unrelated features

or metrics and use those most important ones to conduct

data analysis. Metaheuristic algorithms belong to derivative-

free algorithms for feature selection and work as a black

box to help explore the search space efficiently and effec-

tively [35]. There are plenty of practical metaheuristic algo-

rithms in different areas. For example, PSO (Particle Swarm

Optimization) [29] is inspired by schools of fishes and birds;

GA (Genetic Algorithm) [31] mimics gene evolution; AEO

(Artificial Ecosystem-based Optimization) [30] mimics the

energy transfer in the ecosystem.

III. EMPIRICAL STUDY & MOTIVATION

A. Dataset

The dataset for the empirical study is from the 2022 compe-

tition of the International AIOps Challenge [28], which is an

influential competition in the field of intelligent operation &

maintenance. The dataset was produced by Hipstershop [36],

a representative cloud-native microservices application open-

sourced by Google and it has 9 microservices as shown in

Fig. 1. We use this microservice framework in 2 experiments:

empirical study (to find the problem) & evaluation (to validate

our method). While there is only one framework, it is deployed

on 3 testbeds in an industrial environment, to produce the

multivariate time series data for our study. Each service has

several instances running on machine nodes and we use as

much metrics in the system as we can to form the multivariate

time series (around 2,000 metrics), such as the CPU load of a

machine node or the memory consumption of an instance etc.

102



Fig. 1. The microservice system framework of Hipstershop [36].

B. The Threshold Sensitivity Problem

We have evaluated 10 popular anomaly detection algo-

rithms [18–26] on the dataset. Fig. 2 shows an example

of the anomaly detection results using GMM [18]. X-axis

is the timestamp, and the interval between two consecutive

timestamps is one minute. The maximum number on X-axis

is the length of a day: 1440m = 24h∗60m/h (m is minute and

h is hour). The blue dots on the vertical Y-axis is the anomaly

scores ranging from 0 to 1. The higher anomaly score, the

more likely the algorithm believes there is a true fault. To

clearly see the detection performance, we also plot the true

fault happening time using vertical green lines. It can be seen

that many blue dots are on the green lines vertically, which

means that the anomaly detection algorithm can successfully

pinpoint some true faults. However, the blue dots marked

with red rectangles are not outstanding compared with those

with yellow rectangles. For each anomaly detection method,

a threshold should be set to determine how large the anomaly

score of a true fault should be. True faults with low anomaly

scores might make it difficult to choose a proper threshold

and have a negative effect on the detection performance of an

anomaly detection algorithm. More specifically, to catch the

true faults with low anomaly scores, the threshold should be

set to a small value, but then the algorithm may report many

false positives. On the other hand, if the threshold is high, the

true faults with low anomaly scores will be missed.

To clearly see how threshold settings may affect the perfor-

mance of anomaly detection algorithms when there are true

faults with low anomaly scores, we measure the following

performance indicators with different threshold settings: pre-

cision, recall, and F1-score.

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
(1)

F1 score =
2 ∗ Precision ∗Recall

Precision+Recall
(2)

In formula (1), TP means true positive (true faults correctly

detected), FP means false positive (misjudged normal states),

and FN means false negative (missed true faults). The main

indicator is F1-score in formula (2), which is the harmonic

mean of precision and recall. As shown in Fig. 3, the value

of the three indicators changes when the threshold ranges

from 0 to 1. However, the best threshold where the F1-score

reaches the maximum is very close to 0, and the F1-score

degrades very quickly when the threshold goes away from the

best. This shows that the algorithm performance may vary

significantly with different threshold settings (the threshold

sensitivity problem).

To further investigate the threshold sensitivity problem, we

decide to calculate two derivative indicators. The first indicator

is M-value (Maximum), and the second is R-value (Random).

M value = max(F1 scorei) (3)

R value =

∑n
i=1 F1 scorei

n
(4)

M-value is the F1-score with the best threshold, and R-

value is the average F1-score of various thresholds obtained

by Monte Carlo sampling. Their calculation formulas are (3)

and (4), where n is the total times of Monte Carlo sampling

and F1 scorei is the F1-score obtained by i-th sampling by

choosing a random threshold in [0, 1]. In our study, we do the

sampling 10,000 times (i.e., n = 10000).

TABLE I
THE PERFORMANCE OF THE TEN EVALUATED ALGORITHMS.

Method M-value R-value AUC

AutoEncoder [18] 0.71 0.05 0.83
DeepSVDD [19] 0.63 0.11 0.81

VAE [20] 0.7 0.05 0.83
COPOD [21] 0.63 0.08 0.76
IForest [22] 0.61 0.18 0.74
GMM [18] 0.72 0.14 0.86
KDE [23] 0.66 0.17 0.78
KNN [24] 0.66 0.12 0.79
LOF [25] 0.67 0.11 0.78
PCA [26] 0.71 0.05 0.83

In Table I, we report the M-value and R-value of the ten

evaluated algorithms on our dataset. It can be seen that all

these algorithms have a relatively high M-value and low R-

value, which means that although these methods can have

a good performance with the best threshold, they are not

robust to threshold changes. It is worth noting that PCA [26],

which is a novel anomaly detection scheme based on principal

component analysis, also suffers from the threshold sensitivity

problem.

C. Motivation of Real-time Feature Selection

To find out the potential cause of the threshold sensitivity

problem, we try to figure out the quantity distribution of the

abnormal metrics at every timestamp. The three-sigma rule is

adopted to roughly identify the abnormal metric. If the value

of a metric v is not in [μ−3σ, μ+3σ], where μ is the average

of normal values and σ is the standard deviation of normal

values, then the metric is considered abnormal.

Fig. 4 shows an example of a day’s distribution. The X-axis

is the timestamp, not sorted by time but by the number of

abnormal metrics on the Y-axis. Green bars denote the normal

states, and red bars denote the true faults. It is obvious that

103



Fig. 2. Anomaly detection results of GMM.

Fig. 3. GMM’s detection performance with different threshold settings.

Fig. 4. An example of abnormal metrics quantity distribution.

the quantity of abnormal metrics obeys a long tail distribution.

Most of the normal states are on the tail part of the distribution,

and most of the true faults are on the head part, which

means that the true faults have more abnormal metrics than

normal states as judged by the three-sigma rule. The boundary

Fig. 5. The workflow of anomaly detection with real-time feature selection.

between the number of abnormal metrics at normal states

and when true faults occur is roughly at the horizon line

y = 20: most normal states have less than 20 abnormal

metrics, and most true faults affect more than 20 metrics.

The label “solution length” means the integer encoding length

of features subset adopted in our framework COAD (see

Section IV for more details). We choose 20 to balance the

effect of COAD on true faults and normal states. In the head

of the distribution, the minor part has much more abnormal

metrics than the major part. If the monitored metrics are all

considered for anomaly detection, the true faults at the minor

part might have high anomaly scores (similar to the yellow

rectangles in Fig. 2), and true faults at the major part might

have low anomaly scores (similar to the red rectangles). This

shows the possibility of improving the performance robustness

of existing anomaly detection algorithms by automatically

selecting the most relevant metrics at every timestamp, which

we call real-time feature selection.

104



Fig. 6. The interaction between anomaly detection and feature selection.

IV. THE COAD FRAMEWORK

A. Overview

As shown in Fig. 5, microservice systems’ metrics are

continuously collected from monitors and then fed into the

anomaly detection module to conduct real-time anomaly de-

tection. Our framework COAD ( Combinatorial Optimization

enhanced Anomaly Detection) employs a real-time feature
selection module to work with the existing anomaly detection

module. In the workflow, a features subset is a combination

of features, and COAD always tries to search for the best

combination. The feature selection module needs some itera-

tions at each timestamp to decide the final features subset for

anomaly detection. During the iterative procedure, history data

of system normal states is needed for training anomaly detec-

tion models. The real-time feature selection module needs the

anomaly scores produced by the anomaly detection module,

and the anomaly detection module needs the features subset

decisions given by the feature selection module. After enough

iterations of such interaction, the final anomaly score for the

timestamp is outputted. It is worth noting that the interval

between two consecutive timestamps is typically in the order

of minutes (e.g., one minute in our dataset), so the time cost

for the iterated interaction is affordable as long as it can finish

within the interval.

B. The Iterative Interaction between Anomaly Detection and
Feature Selection

Fig. 6 depicts the iterative interaction between the anomaly

detection module and the feature selection module. The input

includes the monitored data of the timestamp under analysis,

the iteration times, and the configurations of the two modules.

The configurations of the anomaly detection module specify

the anomaly detection algorithm (e.g., GMM) and its param-

eters. The configurations of the feature selection module will

be discussed in detail in Section IV-C.

Fig. 7. Realization of real-time feature selection module.

At first, the feature selection module will provide some

initial feature selection decisions to the anomaly detection

module for producing anomaly scores of each decision. These

produced anomaly scores will be used to guide the feature

selection module’s subsequent decisions. When the anomaly

detection module receives the features selection decisions,

it needs to train the anomaly detection algorithm’s model

separately for each decision, for the purpose of multivariate

time series anomaly detection with the chosen features subset.

After training, the anomaly detection module can use the

models to produce anomaly scores for each selection decision.

Finally, when the iterations are over, COAD chooses the

highest anomaly score produced in the last iteration to output

as the final anomaly score for the timestamp.

C. The Real-time Feature Selection Module

Fig. 7 describes how the real-time feature selection module

can gradually improve its decisions. As mentioned in Sec-

tion II-C, metaheuristic algorithms can be used to conduct

feature selection by encoding the features subsets as integer

vectors. Selected features subsets are called individuals or

solutions. A group of individuals is called a population, which

can be updated by metaheuristic algorithms towards a better

population, which is more likely to get nicer feedback by

environment (the anomaly detection module in our frame-

work). The higher the anomaly score produced, the better

the individual can be used to detect the potential true fault

(the criteria might cause side effects and will be discussed in

Section V-B). The feature selection module uses the anomaly

scores to improve its feature selection decisions, just as the

metaheuristic algorithm uses the fitness of individuals to

update the population.

The real-time feature selection module configurations in-

clude the metaheuristic algorithm (COAD supports a wide

range of nature-inspired metaheuristic algorithms, see Sec-

tion V-A ), the population size, and the individual’s encoding

length. These three can decide the selection quality and

efficiency. Usually, a bigger-sized population and a longer

105



solution encoding length help generate better results with

a higher time and computational cost. To strike a balance

between effectiveness and efficiency, we set the encoding

length to 20 according to our observation in Section III-C.

If the encoding length is too long, the search space of the

feature combination will become huge. On the other hand, If

the encoding length is too short, normal states may be more

likely to be misjudged as anomalies.

D. The Detailed Algorithms and Pseudo Code

Algorithm 1 The overall process of COAD

Input: TD (unsupervised training data), Dt (the time series data at
timestamp t), Θ (metaheuristic algorithm), ϕ (anomaly detection
algorithm), PL (population size), IL (integer vector length for
encoding individuals), N (iteration times)

1: i ← 0
2: Pi (Population) ← algorithm 2
3: repeat
4: i ← i+ 1
5: Fi (Fitness) ← algorithm 3
6: Pi (Population) ← algorithm 4
7: until i = N
8: at ← max(FN )

Output: anomaly score at at timestamp t

Algorithm 2 Random initialization of features subsets

1: i ← 0
2: repeat
3: i ← i+ 1
4: Ii(individual) ← randomly generate an integer vector with

length IL, which represents a features subset decision
5: until i = PL

Output: Initialized population P = {I1, I2, · · · , IPL}

Algorithm 3 Compute the anomaly score (fitness) for each

features subset (individual)

1: i ← 0
2: repeat
3: i ← i+ 1
4: scorei ← the anomaly score from ϕ analyzing Dt using

features subset Ii
5: until i = PL

Output: Anomaly scores (fitness) for each features subset

(individual) scores = {score1, score2, · · · , scorePL}

Algorithm 4 Update the population according to the fitness

(anomaly score) of each individual (features subset)

1: P = {I1, I2, · · · , IPL} ← the offspring of previous population
using metaheuristic algorithm Θ

Output: Updated population P = {I1, I2, · · · , IPL}

The whole process of COAD for anomaly detection at

timestamp t can be described using Algorithm. 1. First, the

unsupervised training data TD, the time series data to be

analyzed Dt, the anomaly detection algorithm ϕ, the meta-

heuristic algorithm Θ, the solution length (or the encoding

length) IL, the population size PL, and the iteration times

N is inputted to the algorithm. Then initialization and the

iterations start. When the iterations finish, the final anomaly

score at timestamp t is outputted. The initialization of fea-

tures subsets is described in Algorithm 2. The procedure for

computing anomaly scores is described in Algorithm 3. The

solutions update step is described in Algorithm 4.

V. EVALUATION

In this section, we evaluate COAD by investigating the

following research questions:

• RQ1: Is COAD able to mitigate the threshold sensitivity

problem of existing anomaly detection algorithms?

• RQ2: Does COAD have a side effect on normal times-

tamps? If there is a side effect, will it affect the anomaly

detection performance?

• RQ3: How efficient is COAD? Is the computational and

time cost affordable?

• RQ4: How does COAD compare with other dimension

reduction methods?

• RQ5: Can COAD outperform neural network methods?

• RQ6: Can COAD generally enhance the performance of

various existing multivariate time series anomaly detec-

tion algorithms?

A. Implementation and Experiment Design

We have implemented COAD using two popular python

packages: PyOD [37] and MEALPY [38]. PyOD is the most

comprehensive and scalable Python library for detecting out-

lying objects in multivariate data. MEALPY is the largest

python library for most cutting-edge nature-inspired meta-

heuristic algorithms. PyOD is used to implement the anomaly

detection method ϕ, and MEALPY is used to implement the

metaheuristic algorithm Θ. All experiments are implemented

on an iMac machine with 16GB DDR4, Intel Core i9 CPU,

and macOS Monterey.

To verify the effectiveness and generalizability of COAD,

three classical machine learning-based algorithms of different

types are studied: GMM [18], KNN [24], and LOF [25], which

are also used in Section III. All of them are fast to train a

model. We do not evaluate neural network methods in the

current work because directly enhancing them might cost lots

of time and computational resources. Instead, We will discuss

the idea of applying COAD to neural network methods in

Section VI. For metaheuristic algorithms, we also choose three

classic ones of different types: GA (Genetic Algorithm) [31],

PSO (Particle Swarm Optimization) [29] and AEO (Artificial

Ecosystem-based Optimization) [30]. GA is evolution-based,

PSO is swarm-based, and AEO is system-based.

Every anomaly detection algorithm “XX” enhanced by a

combinatorial optimization algorithm “YY” is denoted as

“XX YY”, e.g., “PSO GMM”. The original anomaly detec-

tion algorithms are designated as “Original YY”, e.g., “Orig-

inal GMM”, or directly by their name, e.g., “GMM”. We

106



simulate real-time anomaly detection on three microservice

system testbeds from the 2022 International AIOps Challenge.

For the sake of fairness, the hyperparameters of each algorithm

are the default values in their implementation library. The

solution length IL is set to 20 to balance the anomaly score

promotion of true faults and normal states, which has also

been mentioned in the methodology section. The number of

iterations N is set to 50, and the population size PL is set

to 20 to balance the search adequacy and time consumption.

We ran all experiments three times to eliminate the influence

of random factors and report the average results in subsequent

discussions.

The metrics to evaluate the experiment results include R-

value, M-value, AUC (Area Under Curve), and time cost. R-

value (Equation (4)) can evaluate an algorithm’s performance

robustness against threshold changes. M-value (Equation (3))

can evaluate the upper-bound performance of an algorithm.

AUC [39] is widely used to measure the ability of a classifier

to distinguish between classes. In our work, it can help mea-

sure the detection quality irrespective of the chosen thresholds.

Finally, because metaheuristic algorithms are expensive, we

also evaluate their time cost to see if COAD is practical.

B. Experiment Results and Analyses

There are plenty of experiment results as we try to enhance

three anomaly detection algorithms using three combinatorial

optimization methods, and all experiments are run three times.

All these results can be obtained from our GitHub reposi-

tory [40]. Due to the page limit, we only give examples and

statistics in our paper in the following.

1) Threshold Sensitivity Problem: Answer to RQ1: Is

COAD able to mitigate the threshold sensitivity problem

of existing anomaly detection algorithms? Fig. 8 shows the

detection result of PSO GMM using the same data as in Fig. 2.

Fig. 9 further shows its performance changes with different

thresholds. As can be seen from Fig. 8, PSO GMM greatly

promotes the anomaly scores of those true faults annotated

with red rectangles in Fig. 2. If we further compare Fig. 3

with Fig. 9, we can see that the performance degradation

of PSO GMM is much slower than Original GMM. These

results indicate that PSO GMM is much improved compared

with Original GMM.

To validate whether other anomaly detection algorithms

are generally improved, we measure the R-values of these

algorithms and their enhanced versions. Because there are

three testbeds, we make the statistics separately for each

testbed and then calculate the average results among the three

testbeds. As shown in Table II, all the anomaly detection

algorithms using COAD have a higher R-value than their

original version for each testbed. This shows that COAD can
generally mitigate the threshold sensitivity problem of existing
machine learning-based anomaly detection algorithms.

2) Side Effect: Answer to RQ2: Does COAD have a side

effect on normal timestamps? If there is a side effect, will

it affect the anomaly detection performance? As mentioned

in Section IV-C, because the anomaly scores are always

TABLE II
THE R-VALUES OF DETECTION ALGORITHMS WITH AND WITHOUT COAD

Algorithms
R-value

Testbed1 Testbed2 Testbed3 Average

LOF

AEO 0.29± 0.01 0.28± 0.00 0.30± 0.01 0.29± 0.01
GA 0.26± 0.01 0.29± 0.03 0.27± 0.03 0.27± 0.02
PSO 0.32± 0.10 0.38± 0.03 0.32± 0.17 0.34± 0.04

Original 0.05± 0.01 0.16± 0.02 0.12± 0.01 0.11± 0.01

KNN

AEO 0.23± 0.02 0.30± 0.01 0.26± 0.02 0.26± 0.02
GA 0.31± 0.04 0.36± 0.03 0.34± 0.03 0.34± 0.03
PSO 0.23± 0.00 0.29± 0.02 0.26± 0.00 0.26± 0.01

Original 0.1± 0.01 0.13± 0.01 0.12± 0.01 0.12± 0.01

GMM

AEO 0.37± 0.03 0.32± 0.00 0.31± 0.06 0.33± 0.01
GA 0.37± 0.02 0.30± 0.03 0.28± 0.05 0.32± 0.03
PSO 0.52± 0.03 0.34± 0.05 0.45± 0.06 0.44± 0.02

Original 0.24± 0.02 0.06± 0.01 0.11± 0.00 0.14± 0.01

TABLE III
THE AUC OF DETECTION ALGORITHMS WITH AND WITHOUT COAD

Algorithms
AUC

Testbed1 Testbed2 Testbed3 Average

LOF

AEO 0.84± 0.01 0.80± 0.03 0.80± 0.02 0.81± 0.02
GA 0.83± 0.03 0.81± 0.01 0.81± 0.02 0.81± 0.01
PSO 0.80± 0.00 0.82± 0.03 0.79± 0.02 0.81± 0.00

Original 0.82± 0.01 0.77± 0.01 0.75± 0.01 0.78± 0.01

KNN

AEO 0.85± 0.01 0.82± 0.01 0.73± 0.04 0.80± 0.02
GA 0.84± 0.00 0.80± 0.01 0.79± 0.04 0.81± 0.01
PSO 0.84± 0.01 0.81± 0.01 0.79± 0.01 0.82± 0.01

Original 0.85± 0.01 0.77± 0.00 0.74± 0.01 0.79± 0.01

GMM

AEO 0.87± 0.01 0.83± 0.00 0.82± 0.01 0.84± 0.01
GA 0.87± 0.01 0.83± 0.00 0.82± 0.01 0.84± 0.01
PSO 0.87± 0.01 0.82± 0.00 0.83± 0.00 0.84± 0.00

Original 0.89± 0.00 0.85± 0.01 0.84± 0.01 0.86± 0.01

promoted due to the optimization (a higher anomaly score

means better fitness), COAD might promote the anomaly

scores of normal states, causing side effects. According to

our experiments, we confirm that the side effect does exist.

Here, we give an example. Fig. 10(a) shows the detection

results of original GMM, and Fig. 10(b) shows the detection

results of PSO GMM. The anomaly scores marked with red

rectangles are the scores of normal states (not on the green

lines indicating true fault happening times). As Fig. 10(b)

shows, these normal states get a higher anomaly score by

PSO GMM than Original GMM, meaning that these normal

timestamps might be misjudged as anomalies.

TABLE IV
THE M-VALUE OF DETECTION ALGORITHMS WITH AND WITHOUT COAD

Algorithms
M-value

Testbed1 Testbed2 Testbed3 Average

LOF

AEO 0.72± 0.01 0.75± 0.03 0.74± 0.01 0.74± 0.01
GA 0.69± 0.02 0.77± 0.00 0.75± 0.02 0.74± 0.01
PSO 0.61± 0.04 0.71± 0.03 0.67± 0.04 0.66± 0.02

Original 0.7± 0.01 0.66± 0.02 0.66± 0.01 0.67± 0.01

KNN

AEO 0.69± 0.00 0.77± 0.00 0.68± 0.03 0.72± 0.01
GA 0.69± 0.02 0.76± 0.02 0.70± 0.03 0.72± 0.02
PSO 0.70± 0.01 0.79± 0.01 0.72± 0.01 0.73± 0.00

Original 0.65± 0.00 0.66± 0.01 0.66± 0.00 0.66± 0.00

GMM

AEO 0.73± 0.01 0.78± 0.01 0.78± 0.01 0.76± 0.00
GA 0.72± 0.01 0.80± 0.01 0.76± 0.00 0.76± 0.01
PSO 0.71± 0.01 0.79± 0.00 0.78± 0.00 0.76± 0.00

Original 0.74± 0.01 0.67± 0.02 0.75± 0.00 0.72± 0.01

107



Fig. 8. Anomaly detection results of PSO GMM.

Fig. 9. PSO GMM’s performance changes with different thresholds.

Apart from R-value, we also make statistics of AUC [39]

and M-value for different algorithms. Table III shows the

statistics of AUC value. It can be seen that, apart from GMM,

the other two anomaly detection algorithms have a higher

average AUC value after adopting COAD, regardless of which

combinatorial optimization algorithm is used. However, the

enhanced LOF algorithms have slightly lower AUC values

than the original LOF on Testbed1, and the enhanced GMM

algorithms have slightly lower AUC values on all testbeds. The

results contain little randomness as we have run the experiment

three times. We conjecture that the effect of COAD in terms

of AUC value may depend on the testbed and the enhanced

algorithms. Although the side effect exists, the AUC value

changes may be positive (i.e., the values increase) or negative

(i.e., the values decrease).

Table IV shows the statistics of M-value. In practice, users

may choose the best threshold through various ways to reach

the best anomaly detection performance. M-value is hence an

important indicator. It can be seen that, apart from PSO LOF,

all other enhanced algorithms have a higher M-value than the

original algorithms. It means that in real applications, anomaly

detection algorithms enhanced with COAD could generally

TABLE V
THE TIME COST OF DETECTION ALGORITHMS WITH COAD

LOF KNN GMM

AEO GA PSO AEO GA PSO AEO GA PSO

Time Cost (s) 74.21 37.04 45.75 59.3 29.42 37.69 30.29 26.51 20.4

have a higher upper bound of detection performance.

To sum up, although the side effect exists, the enhancement
is greater than the degradation. It is likely because the

abnormal features subset of normal states is difficult to search

for metaheuristic algorithms, so the promotion of the anomaly

scores of normal states might not be too much compared with

that of abnormal states.

3) Time Cost: Answer to RQ3: How efficient is COAD?

Is the computational and time cost affordable? We make

the statistics about the average time cost of every evaluated

algorithm. As shown in Table V, other than AEO LOF, all en-

hanced algorithms can finish within one minute. So, although
COAD needs several iterations to get the optimal features
subset at every timestamp, the time cost for the enhancement
is affordable since the interval between two timestamps is

typically in minutes (one minute in our dataset). It is worth

mentioning that the time cost might be further reduced if more

powerful hardware (compared with our experiment environ-

ment as mentioned in Section V-A) is used or better parameters

of the metaheuristic algorithms are configured (we did not

perform tuning in our experiments).

4) Compared to Other Dimension Reduction Methods:
Answer to RQ4: How does COAD compare with other di-

mension reduction methods? As mentioned in Section II-C,

when dealing with high-dimensional multivariate time series,

PCA [26] can also be used to project data to a lower dimen-

sional space. Table I shows that the average M-value and R-

value of PCA are 0.71 and 0.05, respectively. We also make the

statistics about the average AUC value of PCA, and the result

is 0.83. Compared with the algorithms enhanced by COAD,

it can be seen that the AUC values and M-values do not have

108



(a) Anomaly detection results of GMM. (b) Anomaly detection results of PSO GMM.

Fig. 10. A side effect example in the experiment results.

much difference. However, PCA’s R-value, which measures an

algorithm’s performance robustness against threshold changes,

is significantly lower. This shows that COAD has a better

ability than PCA to reduce performance instability due to

threshold changes.

Neural network methods with feature selection layers also

have the ability to perform dimension reduction. Table I lists

the results of three neural network methods: AutoEncoder [18],

DeepSVDD [19] and VAE [20]. Similar to PCA, they all have

a much lower R-value than algorithms enhanced by COAD.

In conclusion, other dimension reduction methods do not
perform well concerning mitigating the threshold sensitiv-
ity problem. This comparison result is understandable since

COAD realizes real-time feature selection dynamically at each

timestamp. Still, the other methods only perform dimension

reduction once (PCA uses the data of normal states to analyze

the principle components once, and neural network methods

train their feature selection layers before anomaly detection).

5) Compared to Neural Network Algorithms: Answer to

RQ5: Can COAD outperform neural network methods? Ta-

bles I, IV and II show that almost all anomaly detection

algorithms with COAD have a higher M-value and R-value

than neural network methods. We further make the statistics

about AUC values: the AUC values of VAE and AutoEncoder

are both 0.83, and the AUC value of DeepSVDD is 0.81. The

results show that COAD is as competitive as neural network
methods in terms of M-value or AUC and is better than
neural network methods with respect to R-value. We have

figured out two possible reasons. First, the anomaly detection

is based on unsupervised learning. In reality, most monitored

data is from normal states, and the anomaly detection cost

with supervised learning can be expensive. When learning

from a large amount of normal data and a tiny amount of

abnormal data, the neural networks can only capture the known

knowledge. They are not good at focusing on the small features

subsets, which may reflect unknown anomaly patterns. In

contrast, COAD is able to focus on these features in a real-

time fashion. Second, complex and big neural network models

and sufficient training data are often required to capture the

complicated patterns in the high-dimensional time series data

monitored from a microservice system. In our experiments, the

tested neural network models’ settings are the default ones in

PyOD [37]. Therefore, these methods might not have reached

their potential best performance. Nonetheless, our experiment

settings are fair to all methods (we do not provide more data

or perform tuning for other methods either).

6) General Promotion: Answer to RQ6: Can COAD gener-

ally enhance the performance of various existing multivariate

time series anomaly detection algorithms? Tables II, III and IV

show that all the three different types of anomaly detection

algorithms can be enhanced by various metaheuristic algo-

rithms, which shows the generalization capability of COAD.

We calculate the average improvement over all the results: the

average improvements of R-value, M-value, and AUC value

are 142%, 5.67%, and 0.93%. So, we can conclude that COAD
can generally enhance the performance of various anomaly
detection algorithms.

C. Threats to Validity

The validity of our results might be subject to some

threats. First, the implementation of COAD might contain

bugs and can be further optimized. To mitigate the threat, we

implemented COAD using two popular and well-tested python

packages MEALPY [38] and PyOD [37]. We have tried our

best to review and test the code of COAD. We also release

our code for public scrutiny. Second, the parameters of all

studied algorithms are not tuned to achieve the best results.

However, these parameters are set to default settings for the

sake of fair comparisons. Third, there may be randomness in

the results of metaheuristic algorithms (e.g., the initialization

and update of population have randomness). To reduce the

influence of randomness, we ran all experiments three times

and studied various algorithms on three different testbeds. The

fourth threat is the reliability of the dataset. The dataset is

produced by a real deployed microservice system from a well-

known AIOps competition. The system adopts the framework

Hipstershop [36], which is similar to other widely studied

systems: Sock-Shop and Train-Ticket [41, 42].

VI. CONCLUSION AND FUTURE WORK

In this paper, we have proposed COAD, a new anomaly de-

tection framework for microservice systems. It enhances clas-

sical machine learning-based anomaly detection algorithms

with combinatorial optimization algorithms. Via continuously

searching for suspicious features subsets, COAD can realize

feature selection in a real-time fashion to reduce the existing

algorithms’ sensitivity to threshold settings and enhance their

performance. We have validated COAD’s effectiveness on the

2022 International AIOps Challenge dataset based on three

109



different microservice system testbeds. The results show that

COAD is able to reduce the original algorithms’ threshold

sensitivity by 142% and promote their performance upper

bound by 5.67%. There are three aspects of implications in

our work:

1) Our work implies that it is possible to combine machine

learning and metaheursitic algorithms to accomplish spe-

cific tasks. We have successfully leveraged metaheuristic

algorithms to address the threshold sensitivity problem

of several unsupervised learning methods for anomaly

detection in microservice systems. Future research may

further explore more possibilities.

2) The subsets of metrics identified by COAD often have

the highest anomaly scores. This implies that such iden-

tified metrics are likely most related to real anomalies

and can assist in root cause analysis, which could

significantly reduce human effort in fault diagnosis.

3) Our work also presents a useful paradigm to feature

selection. The effectiveness of COAD implies that it is

possible to dynamically and continuously select relevant

features when analyzing high-dimensional multivariate

time series. We hope that our work could shed light on

future research in relevant areas.

For future work, we plan to validate the effectiveness of

COAD on other datasets and algorithms. As for the application

of COAD on neural network methods, we have the preliminary

idea of getting features subsets from classical machine learning

algorithms and then using the selected features to enhance

neural network methods.

ACKNOWLEDGMENT

This work is supported by the National Natural Science

Foundation of China (Grant No. 61932021).

REFERENCES

[1] T. Cerný, M. J. Donahoo, and M. Trnka, “Contextual understanding of microservice
architecture: current and future directions,” ACM Sigapp Applied Computing
Review, vol. 17, pp. 29–45, 2018.

[2] V. Bushong, A. S. Abdelfattah, A. A. Maruf, D. Das, A. Lehman, E. Jaroszewski,
M. Coffey, T. Cerný, K. Frajták, P. Tisnovsky, and M. Bures, “On microservice
analysis and architecture evolution: A systematic mapping study,” Applied Sciences,
2021.

[3] P. D. Francesco, P. Lago, and I. Malavolta, “Migrating towards microservice
architectures: An industrial survey,” 2018 IEEE International Conference on
Software Architecture (ICSA), pp. 29–2909, 2018.

[4] “Aiops,” https://www.gartner.com/en/information-technology/glossary/aiops-
artificial-intelligence-operations.

[5] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,” ACM
Comput. Surv., vol. 41, pp. 15:1–15:58, 2009.

[6] J. Lin, P. Chen, and Z. Zheng, “Microscope: Pinpoint performance issues with
causal graphs in micro-service environments,” in ICSOC, 2018.

[7] L. Wu, J. Tordsson, E. Elmroth, and O. Kao, “Microrca: Root cause localization
of performance issues in microservices,” NOMS 2020 - 2020 IEEE/IFIP Network
Operations and Management Symposium, pp. 1–9, 2020.

[8] Z. Li, J. Chen, R. Jiao, N. Zhao, Z. Wang, S. Zhang, Y. Wu, L. Jiang, L. Yan,
Z. Wang, Z. Chen, W. Zhang, X. Nie, K. Sui, and D. Pei, “Practical root cause
localization for microservice systems via trace analysis,” 2021 IEEE/ACM 29th
International Symposium on Quality of Service (IWQOS), pp. 1–10, 2021.

[9] C. Zhang, X. Peng, C. Sha, K. Zhang, Z. Fu, X. Wu, Q. Lin, and D. Zhang,
“Deeptralog: Trace-log combined microservice anomaly detection through graph-
based deep learning,” 2022 IEEE/ACM 44th International Conference on Software
Engineering (ICSE), pp. 623–634, 2022.

[10] Y. Cai, B. Han, J. Su, and X. Wang, “Tracemodel: An automatic anomaly detection
and root cause localization framework for microservice systems,” 2021 17th
International Conference on Mobility, Sensing and Networking (MSN), pp. 512–
519, 2021.

[11] P. Liu, H. Xu, Q. Ouyang, R. Jiao, Z. Chen, S. Zhang, J. Yang, L. Mo, J. Zeng,
W. Xue, and D. Pei, “Unsupervised detection of microservice trace anomalies
through service-level deep bayesian networks,” 2020 IEEE 31st International
Symposium on Software Reliability Engineering (ISSRE), pp. 48–58, 2020.

[12] C. Wu, N. Zhao, L. Wang, X. Yang, S. Li, M. Zhang, X. Jin, X. Wen, X. Nie,
W. Zhang, K. Sui, and D. Pei, “Identifying root-cause metrics for incident diagnosis
in online service systems,” 2021 IEEE 32nd International Symposium on Software
Reliability Engineering (ISSRE), pp. 91–102, 2021.

[13] J. Audibert, P. Michiardi, F. Guyard, S. Marti, and M. A. Zuluaga, “Usad:
Unsupervised anomaly detection on multivariate time series,” Proceedings of the
26th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, 2020.

[14] X. Zhang, Q. Lin, Y. Xu, S. Qin, H. Zhang, B. Qiao, Y. Dang, X. Yang, Q. Cheng,
M. Chintalapati, Y. Wu, K. Hsieh, K. Sui, X. Meng, Y. Xu, W. Zhang, S. Furao,
and D. Zhang, “Cross-dataset time series anomaly detection for cloud systems,” in
USENIX Annual Technical Conference, 2019.

[15] L. Dai, T. Lin, C. Liu, B. Jiang, Y. Liu, Z. Xu, and Z.-L. Zhang, “Sdfvae:
Static and dynamic factorized vae for anomaly detection of multivariate cdn kpis,”
Proceedings of the Web Conference 2021, 2021.

[16] M. Ma, S. Zhang, J. Chen, J. Xu, H. Li, Y. Lin, X. Nie, B. Zhou, Y. Wang, and
D. Pei, “Jump-starting multivariate time series anomaly detection for online service
systems,” in USENIX Annual Technical Conference, 2021.

[17] Z. Li, N. Zhao, M. Li, X. Lu, L. Wang, D. Chang, X. Nie, L. Cao, W. Zhang,
K. Sui, Y. Wang, X. Du, G. Duan, and D. Pei, “Actionable and interpretable fault
localization for recurring failures in online service systems,” Proceedings of the
30th ACM Joint European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, 2022.

[18] C. C. Aggarwal, “Outlier analysis,” in Springer New York, 2013.
[19] L. Ruff, N. Görnitz, L. Deecke, S. A. Siddiqui, R. A. Vandermeulen, A. Binder,

E. Müller, and M. Kloft, “Deep one-class classification,” in ICML, 2018.
[20] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” CoRR, vol.

abs/1312.6114, 2014.
[21] Z. Li, Y. Zhao, N. Botta, C. Ionescu, and X. Hu, “Copod: Copula-based outlier

detection,” 2020 IEEE International Conference on Data Mining (ICDM), pp.
1118–1123, 2020.

[22] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation-based anomaly detection,” ACM
Trans. Knowl. Discov. Data, vol. 6, pp. 3:1–3:39, 2012.

[23] L. J. Latecki, A. Lazarevic, and D. Pokrajac, “Outlier detection with kernel density
functions,” in MLDM, 2007.

[24] F. Angiulli and C. Pizzuti, “Fast outlier detection in high dimensional spaces,” in
PKDD, 2002.

[25] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “Lof: identifying density-
based local outliers,” in SIGMOD ’00, 2000.

[26] M.-L. Shyu, S. Chen, K. Sarinnapakorn, and L. Chang, “A novel anomaly detection
scheme based on principal component classifier,” 2003.

[27] P. Agrawal, H. F. Abutarboush, T. Ganesh, and A. W. Mohamed, “Metaheuristic
algorithms on feature selection: A survey of one decade of research (2009-2019),”
IEEE Access, vol. 9, pp. 26 766–26 791, 2021.

[28] “Aiops challenge,” https://aiops-challenge.com/.
[29] R. Poli, J. Kennedy, and T. M. Blackwell, “Particle swarm optimization,” Swarm

Intelligence, vol. 1, pp. 33–57, 1995.
[30] W. guo Zhao, L. Wang, and Z. Zhang, “Artificial ecosystem-based optimization:

a novel nature-inspired meta-heuristic algorithm,” Neural Computing and Applica-
tions, vol. 32, pp. 9383–9425, 2019.

[31] L. D. Whitley, “A genetic algorithm tutorial,” Statistics and Computing, vol. 4, pp.
65–85, 1994.

[32] “Coad,” https://github.com/COAD2022/COAD.
[33] T. Zhang, R. Ramakrishnan, and M. Livny, “Birch: an efficient data clustering

method for very large databases,” in SIGMOD ’96, 1996.
[34] G. Chandrashekar and F. Sahin, “A survey on feature selection methods,” Comput.

Electr. Eng., vol. 40, pp. 16–28, 2014.
[35] M. Abdel-Basset, L. Abdel-Fatah, and A. K. Sangaiah, “Metaheuristic algorithms:

A comprehensive review,” 2018.
[36] “Hipstershop,” https://github.com/abruneau/hipstershop.
[37] Y. Zhao, Z. Nasrullah, and Z. Li, “Pyod: A python toolbox for scalable outlier

detection,” Journal of Machine Learning Research, vol. 20, no. 96, pp. 1–7, 2019.
[Online]. Available: http://jmlr.org/papers/v20/19-011.html

[38] N. V. Thieu and S. Mirjalili, “MEALPY: a Framework of The State-of-
The-Art Meta-Heuristic Algorithms in Python,” Jun. 2022. [Online]. Available:
https://doi.org/10.5281/zenodo.6684223

[39] “Auc,” https://developers.google.com/machine-learning/crash-
course/classification/roc-and-auc?hl=en.

[40] “Coad,” https://github.com/COAD2022/COAD.
[41] “Sock shop,” https://github.com/microservices-demo/microservices-demo.
[42] FudanSELab, “Train ticket,” https://github.com/FudanSELab/train-ticket.

110


